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Abstract. We show how to capture the gradient concentration of the solutions of Dirichlet-type
problems subjected to large sources of order 1√

ε
concentrated on an ε-neighborhood of a hypersurface

of the domain. To this end we define the gradient Young-concentration measures generated by sequences
of finite energy and establish a very simple characterization of these measures.
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1. Introduction

Let us consider the one-dimensional Dirichlet problem in (−1, 1) with a second member measure

⎧⎪⎨
⎪⎩

(σε(x)u′)′ =
1√
ε

m∑
k=0

akδtε
k

u(−1) = u(1) = 0,

(1.1)

where ε > 0, m ∈ N, ak ∈ R∗, (tεk)k=0,...,m is a non decreasing family of numbers in [− ε
2 , ε

2 ] with tε0 = − ε
2 ,

tεm = ε
2 , limε→0

tε
k+1−tε

k

ε = 1
m := l for k = 0, . . . , m − 1, and σε is given by

σε(x) =

{
1
ε , if x ∈ (−1, 1) \ (− ε

2 , ε
2 )

1, if x ∈ (− ε
2 , ε

2 ).
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Let ūε be the solution of (1.1); then clearly ū′
ε is of the form

ū′
ε(x) =

⎧⎪⎨
⎪⎩

εcε, if x ∈ (−1,− ε
2 )

cε + sk√
ε
, if x ∈ (tεk, tεk+1), k = 0, . . . , m − 1

ε(cε + sm√
ε
), if x ∈ ( ε

2 , 1),

where sk :=
∑k

i=0 ai and cε is a constant which can be computed from the boundary conditions. Setting
v̄ε = ūε√

ε
one can show that the measure �(− ε

2 , ε
2 )ε|v̄′ε|2dx weakly converges to l

∑m−1
k=0 (L + sk)2δ0, where L is

the limit of
√

εcε (see Sect. 4 for the computations). Consequently the gradient of the solution ūε presents
a concentration phenomenon in L2((−1, 1)). The knowledge of the limit measure l

∑m−1
k=0 (L + sk)2δ0 is not

completely satisfactory to describe the concentration phenomenon. Indeed v̄′ε clearly oscillates near x = 0 from
the observation that not all the coefficients sk are necessarily of the same sign. A natural question to ask is how
to capture these oscillations at the limit. To this end, we compute the weak limit μ̄ = μ̄x ⊗ π̄ of the measure

μ̄ε := δ v̄′
ε

|v̄′
ε| (x)

⊗ �(− ε
2 , ε

2 )ε|v̄′ε|2dx ∈ M([−1, 1] × {−1, 1})

in the sense that

ε

∫ 1

−1

�(− ε
2 , ε

2 )ϕ(v̄′ε)θ(x) dx →
∫ 1

−1

θ(x)

(∫
{−1,1}

ϕ(ζ) dμ̄x

)
dπ̄

for all 2-homogeneous and continuous functions ϕ on R and all functions θ in C([−1, 1]). We write μ̄x ⊗ π̄ to
denote the slicing decomposition of the measure μ̄ with respect to its projection measure π̄ on [−1, 1]. We
will call μ̄ the gradient Young-concentration measure generated by (v̄ε>0). Note that (μ̄x)x∈(−1,1) is a family
of probability measures on the unit sphere S0 := {−1, 1} of R. Why is μ̄ useful to capture the oscillations
of v̄′ε at the limit? It is easy to show that π̄ is nothing but the weak limit l

∑m−1
k=0 (L + sk)2δ0 of the measure

�(− ε
2 , ε

2 ) ε|v̄′ε|2 dx. Moreover, we show that (see Sect. 4 for the details)

μ̄x = aδ1 + bδ−1

where, if we assume for instance L ≥ 0,

a =

∑
k=0,...,m−1:sk≥0

(L + sk)2

m−1∑
k=0

(L + sk)2
, b = 1 − a =

∑
k=0,...,m−1:sk<0

(L + sk)2

m−1∑
k=0

(L + sk)2

(if L ≤ 0, take the condition sk > 0 in the sum defining a, and sk ≤ 0 in the sum defining b). One sees that
whereas the measure π̄ provides the intensity l

∑m−1
k=0 (L + sk)2 and the support {0} of the concentration, the

coefficients a and b in [0, 1] provide the desired additional information, i.e., the proportion of change of sign
of v̄′ε captured at the limit, with respect to the total mass of the limit measure π̄.

In this article we want to generalize the previous notion of gradient Young-concentration measure when ūε

is the solution of a Dirichlet problem on a domain Ω of R
N , N > 1, with a source of magnitude order 1√

ε
. We

assume that a (N − 1)-dimensional manifold Σ, possessing an unit normal vector ν at HN−1 a.e. x, splits Ω
into two subdomains and that the conductivity outside the ε-neighborhood Σε of Σ grows as 1

ε . The simplest
model is given by

ūε ∈ argmin

{
1
ε

∫
Ω\Σε

|∇u|2 dx +
∫

Σε

|∇u|2 dx − 1√
ε
〈Fε, u〉 : u ∈ W 1,2

0 (Ω)

}
(1.2)
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where Fε ∈ H−1(Ω); setting v := u√
ε
, (1.2) is equivalent to

v̄ε ∈ argmin

{∫
Ω\Σε

|∇v|2 dx + ε

∫
Σε

|∇v|2 dx − 〈Fε, v〉 : v ∈ W 1,2
0 (Ω)

}
.

By analogy with the one-dimensional case, the estimation

sup
ε>0

(∫
Ω\Σε

|∇vε|2 dx + ε

∫
Σε

∣∣∣∂vε

∂ν

∣∣∣2 dx

)
< +∞

implies that ∂v̄ε

∂ν presents a concentration phenomenon on S ⊂⊂ Ω. To describe it, we will characterize the
weak cluster points μ̄ of the sequence δ ∂v̄ε

∂ν /| ∂v̄ε
∂ν | (x) ⊗ ε�Bε |∂v̄ε

∂ν |2 dx in the set of non-negative bounded Borel
measures M+(Ω̄×S0) on Ω̄×S0, where Bε denotes the ε-neighborhood of S. We will call μ̄ the gradient Young-
concentration measure generated by (v̄ε)ε>0. In contrast to the one-dimensional case, it is difficult to express
the measure μ̄ and we adopt the following strategy: under some additional hypotheses on Fε, one can prove that
a subsequence of v̄ε strongly converges in L2(Ω) to some function v̄ ∈ W 1,2(Ω \ Σ); our objective is to provide
an intrinsic characterization of μ̄ (i.e., independent of the sequence) with respect to the Sobolev function v̄, in
the spirit of [3,4]. Actually, we characterize the limits (v, μ) generated by sequences (vε)ε satisfying the partial
finite energy condition

sup
ε>0

(∫
Ω\Σε

|∇vε|2 dx + ε

∫
Σε

∣∣∣∂vε

∂ν

∣∣∣2 dx

)
< +∞.

We show that v and μ = μx ⊗ π with μ = (a(x)δ1 + b(x)δ−1) ⊗ π̄, are linked by the necessary and sufficient
conditions:

v ∈ W 1,2(Ω \ Σ), v = 0 on ∂Ω;
spt(π) ⊂ S̄;

dπ

dHN−1S
(x)(a(x)c + b(x)d) ≥ ϕ([v](x))

(1.3)

for HN−1S a.e. x and for all (c, d) ∈ R+ × R+ where

ϕ(ξ) =
{

cξ2, if ξ ≥ 0
dξ2, if ξ ≤ 0.

In addition, in Example 3.2 we will exhibit a large class of non trivial pairs (v, μ) satisfying (1.3) and generated
by sequences (v̄ε)ε>0 of solutions to Dirichlet problems with large sources concentrated on Σε. Moreover the
probability measure μx can be completely expressed.

It is worth noticing that the internal energy functional of (1.2) or (1.4), (1.5) below, rewritten in terms of
the rescaled function v, is the type of functionals considered in [5,6] in order to model adhesive bounded joints
through the computation of a variational limit problem. In this paper, it is not our purpose to describe a
variational limit of (1.2), (1.4) or (1.5), even if this program would be interesting because of the additional
difficulty due to the source. Among the physical motivations of (1.2), or of more general Dirichlet problems of
the form { −div (σε(x)∂f(∇u)) = 1√

ε
Fε on Ω

u = 0 on ∂Ω,
(1.4)
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ν

Ω

Σ S B
ε

Figure 1. The physical configuration.

where σε := 1
ε�Ω\Σε

+ �Σε and f : RN → R is a positively 2-homogeneous convex function, one may mention
various applications to:

– heat conduction or electrostatic problems subjected to large concentrated sources, with high conductivity
outside the support of the sources;

– membrane problems with large concentrated exterior loading and high stiffness outside the support of
the loading.

