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ABSTRACT

To elucidate the influence of shear flow on the generation of magnetic field (the

dynamo effect), we study the kinematic limit where the magnetic field does not

backreact on the velocity field. By non-perturbatively incorporating the effect

of shear in a helically forced turbulence, we show that turbulence intensity and

turbulent transport coefficients (turbulent viscosity, α and β effect) are enhanced

by a weak shear while strongly suppressed for strong shear. In particular, β

is shown to be much more strongly suppressed than α effect. We discuss its

important implications for dynamo efficiency, i.e. on the scaling of the dynamo

number with differential rotation.

Subject headings: MHD – stars: magnetic fields – turbulence



– 3 –

It is now widely accepted that astrophysical and geophysical magnetic fields are not

the remains of a fossil field created during the formation of planets or stars (as they would

have decayed on a time-scale much shorter than their current life time), but are self-excited

by motions of conductive fluid (for instance, molten iron within the outer liquid core for

the Earth and conducting plasma for the Sun). The evolution of a magnetic field B in a

conducting fluid V is governed by the induction equation:

∂tB + V · ∇B = B · ∇V + η∇2B and ∇ · B = 0 , (1)

where η is the ohmic diffusivity. The first term on the right hand side (RHS) of Eq. (1) is

the stretching of magnetic field lines by gradients of the velocity field.

While laminar flows that can generate magnetic fields (dynamo) have been known for

a long time, the effect of turbulence on the generation of large-scale coherent magnetic

field remains controversial. A main problem is that turbulence tends to create magnetic

field at small scales (i.e. scale comparable to the original velocity field) while observations

of astrophysical magnetic fields (for instance galaxies) reveal coherent magnetic field on a

scale much larger than the fluctuating velocity field. Theories, such as mean-field dynamo

(Moffatt 1978; Krause & Rädler 1980), have investigated the necessary ingredients for

large-scale field generation. In the framework of mean-field dynamo, the magnetic and

velocity fields can be decomposed into mean and fluctuating parts: B = 〈B〉 + b and

V = 〈V〉+v, where the 〈•〉 stands for an average on the realization of the small-scale fields.

Substitution of this decomposition into Eq. (1) and averaging yield the following equation

for the mean magnetic field:

∂t〈B〉 + 〈V〉 · ∇〈B〉 = 〈B〉 · ∇ 〈V〉 + η∇2〈B〉 + ∇× E . (2)

The first term on the RHS of Eq. (1) represents the stretching of magnetic field lines by

gradient of the mean flow (∇〈V〉) and is called the Ω effect. It is an efficient mechanism
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to create toroidal field from a poloidal field in a system with differential rotation (Moffatt

1978). The term E = 〈v × b〉 is the electromotive force, which is often taken to be linear in

the mean magnetic field (〈B〉). In the case of an isotropic turbulence, this can be simplified

as:

Ei = α〈Bi〉 − β(∇× 〈B〉)i + . . . . (3)

The structure of the electromotive force permits the possibility of other mechanisms for

the amplification of the large-scale magnetic field besides the Ω effect. The one that has

been discussed most is the α effect, the first term on the RHS of Eq. (3). This has been

shown to generate magnetic field at large scale for a helical turbulence. Thus, it is a perfect

candidate to explain magnetic fields in systems influenced by Coriolis force (which produces

a net helicity) such as in stellar convection zones. This type of dynamo is thus classified as

αΩ if the Ω effect (measured by the strength of the shear Ω in our notations) is stronger

than the α effect, or α2 type if the α effect dominates over the Ω effect. The second term in

the RHS is Eq. (3) is the turbulent diffusivity which adds up to the molecular diffusivity η.

Consequently, if β is positive, it inhibits the growth of magnetic field.

Recently, numerical simulations have shown dynamo action at large scale in non-helical

turbulence in the presence of shear (Yousef et al. 2008). This is an interesting result as the

α effect is often thought to vanish in a turbulence without helicity. Various mechanisms

have been invoked to explain this large-scale dynamo: stochastic α effect (Proctor 2007),

shear amplification of small-scale dynamo (Blackman 1998), magnetic effect driven by

current helicity flux (Vishniac & Cho 2001) or negative diffusivity (Urpin 2002). Another

possibility is the shear current effect (Rogachevskii & Kleeorin 2003) which appears in a

turbulent flow with a mean shear flow. In that case, the expression of the β coefficient can

be rewritten βijk = −βT ǫijk + Fijk(∇U0) where βT is the turbulent magnetic diffusion while

the second term proportional to shear ∇U0 acts as a source of magnetic field (Rogachevskii

& Kleeorin 2003). It is thus of prime importance to investigate how the electromotive
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force (and consequently the α and β coefficients) depends on a large-scale shear flow

(Rogachevskii & Kleeorin 2003, 2004; Rädler & Stepanov 2006; Brandenburg et al. 2008).

