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come    

A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources

Introduction

Let us consider the one-dimensional Dirichlet problem in (-1, 1) with a second member measure

⎧ ⎪ ⎨ ⎪ ⎩ (σ ε (x)u ) = 1 √ ε m k=0 a k δ t ε k u(-1) = u(1) = 0, (1.1) 
where ε > 0, m ∈ N, a k ∈ R * , (t ε k ) k=0,...,m is a non decreasing family of numbers in [-

ε 2 , ε 2 ] with t ε 0 = -ε 2 , t ε m = ε 2 , lim ε→0 t ε k+1 -t ε k ε = 1 
m := l for k = 0, . . . , m -1, and σ ε is given by

σ ε (x) = 1 ε , if x ∈ (-1, 1) \ (-ε 2 , ε 2 ) 1, if x ∈ (-ε 2 , ε 2 ).
Let ūε be the solution of (1.1); then clearly ū ε is of the form

ū ε (x) = ⎧ ⎪ ⎨ ⎪ ⎩ εc ε , if x ∈ (-1, -ε 2 ) c ε + s k √ ε , if x ∈ (t ε k , t ε k+1 ), k = 0, . . . , m -1 ε(c ε + sm √ ε ), if x ∈ ( ε 2 , 1),
where s k := k i=0 a i and c ε is a constant which can be computed from the boundary conditions. Setting vε = ūε √ ε one can show that the measure ½ (-ε 2 , ε 2 ) ε|v ε | 2 dx weakly converges to l m-1 k=0 (L + s k ) 2 δ 0 , where L is the limit of √ εc ε (see Sect. 4 for the computations). Consequently the gradient of the solution ūε presents a concentration phenomenon in L 2 ((-1, 1)). The knowledge of the limit measure l m-1 k=0 (L + s k ) 2 δ 0 is not completely satisfactory to describe the concentration phenomenon. Indeed v ε clearly oscillates near x = 0 from the observation that not all the coefficients s k are necessarily of the same sign. A natural question to ask is how to capture these oscillations at the limit. To this end, we compute the weak limit μ = μx ⊗ π of the measure

με := δ v ε |v ε | (x) ⊗ ½ (-ε 2 , ε 2 ) ε|v ε | 2 dx ∈ M([-1, 1] × {-1, 1}) in the sense that ε 1 -1 ½ (-ε 2 , ε 2 ) ϕ(v ε )θ(x) dx → 1 -1 θ(x) {-1,1} ϕ(ζ) dμ x dπ
for all 2-homogeneous and continuous functions ϕ on R and all functions θ in C( [-1, 1]). We write μx ⊗ π to denote the slicing decomposition of the measure μ with respect to its projection measure π on [-1, 1]. We will call μ the gradient Young-concentration measure generated by (v ε>0 ). Note that (μ x ) x∈(-1,1) is a family of probability measures on the unit sphere S 0 := {-1, 1} of R. Why is μ useful to capture the oscillations of v ε at the limit? It is easy to show that π is nothing but the weak limit l m-1 k=0 (L + s k ) 2 δ 0 of the measure

½ (-ε 2 , ε
2 ) ε|v ε | 2 dx. Moreover, we show that (see Sect. [START_REF] Kinderlehrer | Characterization of Young measures generated by gradients[END_REF] for the details) μx = aδ 1 + bδ -1

where, if we assume for instance L ≥ 0, a = k=0,...,m-1:

s k ≥0 (L + s k ) 2 m-1 k=0 (L + s k ) 2 , b= 1 -a = k=0,...,m-1:s k <0 (L + s k ) 2 m-1 k=0 (L + s k ) 2
(if L ≤ 0, take the condition s k > 0 in the sum defining a, and s k ≤ 0 in the sum defining b). One sees that whereas the measure π provides the intensity l m-1 k=0 (L + s k ) 2 and the support {0} of the concentration, the coefficients a and b in [0, 1] provide the desired additional information, i.e., the proportion of change of sign of v ε captured at the limit, with respect to the total mass of the limit measure π.