Note that we treat this study in a vectorial environment, that is, we consider the following problems defined
over W 1,2

0 (Ω, Rm), with m ≥ 1 by

ūε ∈ argmin

{
1

εp−1

∫
Ω\Σε

f(∇u) dx +
∫

Σε

g(∇u) dx − 1
ε1−1/p

〈Fε, u〉 : u ∈ W 1,p
0 (Ω, Rm)

}
, p > 1 (1.5)

where f, g : RN×m → R are two positively p-homogeneous and quasiconvex functions, and 1
ε1−1/p Fε is the

exterior loading. To shorten the proofs, we only consider the case p = 2.

2. Towards the definition of gradient Young-concentration measures

Let N , m be two positive integers. Throughout this paper LN and HN−1 denote the N -dimensional Lebesgue
measure and the (N −1)-dimensional Hausdorff measure on Ω, respectively. We will sometimes write dx for the
measure LN and |B| for the N -dimensional Lebesgue measure or the (N − 1)-dimensional Hausdorff measure of
any Borel subset B of Ω, if there is no ambiguity. In the N -dimensional Euclidean space RN with respect to the
orthonormal frame (O, e1, . . . , eN ), we consider a (N − 1)-hypersurface Σ which splits Ω into two subdomains
Ω+ and Ω−, i.e. Ω = Ω+∪Σ∪Ω−. To avoid certain technical complications, we will additionally assume that Σ
is included in the hyperplane vect(e1, . . . , eN−1) generated by {e1, . . . , eN−1} and orthogonal to the unit vector
ν = eN , but we point out that we could treat the problem in the more general case where Σ is the graph of
a Lipschitz function. Such a general geometry leads to technical complications in the proofs, but the overall
strategy remains the same. For any point x in Ω, we write x̂ for its projection on vect(e1, . . . , eN−1), so that
x = (x̂, xN ). We set Σε := {x + tν : x ∈ Σ, − ε

2 < t < ε
2} and, for S ⊂⊂ Σ, Bε := {x + tν : x ∈ S, − ε

2 < t < ε
2}

(see Fig. 1).
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We assume that (Fε)ε>0 is a bounded sequence in the topological dual of W 1,1
0 (Ω, Rm), and we define on

W 1,2
0 (Ω, Rm) the family of functionals

Fε(u) =
1
ε

∫
Ω\Σε

f(∇u) dx +
∫

Σε

g(∇u) dx − 1√
ε
〈Fε, u〉

where f, g : R
N×m → R are two positively 2-homogeneous and quasiconvex functions satisfying the standard

growth conditions: there exist two constants 0 < α ≤ β such that

α|ζ|2 ≤ f(ζ) ≤ β(1 + |ζ|2) ∀ζ ∈ R
N×m, (2.1)

same for g. We consider the functional Gε defined in W 1,2
0 (Ω, Rm) by

Gε(v) = Fε(
√

εv) =
∫

Ω\Σε

f(∇v) dx + ε

∫
Σε

g(∇v) dx − 〈Fε, v〉

and the problem v̄ε ∈ argminv∈W 1,2
0 (Ω,Rm)Gε. Note that, by using the direct methods of the Calculus of

Variations, one can easily establish that argminv∈W 1,2
0 (Ω,Rm)Gε �= ∅. We could also treat the problem with

various other boundary conditions. Throughout this paper C will denote various constants independent of ε
and we do not relabel the subsequences considered.

Lemma 2.1. Let (vε)ε>0 be a sequence in W 1,2
0 (Ω, Rm) satisfying supε>0 Gε(vε) < ∞. Then

sup
ε>0

(
ε

∫
Σε

|∇vε|2 dx +
∫

Ω\Σε

|∇vε|2 dx

)
< +∞. (2.2)

Proof. Estimate (2.2) is a straightforward consequence of estimates (a), (b) and (c) below: there exists a
non-negative constant C such that

(a)
∫

Σε

ε|∇vε|2 dx ≤ C

(
1 +

∫
Ω

|∇vε| dx

)
;

(b)
∫

Ω\Σε

|∇vε|2 dx ≤ C

(
1 +

∫
Ω

|∇vε| dx

)
;

(c) sup
ε>0

∫
Ω

|∇vε| dx < +∞.

Proof of (a). Since supε>0 Gε(vε) < +∞, using (2.1), and Poincaré’s inequality, we have

α

∫
Σε

ε|∇vε|2 dx ≤
∫

Σε

εg(∇vε) dx ≤ C + ‖Fε‖‖vε‖W 1,1
0 (Ω,Rm)

≤ C

(
1 +

∫
Ω

|∇vε| dx

)
.

Proof of (b). Since α
∫
Ω\Σε

|∇vε|2 dx ≤ ∫
Ω\Σε

f(∇vε) dx, reproducing the proof of (a), one has

∫
Ω\Σε

|∇vε|2 dx ≤ C

(
1 +

∫
Ω

|∇vε| dx

)
.

Proof of (c). Using the Cauchy-Schwartz inequality and (a), one can show that

∫
Σε

|∇vε| dx ≤ C

(
1 +

∫
Ω

|∇vε| dx

) 1
2

.
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Using the Cauchy-Schwartz inequality and (b), one can show that

∫
Ω\Σε

|∇vε| dx ≤ C

(
1 +

∫
Ω

|∇vε| dx

) 1
2

.

From the previous estimates one has

∫
Ω

|∇vε| dx =
∫

Σε

|∇vε| dx +
∫

Ω\Σε

|∇vε| dx ≤ C

(
1 +

∫
Ω

|∇vε| dx

) 1
2

,

thus sup
ε>0

∫
Ω

|∇vε| dx < +∞. �

Obviously v̄ε ∈ argmin v∈W 1,2
0 (Ω,Rm)Gε(v) satisfies sup

ε>0
Gε(v̄ε) < +∞; consequently, thanks to Lemma 2.1,

v̄ε satisfies (2.2), thus the weaker condition

sup
ε>0

(
ε

∫
Σε

∣∣∣∂vε

∂ν

∣∣∣2 dx +
∫

Ω\Σε

|∇vε|2 dx

)
< +∞.

We will consider this condition in the definition of gradient Young-concentration measures. Let us introduce
the space

W 1,2
∂Ω (Ω\Σ, Rm) :=

{
v ∈ W 1,2(Ω+, Rm) ∩ W 1,2(Ω−, Rm) : v = 0 on ∂Ω in the sense of traces

}
.

Then we have:

Lemma 2.2. Let (vε)ε>0 be a sequence in W 1,2
0 (Ω, Rm) such that

sup
ε>0

(
ε

∫
Σε

∣∣∣∂vε

∂ν

∣∣∣2 dx +
∫

Ω\Σε

|∇vε|2 dx

)
< +∞. (2.3)

Then there exist a not relabeled subsequence and v ∈ W 1,2
∂Ω (Ω\Σ, Rm) such that vε → v in L2(Ω, Rm).

Proof. For every function w ∈ W 1,2
0 (Ω, Rm) we define its ε-translate Tεw by

Tεw(x̂, xN ) =

{
w(x̂, xN + ε/2), if x ∈ Ω+,

w(x̂, xN − ε/2), if x ∈ Ω−.

First step. We claim that there exist z ∈ W 1,2
∂Ω (Ω\Σ, Rm) and a subsequence vε such that Tεvε ⇀ z in

W 1,2
∂Ω (Ω\Σ, Rm) and strongly in L2(Ω, Rm). Indeed because of the boundary condition, by extending all the con-

sidered functions by zero outside of Ω, one may assume that Ω+ and Ω− are cubes; clearly ∇Tεvε = Tε∇vε so that
supε

∫
Ω\Σ |∇Tεvε|2 dx = supε

∫
Ω\Σε

|∇vε|2 dx < +∞. Poincaré’s inequality then yields ‖Tεvε‖W 1,2
∂Ω (Ω\Σ,Rm) ≤ C

and the claim follows immediately. We denote by z+ and z− the traces of z considered as a Sobolev function
on Ω+ and Ω− respectively.
Second step. We claim that there exists v ∈ L2(Ω, Rm) such that we can extract from the previous subsequence
(vε)ε>0 a subsequence which weakly converges to v in L2(Ω, Rm). Indeed∫

Ω

v2
ε dx =

∫
Ω\Σε

v2
ε dx +

∫
Σε

v2
ε dx =

∫
Ω+∪Ω−

|Tεvε|2 dx +
∫

Σε

v2
ε dx. (2.4)
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We are going to show that
∫
Σε

v2
εdx → 0 as ε → 0. An integration with respect to xN gives

vε(x̂, xN ) = vε(x̂, ε/2) +
∫ xN

ε/2

∂vε

∂ν
(x̂, s)ds.