In all these previous studies, strong shear is conductive to dynamo as it creates magnetic

energy via the Ω effect, acts as a source of magnetic field (e.g. via the shear-current effect),

causes instability (Tobias & Hughes 2004), etc. One possible consequence of a (stable) shear

flow, which has not been investigated by most previous authors, is that a strong shear can

reduce turbulent transport via shear stabilization (Burrell 1997). This is basically because

shear advects turbulent eddies differentially, elongating and distorting their shapes, thereby

rapidly generating small scales which are ultimately disrupted by molecular dissipation on

small scales (see Fig. 1). As a result, turbulence level as well as turbulent transport of

various quantities can be significantly reduced compared to the case without shear (Kim

2005, 2006; Leprovost & Kim 2006). For instance, by considering stable shear flow parallel

to a uniform large-scale magnetic field, Leprovost & Kim (2008) showed that the α effect is

quenched by shear as well as magnetic field. In particular, in the kinematic case (for weak

magnetic field), the α effect was shown to be reduced as flow shear A increases with the

scaling A−5/3. However, to understand fully the effect of shear on the dynamo process, it

remains to compute its effect on the turbulence diffusion of magnetic field, i.e. the β effect,

by considering a non-uniform magnetic field. This is what we do in the remainder of this

letter.

In the kinematic limit, the backreaction of the magnetic field on the velocity is

neglected. From the physical point of view, this amounts to considering a very weak

magnetic field and ignoring the Lorentz Force on the fluid which is quadratic in the magnetic
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field. For an incompressible conducting fluid, the resulting equations of motion are:

∂tv + v · ∇v = −∇p + ν∆v + f , (4)

∂tB + v · ∇B = B · ∇v + η∆B ,

∇ · v = ∇ · B = 0 .

Here B is the Alfvén speed, p is the total (hydrodynamical + magnetic) pressure and f is

a small-scale forcing. To study the effect of shear flows and magnetic fields on small-scale

turbulence, we prescribe a large scale flow of the form U0 = −xAey and a sheared

large-scale magnetic field B = (B0 −Bx)ey. B0 has been chosen parallel to U0 so that there

is no direct interaction between the two fields, e.g. excluding the Ω-effect in our study.

To solve the equations for the fluctuating velocity field, u = v − U0, and magnetic field,

b = B − B0, we use the quasi-linear approximation assuming that the interaction between

fluctuating fields is negligible compared to the interaction between large and small-scale

fields. The equations for the fluctuating fields can then be written as:

∂tu + u · ∇U0 = −∇p + ν∆u + f , (5)

∂tb + u · ∇B0 + U0 · ∇b = b · ∇U0 + B0 · ∇u + η∆b ,

∇ · u = ∇ · b = 0 .

In the sequel, we shall assume an unit magnetic Prandtl number (ν = η) and introduce a

time dependent Fourier transform (Kim 2005):

Y (~x, t) =
1

(2π)3

∫

d3~kei
[

kx(t)x+kyy+kzz
]

Ỹ (~k, t) .

Transforming the time variable from t to τ = kx(t)/ky = kx(t0)/ky + A(t − t0), Eq. (5) can

be written:

∂τ ṽi − ṽxδi2 = −ikyθip̃ − ξ(g2 + τ 2)ṽi + f̃i , (6)

∂τ b̃i −Rṽxδi2 = −b̃xδi2 + R∂τ ṽi + iγṽi − ξ(g2 + τ 2)b̃i ,

τ ṽx + ṽy + βṽz = τ b̃x + b̃y + βb̃z = 0 .
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Here, R = B/A and γ = B0ky/A are the ratio of the magnetic shear and constant magnetic

field to the velocity shear, respectively; β = kz/ky and g2 = 1 + β2; ξ = νk2
y/A and

θi = (τ, 1, β). Note that since the first equation of (6) does not involve the magnetic field,

the solution to vi is the same as in the hydrodynamical case (Kim 2005). Using the velocity

from Kim (2005), the magnetic fluctuations can be obtained from the second equation of

(6) as:

b̃x =

∫ τ

τ0

dt
fx(t)(g

2 + t2)

A
eG(t,τ)

[

R

g2 + τ 2
+ iγ{T (τ) − T (t)} −Rξ(τ − t)

]

, (7)

b̃z =

∫ τ

τ0

dt
fz(t)

A
eG(t,τ) [R(1 − ξ{Q(τ) − Q(t)}) + iγ(τ − t)]

−β

∫ τ

τ0

dt
fx(t)(g

2 + t2)

A
eG(t,τ) [R{I(t, τ) − ξJ2} + iγJ1] .