In this article we want to generalize the previous notion of gradient Young-concentration measure when ūε is the solution of a Dirichlet problem on a domain Ω of R N , N > 1, with a source of magnitude order 1 √ ε . We assume that a (N -1)-dimensional manifold Σ, possessing an unit normal vector ν at H N -1 a.e. x, splits Ω into two subdomains and that the conductivity outside the ε-neighborhood Σ ε of Σ grows as 1 ε . The simplest model is given by ūε ∈ argmin 1

ε Ω\Σε |∇u| 2 dx + Σε |∇u| 2 dx - 1 √ ε F ε , u : u ∈ W 1,2 0 (Ω) (1.2)
where

F ε ∈ H -1 (Ω); setting v := u √ ε , (1.2) is equivalent to vε ∈ argmin Ω\Σε |∇v| 2 dx + ε Σε |∇v| 2 dx -F ε , v : v ∈ W 1,2 0 (Ω) .
By analogy with the one-dimensional case, the estimation

sup ε>0 Ω\Σε |∇v ε | 2 dx + ε Σε ∂v ε ∂ν 2 dx < +∞
implies that ∂vε ∂ν presents a concentration phenomenon on S ⊂⊂ Ω. To describe it, we will characterize the weak cluster points μ of the sequence δ ∂ vε

∂ν /| ∂ vε ∂ν | (x) ⊗ ε½ Bε | ∂vε ∂ν | 2 dx
in the set of non-negative bounded Borel measures M + ( Ω × S 0 ) on Ω × S 0 , where B ε denotes the ε-neighborhood of S. We will call μ the gradient Youngconcentration measure generated by (v ε ) ε>0 . In contrast to the one-dimensional case, it is difficult to express the measure μ and we adopt the following strategy: under some additional hypotheses on F ε , one can prove that a subsequence of vε strongly converges in L 2 (Ω) to some function v ∈ W 1,2 (Ω \ Σ); our objective is to provide an intrinsic characterization of μ (i.e., independent of the sequence) with respect to the Sobolev function v, in the spirit of [START_REF] Fonseca | Analysis of concentration and oscillation effects generated by gradients[END_REF][START_REF] Kinderlehrer | Characterization of Young measures generated by gradients[END_REF]. Actually, we characterize the limits (v, μ) generated by sequences (v ε ) ε satisfying the partial finite energy condition

sup ε>0 Ω\Σε |∇v ε | 2 dx + ε Σε ∂v ε ∂ν 2 dx < +∞.
We show that v and μ = μ x ⊗ π with μ = (a(x)δ 1 + b(x)δ -1 ) ⊗ π, are linked by the necessary and sufficient conditions:

v ∈ W 1,2 (Ω \ Σ), v = 0 on ∂Ω; spt(π) ⊂ S; dπ dH N -1 S (x)(a(x)c + b(x)d) ≥ ϕ([v](x)) (1.3) for H N -1 S a.e.
x and for all (c, d) ∈ R + × R + where

ϕ(ξ) = cξ 2 , if ξ ≥ 0 dξ 2 , if ξ ≤ 0.
In addition, in Example 3.2 we will exhibit a large class of non trivial pairs (v, μ) satisfying (1.3) and generated by sequences (v ε ) ε>0 of solutions to Dirichlet problems with large sources concentrated on Σ ε . Moreover the probability measure μ x can be completely expressed.

It is worth noticing that the internal energy functional of (1.2) or (1.4), (1.5) below, rewritten in terms of the rescaled function v, is the type of functionals considered in [START_REF] Licht | A modelling of elastic adhesive bonded joints[END_REF][START_REF] Licht | A model of elastic adhesive bonded joints through oscillation-concentration measures[END_REF] in order to model adhesive bounded joints through the computation of a variational limit problem. In this paper, it is not our purpose to describe a variational limit of (1.2), (1.4) or (1.5), even if this program would be interesting because of the additional difficulty due to the source. Among the physical motivations of (1.2), or of more general Dirichlet problems of the form

-div (σ ε (x)∂f (∇u)) = 1 √ ε F ε on Ω u = 0 on ∂Ω, (1.4) ν Ω Σ S B ε Figure 1. The physical configuration.
where σ ε := 1 ε ½ Ω\Σε + ½ Σε and f : R N → R is a positively 2-homogeneous convex function, one may mention various applications to:

-heat conduction or electrostatic problems subjected to large concentrated sources, with high conductivity outside the support of the sources; -membrane problems with large concentrated exterior loading and high stiffness outside the support of the loading.