It is not difficult to show, setting Σ+
ε = Σε ∩ Ω+, that this implies

∫
Σ+

ε

|vε|2 ≤ Cε

(∫
S+ε/2ν

|vε|2dx̂ + ε

∫
Σ+

ε

∣∣∣∣∂vε

∂ν

∣∣∣∣
2

ds

)
.

The same calculation on Σ−
ε = Σε ∩ Ω− gives

∫
Σ−

ε

|vε|2 ≤ Cε

(∫
S−ε/2ν

|vε|2dx̂ + ε

∫
Σ−

ε

∣∣∣∣∂vε

∂ν

∣∣∣∣
2

ds

)
.

Summing up, we obtain

∫
Σε

|vε|2 dx ≤ Cε

(∫
S+ε/2ν

|vε|2 dx̂ +
∫

S−ε/2ν

|vε|2 dx̂ + ε

∫
Σε

∣∣∣∂vε

∂ν

∣∣∣2 dx

)
.

By using (2.3) and the fact that

lim
ε→0

(∫
S+ε/2ν

|vε|2 dx̂ +
∫

S−ε/2ν

|vε|2 dx̂

)
=

∫
S

|z+|2 dx̂ +
∫

S

|z−|2 dx̂,

we have

lim
ε→0

∫
Σε

|vε|2 dx = 0. (2.5)

Estimate (2.5) and the fact that Tεvε converges to z in L2(Ω, Rm) imply

lim
ε→0

∫
Ω

|vε|2 dx =
∫

Ω

|z|2 dx (2.6)

from (2.4). In particular we deduce that vε is bounded in L2(Ω, R) and the conclusion follows immediately.
Last step. To conclude, we establish that v = z. Indeed, for every ϕ ∈ C∞

c (Ω, Rm) we have
∫

Ω

v · ϕ dx = lim
ε→0

∫
Ω

vε · ϕ dx = lim
ε→0

∫
Ω

Tεvε · Tεϕ dx =
∫

Ω

z · ϕ dx.

This completes the proof because vε ⇀ v in L2(Ω, Rm) and, from (2.6), ‖vε‖L2(Ω,R) → ‖v‖L2(Ω,R). �

We denote by Sm−1 the unit sphere of Rm and by M+(Ω̄ × Sm−1) the set of non negative bounded Borel
measures on Ω̄ × Sm−1. For every measure μ in M+(Ω̄ × Sm−1), μ = μx ⊗ π denotes its slicing decomposition.
We recall that μx is a probability measure on Sm−1 and π is the projection measure of μ on Ω̄.

Recall that the 2-homogeneous extension ϕ̃ : Rm → R of a continuous function ϕ on Sm−1 is defined for all
ζ ∈ Rm by

ϕ̃(ζ) =

{
|ζ|2ϕ( ζ

|ζ|), if ζ �= 0,

0, otherwise.
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It is well known (see [3], p. 741) that the 2-homogeneous extension of a Lipschitz function ϕ in Sm−1 fulfills the
following locally Lipschitz property: there exists c = c(ϕ) such that

∀ζ, ζ′ ∈ R
m, |ϕ̃(ζ) − ϕ̃(ζ′)| ≤ c|ζ − ζ′| (|ζ| + |ζ′|) . (2.7)

To shorten notation we will not distinguish ϕ from its 2-homogeneous extension ϕ̃.

Definition 2.3. We say that a pair (v, μ) belongs to the set E ⊂ L2(Ω, Rm) × M
+(Ω̄ × S

m−1) of elementary
gradient Young-concentration measures if and only if v ∈ W 1,2

0 (Ω, Rm) and μ = δ ∂v
∂ν /| ∂v

∂ν | (x) ⊗ | ∂v
∂ν |2 dx.

We introduce the convergence of a sequence ((vε, με))ε>0 of E to a pair (v, μ) of L2(Ω, Rm)×M+(Ω̄× Sm−1)
in the sense of concentration measures as follows:

(vε, με) ⇀ (v, μ) ⇐⇒
{

vε → v strongly in L2(Ω, Rm)
ε�Bεμε

∗
⇀ μ in M+(Ω̄ × Sm−1).

Definition 2.4. Let B be the set of pairs (v, μ) of E such that (2.3) holds. The set YC of gradient Young-
concentration measures is the sequential closure of B for the convergence in the sense of concentration measures
defined above, i.e.

(v, μ) ∈ YC ⇐⇒ ∃ vε ∈ W 1,2
0 (Ω, Rm) s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vε → v strongly in L2(Ω, Rm),

sup
ε>0

(
ε

∫
Σε

∣∣∣∂vε

∂ν

∣∣∣2 dx +
∫

Ω\Σε

|∇vε|2 dx

)
< +∞,

δ ∂vε
∂ν /

∣∣ ∂vε
∂ν

∣∣ (x)
⊗ ε�Bε |∂vε

∂ν |2 dx
∗
⇀ μ

(2.8)

when ε → 0. We say that the sequence (vε)ε>0 generates the gradient Young-concentration measure (v, μ)
or, in short, that the sequence (vε)ε>0 generates the Young-concentration measure μ. Recall that the weak
convergence ∗

⇀ above is defined by

∫
Bε

εθ(x)ϕ
(

∂vε

∂ν

)
dx →

∫
Ω̄

∫
Sm−1

θ(x)ϕ(ζ) dμ

for all θ ∈ C(Ω̄) and all ϕ ∈ C(Sm−1). The set YCabs is the subset of the elements (v, μ) of YC such that the
projection measure π of μ on Ω̄ is absolutely continuous with respect to the measure HN−1S.

Remark 2.5. Let (vε)ε>0 be a sequence of W 1,2
0 (Ω, Rm) which satisfies (2.3). Clearly δ ∂vε

∂ν /
∣∣ ∂vε

∂ν

∣∣ (x)
⊗ε�Bε |∂vε

∂ν |2 dx

is bounded in M+(Ω̄ × Sm−1). On the other hand, from Lemma 2.2, one can extract a subsequence of (vε)ε>0

which converges in L2(Ω, Rm) to some v ∈ W 1,2
∂Ω (Ω\Σ, Rm). Then one can extract a subsequence such that

(vε)ε>0 generates some (v, μ) ∈ YC, that is (vε, δ ∂vε
∂ν /

∣∣ ∂vε
∂ν

∣∣ (x)
⊗ ε�Bε |∂vε

∂ν |2 dx) ⇀ (v, μ) ∈ YC. Note that,

according to Lemma 2.1, the sequence (v̄ε)ε>0 of solutions of Dirichlet problems v̄ε ∈ argminv∈W 1,2
0 (Ω,Rm)Gε

satisfies (2.3), then generates a gradient Young-concentration measure (v, μ).
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3. Characterization of the set of gradient Young-concentration measures

This section is devoted to the proof of the following characterization of YC:

Theorem 3.1 (characterization). A pair (v, μ = μx ⊗ π) belongs to YC if and only if v ∈ W 1,2
∂Ω (Ω\Σ, Rm),

π is concentrated on S̄ and, for every ϕ ∈ C(Sm−1) such that ϕ∗∗ > −∞,

dπ

dHN−1S (x)
∫

Sm−1
ϕ(ζ) dμx ≥ ϕ∗∗([v](x)) for HN−1 a.e. x ∈ S∫

Sm−1
ϕ(ζ) dμx ≥ 0 for πs a.e. x ∈ S̄

(3.1)

where π = dπ
dHN−1
SHN−1S+πs is the Radon-Nikodym decomposition of π with respect to the measure HN−1S.

By analogy with the gradient Young measures (see [4]), the Sobolev function v will be refered to as the
underlying deformation of the measure μ. Note that for each v ∈ W 1,2

∂Ω (Ω \Σ, Rm), the pair (v, δ [v]
|[v]| (x)

⊗
|[v](x)|2HN−1S) belongs to YC (more precisely to YCabs) and v is its underlying deformation. We call these
pairs elementary limit gradient Young-concentration measures.