Here,

G(t, τ) = −ξ{Q(τ) − Q(t)} , Q(x) = g2x + x3/3 , (8)

I(t, τ) =
1

2g2

[

τ

g2 + τ 2
−

t

g2 + t2
+ T (τ) − T (t)

]

,

J1 =

∫ τ

t

I(t, x) dx , and J2 =

∫ τ

t

I(t, x)(g2 + x2) dx ,

where T (x) = arctan(x/g)/g. b̃y can be obtained using incompressibility: b̃y = −τ b̃x − βb̃z.

Our main interest is in the total stress and the electromotive force, which determine the

growth/decay of the large-scale velocity field and the large-scale magnetic field, respectively.

First, the stress is S = 〈uxuy〉−〈bxby〉. This total stress consisting of Reynolds stress 〈uxuy〉

and Maxwell stress 〈bxby〉 gives a turbulent viscosity νT in Navier-Stokes equation for

large-scale flows, which enhances the molecular viscosity to ν + νT . For the assumed shear

flow U0 = −Ax, the turbulent viscosity is given by S = νTA. Second, for the magnetic field

considered here, the electromotive force reduces to:

Ey = 〈uzbx − uxbz〉 = αyyB0 , (9)

Ez = 〈uxby − uybx〉 = αzyB0 − βB .
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Note here that only three coefficients αyy, αzy and β are non-vanishing in our configuration.

In particular, phenomena such as the Ω × J (Rädler & Stepanov 2006) and shear current

effects (Rogachevskii & Kleeorin 2003), which have been advocated to generate magnetic

field for non-helical turbulence subject to rotation and shear as noted previously, are

absent here. Note that a shear-current effect could be studied by using a similar analysis

but assuming the large-scale magnetic field to depend on z rather than x, which will be

addressed in a future contribution.

To calculate the correlation functions involved in the transport coefficients, we consider

an incompressible forcing which is spatially homogeneous and temporally short correlated

with the correlation time τf . Specifically, in Fourier space, the correlation function of the

forcing is taken as:

〈f̃i(k1, t1)f̃j(k2, t2)〉 = τf (2π)3δ(k1 + k2) δ(t1 − t2)φij(k2) , (10)

where the tilde denotes a Fourier-transform with respect to the spatial variable. As noted

previously, the α effect can be linked to the helicity of the turbulent flow. Consequently, we

consider a forcing with both a symmetric part (with energy spectrum E) and a helical part

(with helicity spectrum H) given by:

φlm(k) = E(k)

(

δlm −
klkm

k2

)

+ iǫlmpkpH(k) . (11)

In the following, the turbulence intensity, turbulent viscosity and α effect are expressed in

terms of their values in the absence of shear or magnetic field, e0, ν0, α0 and β0, which can
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be shown to be:

e0 =
τf

(2π)2

∫ +∞

0

dk
E(k)

ν
, (12)

ν0 =
τf

(2π)2

∫ +∞

0

dk
E(k)

5ν2k2
,

α0 = −
τf

(2π)2

∫ +∞

0

dk
H(k)

6ν2
,

β0 =
τf

(2π)2

∫ +∞

0

dk
E(k)

6ν2k2
.

Using equations for velocity in Kim (2005) and Eq. (7) and after a long algebra following

Kim (2005), we can find the turbulent intensity, stress and the electromotive force. Omitting

the details, here we provide the results only for the limiting case of a weak (ξ = νk2
y/A ≫ 1)

and strong shear (ξ = νk2
y/A ≪ 1).

First, in the case where the shear is weak compared to the diffusion rate (ξ ≫ 1), we

obtain:

〈u2
x〉 ∼

2e0

3

[

1 +
9ξ−2

∗

35

]

, (13)

〈u2
z〉 ∼ e0

[

1 +
3ξ−2

∗

70

]

,

〈b2
x〉 ∼

e0

3

[

R2 +
γ2ξ−2

∗

2
+

36R2ξ−2
∗

35

]

,

〈b2
z〉 ∼

e0

3

[

R2 +
γ2ξ−2

∗

2
+

2526R2ξ−2
∗

715

]

,

νT ∼ ν0

[

1 +
4ξ−2

∗

21

]

,

αxy ∼ α0
ξ−1
∗

5
,

αyy ∼ α0

[

1 +
33ξ−2

∗

70

]

,

β ∼ −β0

[

1 +
26ξ−2

∗

35

]

.