Note that we treat this study in a vectorial environment, that is, we consider the following problems defined over W 1,2 0 (Ω, R m ), with m ≥ 1 by

ūε ∈ argmin 1 ε p-1 Ω\Σε f (∇u) dx + Σε g(∇u) dx - 1 ε 1-1/p F ε , u : u ∈ W 1,p 0 (Ω, R m ) , p > 1 (1.5)
where f, g : R N ×m → R are two positively p-homogeneous and quasiconvex functions, and

1 ε 1-1/p F ε
is the exterior loading. To shorten the proofs, we only consider the case p = 2.

Towards the definition of gradient Young-concentration measures

Let N , m be two positive integers. Throughout this paper L N and H N -1 denote the N -dimensional Lebesgue measure and the (N -1)-dimensional Hausdorff measure on Ω, respectively. We will sometimes write dx for the measure L N and |B| for the N -dimensional Lebesgue measure or the (N -1)-dimensional Hausdorff measure of any Borel subset B of Ω, if there is no ambiguity. In the N -dimensional Euclidean space R N with respect to the orthonormal frame (O, e 1 , . . . , e N ), we consider a (N -1)-hypersurface Σ which splits Ω into two subdomains Ω + and Ω -, i.e. Ω = Ω + ∪ Σ ∪ Ω -. To avoid certain technical complications, we will additionally assume that Σ is included in the hyperplane vect(e 1 , . . . , e N -1 ) generated by {e 1 , . . . , e N -1 } and orthogonal to the unit vector ν = e N , but we point out that we could treat the problem in the more general case where Σ is the graph of a Lipschitz function. Such a general geometry leads to technical complications in the proofs, but the overall strategy remains the same. For any point x in Ω, we write x for its projection on vect(e 1 , . . . , e N -1 ), so that x = (x, x N ). We set Σ 1).

ε := {x + tν : x ∈ Σ, -ε 2 < t < ε 2 } and, for S ⊂⊂ Σ, B ε := {x + tν : x ∈ S, -ε 2 < t < ε 2 } (see Fig.
We assume that (F ε ) ε>0 is a bounded sequence in the topological dual of W 1,1 0 (Ω, R m ), and we define on W 1,2 0 (Ω, R m ) the family of functionals

F ε (u) = 1 ε Ω\Σε f (∇u) dx + Σε g(∇u) dx - 1 √ ε F ε , u
where f, g : R N ×m → R are two positively 2-homogeneous and quasiconvex functions satisfying the standard growth conditions: there exist two constants 0 < α ≤ β such that

α|ζ| 2 ≤ f (ζ) ≤ β(1 + |ζ| 2 ) ∀ζ ∈ R N ×m , ( 2.1) 
same for g. We consider the functional

G ε defined in W 1,2 0 (Ω, R m ) by G ε (v) = F ε ( √ εv) = Ω\Σε f (∇v) dx + ε Σε g(∇v) dx -F ε , v
and the problem vε ∈ argmin v∈W 1,2 0 (Ω,R m ) G ε . Note that, by using the direct methods of the Calculus of Variations, one can easily establish that argmin v∈W 1,2 0 (Ω,R m ) G ε = ∅. We could also treat the problem with various other boundary conditions. Throughout this paper C will denote various constants independent of ε and we do not relabel the subsequences considered.

Lemma 2.1. Let (v ε ) ε>0 be a sequence in W 1,2 0 (Ω, R m ) satisfying sup ε>0 G ε (v ε ) < ∞. Then sup ε>0 ε Σε |∇v ε | 2 dx + Ω\Σε |∇v ε | 2 dx < +∞. (2.2) Proof. Estimate (2.
2) is a straightforward consequence of estimates (a), (b) and (c) below: there exists a non-negative constant C such that (a)

Σε ε|∇v ε | 2 dx ≤ C 1 + Ω |∇v ε | dx ; (b) Ω\Σε |∇v ε | 2 dx ≤ C 1 + Ω |∇v ε | dx ; (c) sup ε>0 Ω |∇v ε | dx < +∞.
Proof of (a). Since sup ε>0 G ε (v ε ) < +∞, using (2.1), and Poincaré's inequality, we have

α Σε ε|∇v ε | 2 dx ≤ Σε εg(∇v ε ) dx ≤ C + F ε v ε W 1,1 0 (Ω,R m ) ≤ C 1 + Ω |∇v ε | dx . Proof of (b). Since α Ω\Σε |∇v ε | 2 dx ≤ Ω\Σε f (∇v ε ) dx, reproducing the proof of (a), one has Ω\Σε |∇v ε | 2 dx ≤ C 1 + Ω |∇v ε | dx .
Proof of (c). Using the Cauchy-Schwartz inequality and (a), one can show that

Σε |∇v ε | dx ≤ C 1 + Ω |∇v ε | dx 1 2
.