Gradient Young-concentration measures which are not elementary limit gradient Young-concentration mea-
sures and which are generated by a sequence of solutions of Dirichlet problems of the type (1.4) exist in
abundance, as seen in the next example.

Example 3.2. Fix an arbitrary open interval I in R, a function φ : I → R
m in W 1,2

0 (I, Rm) and v ∈ W 1,2
∂Ω (Ω\

Σ, Rm). For HN−1 almost every x ∈ Σ, define now the probability measure μx on Sm−1 by μx = μ̃x/‖μ̃x‖,
where for all ϕ ∈ C(Sm−1)

〈μ̃x, ϕ〉 := −
∫

I

ϕ
(
[v](x) +

dφ

dy
(y)

)
dy.

Consider the measure μ = μx ⊗ ‖μ̃x‖HN−1S. According to Jensen’s inequality, clearly the pair (v, μ) fulfills
all the conditions of Theorem 3.1, but it is a non elementary limit concentration measure when φ �≡ 0 (the
elementary limit concentration measures correspond to the case when φ ≡ 0). In the scalar case m = 1 where
Sm−1 = {−1, 1} and μx = a(x)δ1 + b(x)δ−1, we can express a and b completely thanks to Theorem 3.1. Indeed
ϕ ∈ C(Sm−1) fulfills the condition ϕ∗∗ > −∞, if and only if its extension is of the form

ϕ(ζ) =

{
cζ2, if ζ ≥ 0
dζ2, if ζ ≤ 0

where c and d are two non-negative real numbers (note that in this case ϕ∗∗ = ϕ). With these considerations
taking successively c > 0, d = 0 and c = 0, d > 0, we easily deduce

a(x) =

∫
[[v](x)>−dφ

dy ]

∣∣[v](x) + dφ
dy (y)

∣∣2 dy∫
I

∣∣[v](x) + dφ
dy (y)

∣∣2 dy
, b(x) =

∫
[[v](x)<−dφ

dy ]

∣∣[v](x) + dφ
dy (y)

∣∣2 dy∫
I

∣∣[v](x) + dφ
dy (y)

∣∣2 dy
·

Let us now exhibit a sequence (vε)ε>0 generating (v, μ). To this end we define Rε : W 1,2(Ω \ Σ, Rm) →
W 1,2(Ω, Rm) by

Rεv(x̂, xN ) =

{
xN

ε [v(x̂, ε/2)− v(x̂,−ε/2)] + 1
2 [v(x̂, ε/2) + v(x̂,−ε/2)] if x ∈ Σε

v if x ∈ Ω \ Σε,
(3.2)

where vε(x̂, ε/2) and vε(x̂,−ε/2) should be taken within the meaning of traces on Σ + ε
2eN and Σ − ε

2eN

respectively. Take I = (− 1
2 , 1

2 ) and set vε(x) := Rεv(x)+φ(xN

ε ), B = S×I. For all θ ∈ C(Ω̄) and all ϕ ∈ C(Sm−1)
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we have

ε

∫
Bε

θ(x)ϕ
(

∂vε

∂ν

)
dx = ε

∫
Bε

θ(x)ϕ
(

1
ε

(
v(x̂, ε/2) − v(x̂,−ε/2) +

dφ

dν

(xN

ε

)))
dx

=
1
ε

∫
Bε

θ(x)ϕ
(

v(x̂, ε/2)− v(x̂,−ε/2) +
dφ

dν

(xN

ε

))
dx

=
∫

B

θ(x̂, εxN )ϕ
(

v(x̂, ε/2) − v(x̂,−ε/2) +
dφ

dν
(xN )

)
dx

which tends to ∫
S

θ(x̂, 0)
(∫

I

ϕ

(
[v](x̂) +

dφ

dy
(y)

)
dy

)
dx̂ = 〈μ̃x ⊗HN−1S, θ ⊗ ϕ〉.

Since moreover clearly vε → v in L2(Ω, Rm), the sequence (vε)ε>0 generates (v, μ).

We claim that uε =
√

εvε, where vε is the function constructed above, is the solution to a Dirichlet problem
with large source. In order to shorten the calculation we prove the claim in the scalar case (m = 1) and we
begin by the one dimensional case (N = 1).

Take φ ∈ C2
0(I), v ∈ C2((−1, 0) ∪ (0, 1)) with v(−1) = v(1) = 0 and denote by [v]ε the approximate jump

v(ε/2) − v(−ε/2). Then by an elementary computation, it is readily seen that uε is solution to

{
(σεu

′
ε)

′ = 1√
ε
Fε in (−1, 1)

uε(−1) = uε(1) = 0,

where Fε is the measure

v′′
(
−1,−ε

2

)
∪
(ε

2
, 1

)
+

1
ε
φ′′

(
t

ε

)

(
−ε

2
,
ε

2

)
+

(
[v]ε − v′

(
−ε

2

))
δ− ε

2
+

(
v′

(
−ε

2

)
− [v]ε

)
δ ε

2
.

Note that, choosing v such that v′′ = 0, i.e. v of the form v(t) = a−(t + 1) on (−1, 0) and v(t) = a+(t − 1)
on (0, 1), the measure Fε is concentrated on (− ε

2 , ε
2 ).

We treat now the case N = 2 (the calculation in the general case is similar). We set Ω = (−1, 1)2 and
Σ = (−1, 1) × {0}. Take φ ∈ C2

0(I) and v ∈ C2(Ω \ Σ) satisfying v = 0 on ∂Ω. One can easily show that uε is
the solution of the Dirichlet problem

{
div(σε∇uε) = 1√

ε
Fε in Ω

uε = 0 on ∂Ω,

where σε := 1
ε�Ω\Σε

+ �Σε , and Fε is given by

Fε = Δuε(Ω \ Σε)

+
[
[v]ε(x1) − ∂v

∂x2

(
x1,−ε

2

)]
H1

(
S − ε

2
e2

)
+

[
∂v

∂x2

(
x1,

ε

2

)
− [v]ε(x1)

]
H1

(
S +

ε

2
e2

)

+
[
x2

(
∂2v

∂2x1

(
x1,

ε

2

)
− ∂2v

∂2x1

(
x1,−ε

2

))
+

ε

2

(
∂2v

∂2x1

(
x1,

ε

2

)
+

∂2v

∂2x1

(
x1,−ε

2

))]
Σε +

1
ε

d2φ

d2x2

(x2

ε

)
Σε.
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The approximated jump [v]ε is given now by [v]ε(x1) := v(x1,
ε
2 ) − v(x1,− ε

2 ). Note that, taking v solution of
the Dirichlet-Neumann problem

⎧⎨
⎩

Δv = 0 in Ω+

v = 0 on ∂Ω+ \ Σ
∂v
∂x2

prescribed on Σ,

⎧⎨
⎩

Δv = 0 in Ω−

v = 0 on ∂Ω− \ Σ
∂v
∂x2

prescribed on Σ,

the source Fε is concentrated on Σε.

The proof of Theorem 3.1 is divided into two propositions, the necessary condition (Prop. 3.3) and the
sufficient condition (Prop. 3.5).

Proposition 3.3 (necessary condition). Assume that (v, μ = μx ⊗π) belongs to YC. Then v ∈ W 1,2
∂Ω (Ω\Σ, Rm),

π is concentrated on S̄ and, for every ϕ ∈ C(Sm−1) such that ϕ∗∗ > −∞, (3.1) holds.

The proof of Proposition 3.3 is based on next Lemma 3.4.

Lemma 3.4. Let (vε)ε>0 be a sequence in W 1,2
0 (Ω, Rm) satisfying (2.3) and converging to v in L2(Ω, Rm).

Then v ∈ W 1,2
∂Ω (Ω \ Σ, Rm); moreover for all continuous functions ϕ on Sm−1 and all non-negative functions θ

in C(S̄), we have

lim inf
ε→0

ε

∫
Bε

θ(x̂)ϕ
(

∂vε

∂ν

)
dx ≥

∫
S

θ(x̂)ϕ∗∗([v]) dx̂. (3.3)

Proof. According to Lemma 2.2, one has v ∈ W 1,2
∂Ω (Ω \ Σ, Rm). Consider the Moreau-Yosida proximal approxi-

mation ϕp of the continuous function ϕ : Sm−1 → R defined by

ϕp(ζ) = inf
ξ∈Sm−1

(
ϕ(ξ) + p|ξ − ζ|2) .

