Marius Bozga

Jean-Claude Fernandez

Lucian Ghirvu

Susanne Graf

Jean-Pierre Krimm

Laurent Mounier

IF: A Validation Environment for Timed Asynchronous Systems

Introduction

Formal validation of distributed systems relies on several speci cation formalisms (such as the international standards lotos 15] or sdl 16]), and it requires di erent kinds of tools to cover the whole development process. Presently, a wide range of tools are available, either commercial or academic ones, but none of them ful lls in itself all the practical needs. Commercial tools (like Objectgeode 20], sdt 1], statemate 14],etc.) provide several development facilities, like editing, code generation and testing. However, they are usually restricted to basic veri cation techniques (exhaustive simulation, deadlock detection, etc) and are \closed" in the sense that there are only limited possibilities to interface them with others. On the other hand, there exist many academic tools (like smv 19], hytech 12], kronos 22], uppaal 18], spin 13], invest 2], etc.) o ering a broad spectrum of quite e cient veri cation facilities (symbolic veri cation, on-the-y veri cation, abstraction techniques, etc.), but often supporting only low-level input languages. This may restrict their use at an industrial scale. This situation motivated the development of if, an intermediate representation for timed asynchronous systems together with an open validation environment. This environment ful lls several requirements. First of all, it is able to support di erent validation techniques, from interactive simulation to automatic property checking, together with test case and executable code generation. Indeed, all these functionalities cannot be embodied in a single tool and only tool integration facilities can provide all of them. For a sake of e ciency, this environment supports several levels of program representations. For instance it is well-known that model-checking veri cation of real life case studies usually needs to combine di erent optimization techniques to overcome the state explosion problem. In particular, some of these techniques rely on a syntactic level representation (like static analysis and computations of abstractions) whereas others techniques operate on the underlying semantic level. Another important feature is to keep this environment open and evolutive. Therefore, tool connections are performed by sharing either input/output formats, or libraries of components. For this purpose several well-de ned application programming interfaces (apis) are provided.

The if validation environment relies on three levels of program representation: the speci cation level, the if intermediate level, and the lts semantic model level. The speci cation level is the initial program description, expressed for instance using an existing language. To be processed, this description is (automatically) translated into its if representation. Currently the main input speci cation formalism we consider is sdl, but connections with other languages such as lotos or promela could also be possible. The implicit enumerative representation consists in a set of C functions and data structures allowing to compute on demand the successors of a given state (following the open-caesar 11] philosophy). This piece of C code is generated by the if2c compiler, and it can be linked with a \generic" exploration program performing on-the-y analysis.

In the symbolic representation sets of states and transitions of the lts are expressed by their characteristic predicates over a set of nite variables. These predicates are implemented using decision diagrams (bdds). Existing applications based on this api are symbolic model-checking and minimal model generation.

Finally, the explicit enumerative representation simply consists in an lts le with an associated access library. Although such an explicit representation is not suitable for handling large systems globally, it is still useful in practice to minimize some of its abstractions with respect to bisimulation based relations.

Components description

We brie y present here the main components of the environment, together with some external tools for which a strong connection exists.

The speci cation level components. Objectgeode 20] is a commercial toolset developed by TTT supporting sdl, msc and omt. In particular, this toolset provides an api to access the abstract tree generated from an sdl speci cation. We have used this api to implement the sdl2if translator, which generates operationally equivalent if speci cations from sdl ones. Given the static nature of if, this translation does not cover the dynamical features of sdl (e.g., process instances creation).

The intermediate level components. live 5] implements several algorithms based on static analysis to transform an if speci cation. A rst transformation concerns dead variable resetting (a variable is dead at some control point if its value is not used before being rede ned). This optimisation can be also applied to bu er contents (a message parameter is dead if its value is not used when the message is consumed). Although very simple, such optimisation is particularly e cient for state space generation (reductions up to a factor 100 were frequently observed), while preserving the exact behaviour of the original speci cation The semantic model level components. cadp 9] is a toolset for the veri cation of lotos speci cations. It is developed by the vasy team of Inria Rhône-Alpes and verimag. Two of its model-checkers are connected to the if environment: aldebaran (bisimulation based), and evaluator (alternating-free -calculus).

For both tools, diagnostic sequences are computed on the lts level and they can be translated back into msc to be observed at the speci cation level. kronos 22] is a model-checker for symbolic veri cation of tctl formulae on communicating timed automata. The current connection with the if environment is as follows: control states and discrete variables are expressed using the implicit enumerative representation, whereas clocks are expressed using a symbolic representation (particular polyhedra).

tgv 10] is a test sequence generator for conformance testing of distributed systems (joint work between verimag and the pampa project of irisa). Test cases are computed during the exploration of the model and they are selected by means of test purposes.

Results and perspectives

The if environment has already been used to analyze some representative sdl specications, like sscop, an Atm signalisation layer protocol 8], and mascara, an Atm wireless transport protocol. It is currently used in several on going industrial casestudies, including the real-time multicast protocol pgm, and the control part of the Ariane 5 launcher ight sequencer. The bene ts of combining several techniques, working at di erent program level, were clearly demonstrated. In particular, traditional model-checking techniques (as provided by Objectgeode) were not su cient to complete on these large size examples. Several directions can be investigated to improve this environment. First of all, other formalisms than sdl could be connected to if. In particular, the translation from a subset of uml is envisaged. To this purpose new features will be added to handle dynamic process creation and parametrized network speci cations. From the veri cation point of view, the results obtained using the currently implemented static analysis techniques are very encouraging. We now plan to experiment some more sophisticated algorithms implemented in the invest tool 2], such as structural invariant generation and general abstraction computation techniques for in nite space systems. Another promising approach to verify large systems consists in generating their underlying model in a compositional way: each sub-system is generated in isolation, and the resulting ltss are minimized before being composed with each other. The if environment o ers all the required components to experiment it in an asynchronous framework 17]. The if package can be downloaded at http://www-verimag.imag.fr/DIST SYS/IF.

Fig. 1 .

 1 Fig. 1. An open validation environment for if

 Process transitions are guarded commands consisting of synchronous/asynchronous inputs and outputs, variable assignments, and clock settings. Bu ers have various queuing policies (fo, stack, bag, etc.), can be bounded or unbounded, and reliable or lossy. A well-de ned api allows to consult and modify the abstract tree of the if representation. Since all the variables, clocks, bu ers and the communication structure are still explicit, high-level transformations based on static analysis (such as live variables computation) or program abstraction can be applied. Moreover, this api is also well suited to implement translators from if to other speci cation formalisms.The semantic model level gives access to the lts representing the behaviour of the if program. Depending on the application considered, three kinds of api are proposed:

The intermediate level corresponds to the if

representation 7]

. In if, a system is expressed by a set of parallel processes communicating either asynchronously through a set of bu ers, or synchronously through a set of gates. Processes are based on timed automata with deadlines 3], extended with discrete variables.

 . A second transformation is based on the slicing technique 21]. It allows to automatically abstract a given speci cation by eliminating some irrelevant parts w.r.t. a given property or test purpose 6]. if2pml 4] is a tool developed at Eindhoven TU to translate if speci cations into

promela.

? Work partially supported by R egion Rhône-Alpes, France