Using the Cauchy-Schwartz inequality and (b), one can show that

Ω\Σε |∇v ε | dx ≤ C 1 + Ω |∇v ε | dx 1 2
.

From the previous estimates one has We will consider this condition in the definition of gradient Young-concentration measures. Let us introduce the space

Ω |∇v ε | dx = Σε |∇v ε | dx + Ω\Σε |∇v ε | dx ≤ C 1 + Ω |∇v ε | dx 1 2 , thus sup ε>0 Ω |∇v ε | dx < +∞. Obviously vε ∈ argmin v∈W 1,2 0 (Ω,R m ) G ε (v) satisfies sup ε>0 G ε (v ε ) < +∞;
W 1,2 ∂Ω (Ω\Σ, R m ) := v ∈ W 1,2 (Ω + , R m ) ∩ W 1,2 (Ω -, R m ) : v = 0 on ∂Ω in the sense of traces .
Then we have:

Lemma 2.2. Let (v ε ) ε>0 be a sequence in W 1,2 0 (Ω, R m ) such that sup ε>0 ε Σε ∂v ε ∂ν 2 dx + Ω\Σε |∇v ε | 2 dx < +∞. (2.3)
Then there exist a not relabeled subsequence and

v ∈ W 1,2 ∂Ω (Ω\Σ, R m ) such that v ε → v in L 2 (Ω, R m ). Proof. For every function w ∈ W 1,2 0 (Ω, R m ) we define its ε-translate T ε w by T ε w(x, x N ) = w(x, x N + ε/2), if x ∈ Ω + , w(x, x N -ε/2), if x ∈ Ω -. First step. We claim that there exist z ∈ W 1,2 ∂Ω (Ω \ Σ, R m ) and a subsequence v ε such that T ε v ε z in W 1,2
∂Ω (Ω\Σ, R m ) and strongly in L 2 (Ω, R m ). Indeed because of the boundary condition, by extending all the considered functions by zero outside of Ω, one may assume that Ω + and Ω -are cubes; clearly

∇T ε v ε = T ε ∇v ε so that sup ε Ω\Σ |∇T ε v ε | 2 dx = sup ε Ω\Σε |∇v ε | 2 dx < +∞. Poincaré's inequality then yields T ε v ε W 1,2
∂Ω (Ω\Σ,R m ) ≤ C and the claim follows immediately. We denote by z + and z -the traces of z considered as a Sobolev function on Ω + and Ω -respectively. Second step. We claim that there exists v ∈ L 2 (Ω, R m ) such that we can extract from the previous subsequence

(v ε ) ε>0 a subsequence which weakly converges to v in L 2 (Ω, R m ). Indeed Ω v 2 ε dx = Ω\Σε v 2 ε dx + Σε v 2 ε dx = Ω + ∪Ω - |T ε v ε | 2 dx + Σε v 2 ε dx. (2.4)
We are going to show that Σε v 2 ε dx → 0 as ε → 0. An integration with respect to x N gives

v ε (x, x N ) = v ε (x, ε/2) + xN ε/2 ∂v ε ∂ν (x, s)ds. It is not difficult to show, setting Σ + ε = Σ ε ∩ Ω + , that this implies Σ + ε |v ε | 2 ≤ Cε S+ε/2ν |v ε | 2 dx + ε Σ + ε ∂v ε ∂ν 2 ds .
The same calculation on

Σ - ε = Σ ε ∩ Ω -gives Σ - ε |v ε | 2 ≤ Cε S-ε/2ν |v ε | 2 dx + ε Σ - ε ∂v ε ∂ν 2 ds .
Summing up, we obtain