It is well known that ϕp is a Lipschitz function and that the sequence (ϕp)p∈N converges increasing to ϕ (for
a proof consult [1], Thm. 2.6.4). Consequently, according to Dini’s theorem (ϕp)p∈N converges uniformly to ϕ
on Sm−1. Let η > 0 and p(η) ∈ N be such that

sup
ξ∈Sm−1

|ϕ(ξ) − ϕp(η)(ξ)| < η. (3.4)

We establish the existence of a non-negative constant C independent on ε and η such that

lim inf
ε→0

ε

∫
Bε

θ(x̂)ϕp(η)

(
∂vε

∂ν

)
dx ≥

∫
S

θ(x̂)ϕ∗∗([v]) dx̂ − Cη. (3.5)

Consider the function wε := vε −Rεv, where Rε : W 1,2(Ω \Σ, Rm) → W 1,2(Ω, Rm) is the map defined in (3.2).
It is readily seen that wε converges to 0 in L2(Ω, Rm), since vε → v in L2(Ω, Rm). By using the locally Lipschitz
property (2.7) satisfied by the 2-homogeneous extension of ϕp(η) (recall that ϕp(η) is Lipschitz), we have

lim inf
ε→0

ε

∫
Bε

θ (x̂)ϕp(η)

(
∂vε

∂ν

)
dx = lim inf

ε→0

1
ε

∫
Bε

θ (x̂)ϕp(η)

(
ε
∂vε

∂ν

)
dx

= lim inf
ε→0

1
ε

∫
Bε

θ (x̂)ϕp(η)

(
ε
∂wε

∂ν
+ v (x̂, ε/2) − v (x̂,−ε/2)

)
dx

= lim inf
ε→0

1
ε

∫
Bε

θ (x̂)ϕp(η)

(
[v] + ε

∂wε

∂ν

)
dx. (3.6)
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Indeed using the Cauchy-Schwartz inequality and (2.3), it is easy to establish

lim
ε→0

1
ε

∫
Bε

|v (x̂, ε/2) − v (x̂,−ε/2)− [v]|
[
|v (x̂, ε/2) − v (x̂,−ε/2) | + |[v]| + 2

∣∣∣∣ε∂wε

∂ν

∣∣∣∣
]

dx = 0.

Since wε → 0 in L2(Ω, Rm), by using a truncation argument, one can modify wε into a Sobolev function w̃ε

vanishing at the boundary of S ± ε′
2 ν of Bε where ε′ := ε(1 + t(ε)) and t(ε) > 0 is suitably chosen so that

limε→0 t(ε) = 0 and

lim inf
ε→0

−
∫

Bε

θ(x̂)ϕp(η)

(
[v] + ε

∂wε

∂ν

)
dx = lim inf

ε→0
−
∫

Bε′
θ(x̂)ϕp(η)

(
[v] + ε

∂w̃ε

∂ν

)
dx (3.7)

(see Lem. 4.5 in [5]). According to (3.7), (3.4) and Jensen’s inequality, we have

lim inf
ε→0

−
∫

Bε

θ (x̂)ϕp(η)

(
[v] + ε

∂wε

∂ν

)
dx = lim inf

ε→0
−
∫

Bε′
θ (x̂)ϕp(η)

(
[v] + ε

∂w̃ε

∂ν

)
dx ≥

lim inf
ε→0

−
∫

Bε′
θ (x̂)ϕ

(
[v] + ε

∂w̃ε

∂ν

)
dx − η

‖θ‖∞
|S| sup

ε>0

1
ε

∫
Bε′

∣∣∣∣[v] + ε
∂w̃ε

∂ν

∣∣∣∣
2

dx ≥

lim inf
ε→0

−
∫

S×(− ε′
2 , ε′

2 )
θ (x̂)ϕ∗∗

(
[v] + ε

∂w̃ε

∂ν

)
dx − Cη ≥

∫
S

θ (x̂)ϕ∗∗ ([v]) dx̂ − Cη. (3.8)

Notice that in the second inequality, we have used the bound supε>0
1
ε

∫
Bε

|[v] + ∂w̃ε

∂ν |2 dx < +∞: this is
a straightforward consequence of (3.7) applied with ϕ = |.|2 and (2.3). We conclude the proof of (3.5) by
combining (3.6) and (3.8). Estimate (3.3) follows letting η → 0 and noticing that ϕ ≥ ϕp(η). �

Proof of Proposition 3.3. Let (v, μ) in YC. Then, by definition of YC, there exists a sequence (vε)ε>0 in
W 1,2

0 (Ω, Rm) satisfying (2.3) such that

vε → v strongly in L2(Ω, Rm),
με := δ ∂vε

∂ν /
∣∣ ∂vε

∂ν

∣∣ (x)
⊗ ε�Bε |∂vε

∂ν |2 dx
∗
⇀ μ

when ε → 0. According to Lemma 2.2, v belongs to W 1,2
∂Ω (Ω \ Σ, Rm). The fact that π is concentrated on S̄ is

easy to see. We are going to prove (3.1). Let θ be a non-negative function in C(S̄) and ϕ in C(Sm−1) such that
ϕ∗∗ > −∞. Since vε → v in L2(Ω, Rm), by using Lemma 3.4, one has

lim inf
ε→0

∫
Bε

εθ (x̂)ϕ

(
∂vε

∂ν

)
dx ≥

∫
S

θ (x̂)ϕ∗∗ ([v]) dx̂. (3.9)

On the other hand, writing
∫

Bε

εθ (x̂)ϕ

(
∂vε

∂ν

)
dx as

∫
Ω̄

θ(x̂)
(∫

Sm−1
ϕ(ζ)dδ ∂vε

∂ν /|∂vε
∂ν |(x)

)
ε�Bε

∣∣∂vε

∂ν

∣∣2dx, we

obtain

lim inf
ε→0

∫
Bε

εθ(x̂)ϕ
(

∂vε

∂ν

)
dx =

∫
S̄

θ(x̂)
(∫

Sm−1
ϕ(ζ) dμx

)
dπ, (3.10)
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where μ = μx ⊗ π is the slicing decomposition of μ with respect to its projection π on Ω̄. Combining (3.9) and
(3.10), it follows that

dπ

dHN−1
(x)

∫
Sm−1

ϕ(ζ) dμx ≥ ϕ∗∗([u](x)) for HN−1S a.e. x,∫
Sm−1

ϕ(ζ) dμx ≥ 0 for πs a.e. x ∈ S̄. �

Proposition 3.5 (sufficient conditions). Assume that (v, μ = μx ⊗ π) belongs to W 1,2
∂Ω (Ω \ Σ, Rm) × M+(Ω̄ ×

Sm−1), satisfies (3.1), and that π is concentrated on S̄. Then (v, μ) belongs to YC.

Proof. We divide the proof into three steps. In Step 1, using the Hahn-Banach separation theorem, we approx-
imate the homogeneous components μ of YC (i.e. μx does not depend of x) by the same type of measures as
in Example 3.2. In Step 2, we construct a sequence of Sobolev functions generating these measures and con-
clude by a standard diagonalization argument. In Step 3, we build a sequence of Sobolev functions generating
the components μ of YC: according to a standard covering argument, we localize the construction above and
stick together the various generating functions obtained in Step 2. We show that this sequence generates the
pair (v, μ). In order to make easier the reading of the proof, we begin by treating the case N = m = 1.

Proof in the case N = m = 1. Let (v, μ) in W 1,2
∂Ω ((−1/2, 0) ∪ (0, 1/2)) ⊗ M+([−1/2, 1/2]× S0), satisfying (3.1)

with π concentrated in {0}. The measure μ = μ0⊗π(0)δ0 can be written as π(0)μ0⊗δ0, where π(0)μ0 ∈ M
+(S0)

satisfies ∫
S0

ϕ(ζ) d(π(0)μ0) ≥ ϕ∗∗([v](0)) (3.11)

for all ϕ ∈ C(S0) such that ϕ∗∗ > −∞. Note that such functions ϕ, (actually their extensions) are of the form

ϕ(ζ) =

{
cζ2, if ζ ≤ 0
dζ2, if ζ ≥ 0

where c and d are two nonnegative real numbers. Note also that since μ is homogeneous, Step 3 described above
is not necessary.

Step 1. Let us consider the following subset of M+(S0):

H :=
{

λ ∈ M
+(S0) : ∀ϕ ∈ C(S0), s.t. ϕ∗∗ > −∞,

∫
S0

ϕ dλ ≥ ϕ∗∗([v](0))
}

.