Note that the turbulent viscosity νT and the β effect are proportional only to the energy

part of the forcing while the α effect is proportional only to the non-reflectionally symmetric
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part of the forcing. This is consistent with the expectation that the α effect is due to helical

flow, which results from the helical forcing with helicity spectrum H . Eq. (13) shows that

(in the weak shear limit) all the turbulent coefficients increase with shear above their values

without shear. The increase in β with shear seems to be in agreement with numerical results

shown in Fig. 1 of Mitra et al. (2009) obtained in a slightly different configuration of U0

and B0. Eq. (13) also shows that αxy ≪ αyy i.e. that the electromotive force is primarily

parallel to the large-scale magnetic field (i.e. in the y direction). Furthermore, without

shear (ξ−1 = 0), we see that αxy = 0 showing that this component of the α effect exists only

for non vanishing shear. This is due to the fact that shear induces an anisotropic turbulence

(see e.g. Leprovost & Kim 2007) which in turn triggers off-diagonal components in the α

tensor. Note that a different result was obtained by Kim & Dubrulle (2001) who found in

two dimensions that the turbulent diffusivity decreases with shear. This difference comes

form the fact that Kim & Dubrulle (2001) considered an anisotropic forcing, physically

different form the isotropic forcing considered here.

In the opposite limit of strong shear (ξ = νk2
y/A ≪ 1), turbulence intensity and

transport coefficients are obtained as follows:

〈u2
x〉 ∼ ξe0 , 〈u2

z〉 ∼ ξ2/3e0 , (14)

〈b2
x〉 ∼ ξ8/3e0 , 〈b2

z〉 ∼ ξ2e0 ,

νT ∼ ξ2ν0 , β ∼ ξ7/3ν0 ,

αxy ∼ ξ4/3α0 , αyy ∼ ξ5/3α0 .

These results show that in the limit of strong shear (compared to diffusion), all the turbulent

quantities are reduced by shear with scalings given above. Note that the magnetic energy

〈b2〉 is more reduced than kinetic energy 〈u2〉. Furthermore, both the velocity and magnetic

field in the direction of the shear are reduced more severely than in the perpendicular

direction, manifesting the anisotropic turbulence induced by shear. It is because flow shear
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directly influences the component parallel to itself (i.e. the x component in Fig. 1) via

elongation while only indirectly the other two components (i.e. the y and z components in

Fig. 1) through enhanced dissipation. The electromotive force shows that the x-component

of the α effect (αxy) is now larger than the y one (αyy). This is again because, as the shear

increases, the anisotropy in the flow increases enhancing the off-diagonal component αxy

strongly. Finally, the turbulent diffusivity β is reduced as ξ7/3 more severely than the α

effect (αyy ∝ ξ5/3), which has interesting implications for the dependence of the dynamo

number (characterizing the efficiency of the dynamo) with differential rotation, as discussed

in the introduction.

To summarize, we found that the β effect is reduced as A−7/3, with a much stronger

dependence on the shear than the α effect (αyy ∝ A−5/3). This result can have interesting

implications for solar dynamo which is often envisioned to take place at the base of the

convection zone where the shear is quite strong (the so-called tachocline), e.g. to compensate

for the weakness of the interface dynamo (Dikpati et al. 2005). In particular, quenching

by shear should be incorporated when assessing the efficiency of dynamo, e.g. the dynamo

number given by D = αΩL3/(η + β)2, where Ω is the differential rotation (corresponding

to flow shear: Ω = A in this paper) and L is a characteristic scale of the system. While

it is conventionally thought that the dynamo efficiency increases proportionally to shear

(Kulsrud 1999) for an αΩ dynamo, our result suggests that the relation between the dynamo

efficiency and the shearing rate is unlikely to be so simple. For instance, in the case of the

αΩ dynamo, the dynamo number D becomes:

D = αAL3/(η + β)2 ∝ A4 , (15)

which increases with shear much faster than what has been conventionally thought. In the

case of an α2 dynamo, we obtain a different scaling:

D = α2L4/(η + β)2 ∝ A4/3 . (16)
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In the case of α2-dynamo, it is also interesting to examine how the growth rate of the

magnetic field scales with shear: using standard formula for the maximum growth rate

(see Moffatt 1978, for instance), we obtain the estimate σ ∝ α2/β ∝ A−1. Obviously

this behavior is very different from that observed in numerical simulation of non-helical

turbulence in the presence of shear where shear is conductive to dynamo (with a growth

rate σ ∝ A Yousef et al. (2008)) unlike our case where shear inhibits the dynamo process by

shear stabilization in a different relative configuration of the shear and magnetic field. Note

however that the results of Yousef et al. (2008) can not be explained by mean-field theory

which predict a growth rate γ ∝ A2. The observed weaker dependence of the growth rate

of the magnetic field on shear could be due to shear stabilization (not included in previous

model) which has not been included in previous mean-field calculations. Furthermore,

we showed that turbulence and transport are enhanced for weak shear while quenched

for strong shear. Therefore, there is a critical value of the shear for which the turbulence

intensity and transport are maximum. As shown by Newton & Kim (2007), this can be

due to resonance between the turbulence and shear flow when the characteristic frequency

of turbulence matches the advection by shear flow (i.e. the Doppler shifted frequency

vanishes).
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by U.K. STFC Grant No. ST/F501796/1.
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Fig. 1.— Sketch of the effect of shear on a turbulent eddy.
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