H is non empty, because it contains π(0)μ(0) as (3.11) shows. It is easily seen that H is convex and closed with
respect to the weak convergence in M+(S0). For all w ∈ W 1,2

0 ((−1/2, 1/2)), consider the measure μw in M+(S0)
which acts on all ϕ ∈ C(S0) as follows:

〈μw, ϕ〉 :=
∫

(−1/2,1/2)

ϕ([v](0) + ẇ) dx.

According to Jensen’s inequality we have

〈μw, ϕ〉 ≥
∫

(−1/2,1/2)

ϕ∗∗([v](0) + ẇ) dx

≥ ϕ∗∗([v](0))
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so that μw belongs to H. Let us introduce the subset C of H made up of such measures μw, i.e.,

C :=
{

μw : w ∈ W 1,2
0 ((−1/2, 1/2))

}
.

In this step we prove that C is a dense convex subset of H for the weak convergence of measures. Let us first
prove the convexity of C. Let a, b in (0, 1) be such that a + b = 1, w1, w2 in W 1,2

0 ((−1/2, 1/2)). Then

〈aμw1 + bμw2 , ϕ〉 = a

∫ 1/2

−1/2

ϕ([v](0) + w′
1) dx + b

∫ 1/2

−1/2

ϕ([v](0) + w′
2) dx.

The change of scale x = t
a − 1

2 + a
2 in the first integral and x = t

1−a − a
2(1−a) in the second one give

〈aμw1 + bμw2 , ϕ〉 = 〈μw, ϕ〉

where w is the function of W 1,2
0 ((−1/2, 1/2)) defined by

w(t) =

⎧⎨
⎩

aw1

(
t− a

2 + 1
2

a

)
, if t ∈ (− 1

2 ,− 1
2 + a

)
,

bw2

(
t+ b

2− 1
2

b

)
, if t ∈ (− 1

2 + a, 1
2

)
.

It remains to establish that C is a dense subset of H. Indeed otherwise there exists λ0 in H which does not
belong to C̄. According to the Hahn-Banach theorem, there exist ϕ0 ∈ C(S0) and r ∈ R such that for all μ ∈ C̄,
〈μ, ϕ0〉 > r > 〈λ0, ϕ0〉. In particular for all w ∈ W 1,2

0 ((−1/2, 1/2)) we have 〈μw , ϕ0〉 > r > 〈λ0, ϕ0〉; from the
characterization of the convexification ϕ∗∗ of ϕ, this implies

ϕ∗∗
0 ([v](0)) = inf

w∈W 1,2
0 ((−1/2,1/2))

〈μw, ϕ0〉 ≥ r > 〈λ0, ϕ0〉. (3.12)

The first inequality forces ϕ∗∗
0 to be finite; since λ0 ∈ H one has 〈λ0, ϕ0〉 ≥ ϕ∗∗

0 ([v](0)). Therefore (3.12) involves
a contradiction.

Step 2. Since π(0)μ0 belongs to H and, from Step 1, C is dense in H, there exists a sequence (wn)n∈N

in W 1,2
0 ((−1/2, 1/2)) such that

μwn

∗
⇀ μ = π(0)μ0

in M+(S0) when n → +∞. Consequently

μn := μwn ⊗ δ0
∗
⇀ μ = π(0)μ0 ⊗ δ0 (3.13)

for the weak convergence of σ(M+([−1/2, 1/2]× S0)). Taking θ ≡ 1 and ϕ ≡ 1 (i.e. ϕ̃ = |.|2) we also obtain

‖μn‖ → ‖μ‖ = π(0);

this implies that for n large enough, say n ≥ n0, μn belongs to the ball B(0, π(0) + 1) of M+([−1/2, 1/2]× S0).
We take n ≥ n0 and we are going to approximate the measure μn by a measure of the form δv̇n,ε/|v̇n,ε|(x) ⊗
ε�Bε |v̇n,ε|2 dx.

Consider the W 1,2
0 ((−1/2, 1/2)) function vn,ε defined by vn,ε(x) := Rεv + wn(x/ε), where

Rεv(x) =

{
x
ε

[
v( ε

2 ) − v(− ε
2 )
]
+ 1

2

[
v( ε

2 ) + v(− ε
2 )
]
, if x ∈ (− ε

2 , ε
2 ),

v, otherwise,
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and set μn,ε := δv̇n,ε/|v̇n,ε|(x) ⊗ ε�Bε |v̇n,ε|2 dx. A straightforward calculation and a change of scale give, for all
θ ∈ C([−1/2, 1/2]) and all ϕ ∈ C(S0),

〈μn,ε, θ ⊗ ϕ〉 = ε

∫ ε/2

−ε/2

θ (x)ϕ

(
1
ε

(
v
(ε

2

)
− v

(−ε

2

)
+ ẇn

(x

ε

)))
dx

= −
∫

(−ε/2,ε/2)

θ (x)ϕ

(
v
(ε

2

)
− v

(−ε

2

)
+ ẇn

(x

ε

))
dx

=
∫ 1/2

−1/2

θ (εy)ϕ

(
v
(ε

2

)
− v

(−ε

2

)
+ ẇn (y)

)
dy

→ θ (0)
∫ 1/2

−1/2

ϕ ([v] (0) + ẇn (y)) dy

= 〈μwn ⊗ δ0, θ ⊗ ϕ〉

when ε → 0, that is

μn,ε
∗
⇀ μwn ⊗ δ0 = μn. (3.14)

We are going to show, using a standard diagonalization argument, that a sequence constructed from vn,ε

generates (v, μ). By a straightforward calculation, we get, taking θ ≡ 1 and ϕ ≡ 1 as test functions

‖μn,ε‖ =
∫ 1/2

−1/2

∣∣∣∣v (ε

2

)
− v

(−ε

2

)
+ ẇn (y)

∣∣∣∣
2

dy

≤ 2
∫ 1/2

−1/2

∣∣∣∣v (ε

2

)
− v

(−ε

2

)
− [v] (0)

∣∣∣∣
2

dy + 2‖μn‖

≤ 2
∫ 1/2

−1/2

∣∣∣∣v (ε

2

)
− v

(−ε

2

)
− [v] (0)

∣∣∣∣
2

dy + 2 (1 + π (0)) .

This implies, for ε small enough, say ε < ε0 where ε0 does not depend on n, that μn,ε belongs to the closed
ball B(0, 2(π(0) + 2) of M+([−1/2, 1/2]× S0)). Since the closed balls of M+([−1/2, 1/2]× S0) are metrizable,
combining (3.13), (3.14) and using a standard diagonalization argument, there exists a map ε �→ n(ε) such that

με := δ v̇n(ε),ε
|v̇n(ε),ε| (x)

⊗ ε�Bε |v̇n(ε),ε|2 dx
∗
⇀ μ (3.15)

when ε → 0. Set vε := vn(ε),ε. Condition (2.3) follows straightforwardly from (3.15) (take θ ≡ 1 and ϕ ≡ 1 as
test functions). To prove that vε generates (v, μ), it remains to establish that vε → v in L2((−1, 1)). Noticing
that vε = v on (−1, 1) \ (−ε/2, ε/2), and by using Poincaré’s inequality and condition (2.3) satisfied by vε, we
have ∫

(−1,1)

|vε − v|2 dx =
∫

(−ε/2,ε/2)

|vε − v|2 dx

≤ ε2

∫
(−ε/2,ε/2)

|v̇ε − v̇|2 dx

≤ Cε

where C is a non negative constant independent on ε.
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Proof of the general case. Let (v, μ) in W 1,2
∂Ω (Ω \ Σ, Rm) ⊗ M+(Ω × Sm−1) satisfying (3.1) with π concentrated

in S̄. We want to prove that (v, μ) belongs to YC. The proof is very close to the previous one but with an
additional step.
Step 1. Let a ∈ Rm be fixed, and consider the following subset of M+(Sm−1):

H(a) :=
{

λ ∈ M(Sm−1) : ∀ϕ ∈ C(Sm−1), s.t. ϕ∗∗ > −∞,

∫
Sm−1

ϕ dλ ≥ ϕ∗∗(a)
}

. (3.16)

For all w ∈ W 1,2
0 (I, Rm) where I = (− 1

2 , 1
2 ), consider the measure μw in M(Sm−1) which acts on all ϕ ∈ C(Sm−1)

as follows:

〈μw, ϕ〉 :=
∫

I

ϕ

(
a +

dw

dx

)
dx;

let us introduce the following subset C(a) of M(Sm−1):

C(a) :=
{
μw : w ∈ W 1,2

0 (I, Rm)
}

.

Using the same arguments of the first step in the one dimensional case (N = 1), we obtain that C(a) is a dense
convex subset of H(a) for the σ(M(Sm−1), C(Sm−1)) topology.
Step 2. Let x0 be a fixed element of S̄ and Q̂(x0) a fixed open cube of R

N−1 centered at x0. Given m ∈ H(a),
according to the first step, there exists a sequence (wn)n∈N of functions in W 1,2

0 (I, Rm) such that

μwn

∗
⇀ m

in M+(Sm−1), when n → +∞. Consequently

μn := μwn ⊗ HN−1Q̂(x0) ∩ S

|Q̂(x0)|
∗
⇀ m ⊗ HN−1Q̂(x0) ∩ S

|Q̂(x0)|
(3.17)

in M(Ω̄ × Sm−1). For each wn we define the function ξn,ε on Bε depending only of the variable xN by

ξn,ε(x) := |Q̂(x0)|−1
2

[xN

ε
a + wn

(xN

ε

)]
· (3.18)

A straightforward calculation gives

lim
ε→0

ε

∫
Q̂(x0)×(−ε

2 , ε
2 )∩Ω̄

θ(x)ϕ
(

∂ξn,ε

∂ν

)
dx =

(
−
∫

Q̂(x0)

θ(x̂, 0)dHN−1S
)(∫

I

ϕ

(
a +

dwn

dν

)
dx

)

for all ϕ ∈ C(Sm−1) and all θ ∈ C(Ω̄), so that

μn,ε := ε�Q̂(x0)×(−ε
2 , ε

2 )δ ∂ξn,ε
∂ν /

∣∣ ∂ξn,ε
∂ν

∣∣(x)
⊗ |∂ξn,ε

∂ν
|2dx

∗
⇀ μwn ⊗ HN−1Q̂(x0) ∩ S

|Q̂(x0)|
(3.19)

in M(Ω̄ × Sm−1) when ε → 0. Combining (3.17), (3.19) and using a diagonalization argument like in Step 2 of
the 1-dimensional case N = 1, there exists a map n �→ n(ε) and ξε such that

ξε := ξn(ε),ε = |Q̂(x0)|−1
2

[xN

ε
a + wn(ε)

(xN

ε

)]
, wn(ε) ∈ C1

0(I, Rm),

ε�Q̂(x0)×(−ε
2 , ε

2 )δ ∂ξε
∂ν /| ∂ξε

∂ν |(x) ⊗
∣∣∣∣∂ξε

∂ν

∣∣∣∣
2

dx
∗
⇀ m ⊗ HN−1Q̂(x0) ∩ S

|Q̂(x0)|
(3.20)

in M(Ω̄ × Sm−1).
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Step 3. Let (v, μ) in YC: we are going to construct a sequence (vε)ε>0 which generates (v, μ). The sequence
(vε)ε>0 is composed by functions in W 1,2

0 (Ω, Rm) whose restriction on Ω \ Σε is equal to v, it converges to v
in L2(Ω, Rm), it satisfies (2.3) and

δ ∂vε
∂ν /

∣∣ ∂vε
∂ν

∣∣ (x)
⊗ ε�Bε |

∂vε

∂ν
|2 dx

∗
⇀ μ (3.21)

in M(Ω̄ × Sm−1).
In what follows, we continue to write the measure π̄ on RN defined for all Borel set E of RN by π̄(E) :=

π(S̄ ∩ E) as π. According to the Vitali covering theorem (see [2], Cor. 2.8.15) there exists a finite family
(Q̂i,k)i∈Ik

of disjoint closed squares in R
N−1, centered at xi,k ∈ S̄, with diameter less than 1/k, k ∈ N

∗ and
satisfying

π

(
S̄ \

⋃
i∈Ik

Q̂i,k

)
<

1
k
· (3.22)

One may assume that Q̂i,k ⊂ Σ. Define the measure μi,k of M(Sm−1) by

μi,k :=
∫

Q̂i,k

μx dπ.

From (3.1) and Jensen’s inequality, for all ϕ ∈ C(Sm−1) such that ϕ∗∗ > −∞ we have

〈μi,k, ϕ〉 =
∫

Q̂i,k

∫
Sm−1

ϕ(ζ) dμxdπ

≥
∫

Q̂i,k

ϕ∗∗([v](x)) dHN−1S

≥ ϕ∗∗
(
|Q̂i,k| 12−

∫
Q̂i,k

[v](x) dHN−1S
)

. (3.23)

Let us set
ai,k = |Q̂i,k| 12−

∫
Q̂i,k

[v] dHN−1S. (3.24)

From (3.23), it follows that the measure μi,k belongs to H(ai,k) (see definition (3.16)). According to (3.20),
there exists a sequence (ξi,k,ε)ε>0 in W 1,2(Bε, R

m), of the form

ξi,k,ε(x) =
xN

ε
−
∫

Q̂i,k

[v] dHN−1S + ξ̃i,k,ε(xN ),

with ξ̃i,k,ε in W 1,2
0 (I, Rm) and with the property that,

μi,k,ε := ε�Q̂i,k×(−ε
2 , ε

2 )δ ∂ξi,k,ε
∂ν /

∣∣ ∂ξi,k,ε
∂ν

∣∣(x)
⊗

∣∣∣∣∂ξi,k,ε

∂ν

∣∣∣∣
2

dx
∗
⇀ μi,k ⊗ HN−1Q̂i,k ∩ S

|Q̂i,k|
(3.25)

in M(Ω̄ × Sm−1) when ε → 0, and ‖μi,k,ε‖ ≤ 2π(Q̂i,k). For all θ ∈ C(Ω̄) and all ϕ ∈ C(Sm−1), (3.25) yields

lim
ε→0

∑
i∈Ik

ε

∫
Q̂i,k×(− ε

2 , ε
2 )∩Ω̄

θ(x)ϕ
(

∂ξi,k,ε

∂ν

)
dx =

∑
i∈Ik

−
∫

Q̂i,k

θ(x) dHN−1S
∫

Sm−1
ϕ(ζ) dμi,k

=
∑
i∈Ik

−
∫

Q̂i,k

θ(x) dHN−1S
∫

Q̂i,k

∫
Sm−1

ϕ(ζ) dμxdπ.
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When θ is a Lipschitz-continuous function, one easily deduces from (3.22) that

lim
k→+∞

lim
ε→0

∑
i∈Ik

ε

∫
Q̂i,k×(− ε

2 , ε
2 )∩Ω̄

θ(x)ϕ
(

∂ξi,k,ε

∂ν

)
dx =

∫
S̄

∫
Sm−1

θϕ dμ. (3.26)

In the general case, when θ ∈ C(Ω̄), the same conclusion holds by an approximation argument.

Set ξk,ε(x) :=
∑

i∈Ik
ξi,k,ε(xN ) �Q̂i,k

(x̂). In order that the value of ξk,ε agrees with that of v on Ω \ Σε, we
modify ξi,k,ε into the function vi,k,ε given by

vi,k,ε(x) := Rεv(x) + ξ̃i,k,ε(xN ) �Q̂i,k
(x̂)

where Rε : W 1,2(Ω \ Σ, Rm) → W 1,2(Ω, Rm) is the operator defined in (3.2).
We claim that (3.26) holds when we replace ξi,k,ε by vi,k,ε. Indeed one may assume ϕ ∈ Lip(Sm−1) and, from

the Lipschitz property (2.7), it is easily seen that we are reduced to establish

lim
k→+∞

lim
ε→0

∑
i∈Ik

ε

∫
Q̂i,k×(− ε

2 , ε
2 )∩Ω̄

∣∣∣1
ε
−
∫

Q̂i,k

[v]dHN−1S − ∂Rεv

∂ν

∣∣∣2 dx = 0 :

this can be straightforward checked. Thus (3.26) becomes

lim
k→+∞

lim
ε→0

∑
i∈Ik

ε

∫
Q̂i,k×(− ε

2 , ε
2 )∩Ω̄

θ(x)ϕ
(

∂vi,k,ε

∂ν

)
dx =

∫
S̄

∫
Sm−1

θϕ dμ. (3.27)

It is worth noticing that vk,ε :=
∑

i∈Ik
vi,k,ε �Q̂i,k

is not a Sobolev function. Take now a partition of unity

(ϕi,δ)i∈Ik
subordined to the family (Q̂i,k)i∈Ik

, satisfying limδ→0

∫
Q̂i,k

|ϕδ − 1|2 dx̂ = 0, and set vk,δ,ε :=∑
i∈Ik

vi,k,ε ϕi,δ. Taking into account that ϕδ depends only on x̂, it is readily seen that (3.27) yields

lim
k→+∞

lim
δ→0

lim
ε→0

ε

∫
Bε

θ(x)ϕ(
∂vk,δ,ε

∂ν
) dx =

∫
S̄

∫
Sm−1

θϕ dμ.

Note that vk,δ,ε belongs to W 1,2
0 (Ω, Rm). Now, using a standard diagonalization argument (all the considered

measures are bounded by 2π(S̄) in M(Ω̄ × Sm−1)), we infer

δ ∂vε
∂ν /

∣∣ ∂vε
∂ν

∣∣ (x)
⊗ ε�Bε |

∂vε

∂ν
|2 dx

∗
⇀ μ

where vε := vk(ε),δ(ε),ε for some map ε �→ (k(ε), δ(ε)). We have thus proved (3.21). Estimate (2.3) follows
straightforward from (3.21) (take θ ≡ 1 and ϕ ≡ 1 as a test function). At last we have

∫
Ω

|v − vε|2 dx =
∫

Σε

|v − vε|2 dx

≤ ε2

∫
Σε

∣∣∣∣∂(v − vε)
∂ν

∣∣∣∣
2

dx

≤ Cε

where we have used Poincaré’s inequality, and (2.3) in the two last inequalities. �
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Corollary 3.6 (characterization of YC in the scalar case m = 1). Assume that m = 1. Then (v, μ = (a(x)δ1 +
b(x)δ−1) ⊗ π) belongs to YC if and only if v ∈ W 1,2

∂Ω (Ω \ Σ), π is concentrated on S̄ and

dπ

dHN−1S (x)
(
a(x)c + b(x)d

) ≥ ϕ([v](x)) for HN−1S a.e. x and for all (c, d) ∈ R
+ × R

+

where ϕ(ζ) =

{
cζ2 if ζ ≥ 0,

dζ2 if ζ ≤ 0.
Consequently the following estimates hold:

a(x) ≥ |[v](x)|2
dπ

dHN−1
S (x)
for HN−1S a.e. x such that [v](x) > 0

b(x) ≥ |[v](x)|2
dπ

dHN−1
S (x)
for HN−1S a.e. x such that [v](x) < 0.

(3.28)

Proof. Since m = 1 we have Sm−1 = {−1, 1}, μx = a(x)δ1 + b(x)δ−1 with 0 ≤ a(x) ≤ 1, 0 ≤ b(x) ≤ 1, and
a(x) + b(x) = 1 for HN−1S a.e. x. Moreover ϕ ∈ C(Sm−1) fulfils the condition ϕ∗∗ > −∞ if and only if its
extension is of the form

ϕ(ζ) =

{
cζ2, if ζ ≥ 0
dζ2, if ζ ≤ 0

where c and d are two non-negative real numbers. Note that in this case ϕ∗∗ = ϕ. Then (3.1) is equivalent to

dπ

dHN−1S (x)
(
a(x)c + b(x)d

) ≥ ϕ([v](x)) for HN−1S a.e. x.

Estimates (3.28) follow easily, choosing d = 0 or c = 0. �

4. Computations in the 1-dimensional case

Let us consider the elementary Dirichlet problem described in the introduction:⎧⎪⎨
⎪⎩

(σε(x)u′)′ =
1√
ε

m∑
k=0

akδtε
k

u(−1) = u(1) = 0,

where ak ∈ R∗, (tεk)k=0,...,m is a non decreasing family of numbers in [− ε
2 , ε

2 ] with tε0 = − ε
2 , tεm = ε

2 ,

limε→0
tε
k+1−tε

k

ε = 1
m := l for k = 0, . . . , m − 1, and σε is given by

σε(x) =

{
1
ε if x ∈ (−1, 1) \ (− ε

2 , ε
2 )

1 if x ∈ (− ε
2 , ε

2

)
.

Clearly ū′
ε is of the form

ū′
ε(x) =

⎧⎪⎪⎨
⎪⎪⎩

εcε, if x ∈ (−1,− ε
2 )

cε + sk√
ε
, if x ∈ (tεk, tεk+1), k = 0, . . . , m − 1

ε
(
cε + sm√

ε

)
, if x ∈ ( ε

2 , 1),

where sk :=
∑k

i=0 ai and cε is a constant which can be computed from the boundary conditions.
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Let us show that ū′
ε has a concentration phenomenon. To this end we set v̄ε = ūε√

ε
and compute the weak

limit of the measure π̄ε := �(− ε
2 , ε

2 )ε|v̄′ε|2 dx in M([−1, 1]). Let θ ∈ C([−1, 1]); we have

∫ 1

−1

θ(x)�(− ε
2 , ε

2 )ε|v̄′ε|2 dx =
m−1∑
k=0

ε

∣∣∣∣cε
√

ε + sk

ε

∣∣∣∣
2 ∫ tε

k+1

tε
k

θ(x) dx

=
m−1∑
k=0

|cε

√
ε + sk|2

tεk+1 − tεk
ε

−
∫ tε

k+1

tε
k

θ(x) dx.

Taking into account that v̄ε is a solution of

min

{
1
2

∫
(−1,1)\(− ε

2 , ε
2 )

|v′|2 dx +
ε

2

∫
(− ε

2 , ε
2 )

|v′|2 dx +
m∑

k=0

akv(tεk) : v ∈ W 1,2
0 ((−1, 1))

}
,

and using point (c) of Lemma 2.1, ce
√

ε is bounded and tends to some constant L. This implies that

lim
ε→0

∫ 1

−1

θ(x)�(− ε
2 , ε

2 )ε|v̄′ε|2 dx = l
m−1∑
k=0

(L + sk)2 θ(0).

Thus π̄ε weakly converges to the measure π̄ = l
m−1∑
k=0

(L + sk)2 δ0 and ū′
ε presents a concentration phenomenon

of intensity l
∑m−1

k=0 (L + sk)2 at 0.

We are going to compute the weak limit μ̄ of the measure μ̄ε := δ v̄′
ε

|v̄′
ε| (x)

⊗ �(− ε
2 , ε

2 )ε|v̄′ε|2dx. We assume for

instance that L ≥ 0. Let ϕ be any 2-homogeneous continuous function on R and θ any function in C([−1, 1]).
We have for small ε

ε

∫ 1

−1

�(− ε
2 , ε

2 )ϕ(v̄′ε)θ(x) dx =
∑

k=0,...,m−1:sk<0

∣∣∣∣cε
√

ε + sk

ε

∣∣∣∣
2

εϕ(−1)
∫ tε

k+1

tε
k

θ(x) dx

+
∑

k=0,...,m−1:sk>0

∣∣∣∣cε
√

ε + sk

ε

∣∣∣∣
2

εϕ(1)
∫ tε

k+1

tε
k

θ(x) dx

+
∑

k=0,...,m−1:sk=0

1
ε
ϕ(cε

√
ε)

∫ tε
k+1

tε
k

θ(x) dx

=
∑

k=0,...,m−1:sk<0

|cε

√
ε + sk|2ϕ(−1)

tεk+1 − tεk
ε

−
∫ tε

k+1

tε
k

θ(x) dx

+
∑

k=0,...,m−1:sk>0

|cε

√
ε + sk|2ϕ(1)

tεk+1 − tεk
ε

−
∫ tε

k+1

tε
k

θ(x) dx

+
∑

k=0,...,m−1:sk=0

ϕ(cε

√
ε)

tεk+1 − tεk
ε

−
∫ tε

k+1

tε
k

θ(x) dx.
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This sequence tends to⎛
⎝ ∑

k=0,...,m−1:sk<0

(L + sk)2ϕ(−1) +
∑

k=0,...,m−1:sk≥0

(L + sk)2ϕ(1)

⎞
⎠ lθ(0)

that we can write as

(aϕ(1) + bϕ(−1)) l
m−1∑
k=0

(L + sk)2θ(0),

where

a =

∑
k=0,...,m−1:sk≥0

(L + sk)2

m−1∑
k=0

(L + sk)2
, b =

∑
k=0,...,m−1:sk<0

(L + sk)2

m−1∑
k=0

(L + sk)2
· (4.1)

This proves that the measure μ̄ε := δ v̄′
ε

|v̄′
ε| (x)

⊗ �(− ε
2 , ε

2 )ε|v̄′ε|2dx weakly converges to the measure μ̄ = (aδ1 +

bδ−1) ⊗ π̄, where π̄ = l
∑m−1

k=0 (L + sk)2δ0 and a and b are given by (4.1).
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