Σε |v ε | 2 dx ≤ Cε S+ε/2ν |v ε | 2 dx + S-ε/2ν |v ε | 2 dx + ε Σε ∂v ε ∂ν 2 dx .
By using (2.3) and the fact that

lim ε→0 S+ε/2ν |v ε | 2 dx + S-ε/2ν |v ε | 2 dx = S |z + | 2 dx + S |z -| 2 dx, we have lim ε→0 Σε |v ε | 2 dx = 0. (2.5)
Estimate (2.5) and the fact that

T ε v ε converges to z in L 2 (Ω, R m ) imply lim ε→0 Ω |v ε | 2 dx = Ω |z| 2 dx (2.6)
from (2.4). In particular we deduce that v ε is bounded in L 2 (Ω, R) and the conclusion follows immediately. Last step. To conclude, we establish that v = z. Indeed, for every

ϕ ∈ C ∞ c (Ω, R m ) we have Ω v • ϕ dx = lim ε→0 Ω v ε • ϕ dx = lim ε→0 Ω T ε v ε • T ε ϕ dx = Ω z • ϕ dx. This completes the proof because v ε v in L 2 (Ω, R m ) and, from (2.6), v ε L 2 (Ω,R) → v L 2 (Ω,R) .
We denote by S m-1 the unit sphere of R m and by M + ( Ω × S m-1 ) the set of non negative bounded Borel measures on Ω × S m-1 . For every measure μ in M + ( Ω × S m-1 ), μ = μ x ⊗ π denotes its slicing decomposition. We recall that μ x is a probability measure on S m-1 and π is the projection measure of μ on Ω.

Recall that the 2-homogeneous extension φ :

R m → R of a continuous function ϕ on S m-1 is defined for all ζ ∈ R m by φ(ζ) = |ζ| 2 ϕ( ζ |ζ| ), if ζ = 0, 0, otherwise.
It is well known (see [START_REF] Fonseca | Analysis of concentration and oscillation effects generated by gradients[END_REF], p. 741) that the 2-homogeneous extension of a Lipschitz function ϕ in S m-1 fulfills the following locally Lipschitz property: there exists c = c(ϕ) such that

∀ζ, ζ ∈ R m , | φ(ζ) -φ(ζ )| ≤ c|ζ -ζ | (|ζ| + |ζ |) . (2.7)
To shorten notation we will not distinguish ϕ from its 2-homogeneous extension φ.

Definition 2.3. We say that a pair (v, μ) belongs to the set

E ⊂ L 2 (Ω, R m ) × M + ( Ω × S m-1 ) of elementary gradient Young-concentration measures if and only if v ∈ W 1,2 0 (Ω, R m ) and μ = δ ∂v ∂ν /| ∂v ∂ν | (x) ⊗ | ∂v ∂ν | 2 dx.
We introduce the convergence of a sequence

((v ε , μ ε )) ε>0 of E to a pair (v, μ) of L 2 (Ω, R m ) × M + ( Ω × S m-1
) in the sense of concentration measures as follows: 

(v ε , μ ε ) (v, μ) ⇐⇒ v ε → v strongly in L 2 (Ω, R m ) ε½ Bε μ ε * μ in M + ( Ω × S m-1
(v, μ) ∈ YC ⇐⇒ ∃ v ε ∈ W 1,2 0 (Ω, R m ) s.t. ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ v ε → v strongly in L 2 (Ω, R m ), sup ε>0 ε Σε ∂v ε ∂ν 2 dx + Ω\Σε |∇v ε | 2 dx < +∞, δ ∂vε ∂ν / ∂vε ∂ν (x) ⊗ ε½ Bε | ∂vε ∂ν | 2 dx * μ (2.8)
when ε → 0. We say that the sequence (v ε ) ε>0 generates the gradient Young-concentration measure (v, μ) or, in short, that the sequence (v ε ) ε>0 generates the Young-concentration measure μ. Recall that the weak convergence * above is defined by

Bε εθ(x)ϕ ∂v ε ∂ν dx → Ω S m-1 θ(x)ϕ(ζ) dμ
for all θ ∈ C( Ω) and all ϕ ∈ C(S m-1 ). The set YC abs is the subset of the elements (v, μ) of YC such that the projection measure π of μ on Ω is absolutely continuous with respect to the measure

H N -1 S. Remark 2.5. Let (v ε ) ε>0 be a sequence of W 1,2 0 (Ω, R m ) which satisfies (2.3). Clearly δ ∂vε ∂ν / ∂vε ∂ν (x) ⊗ε½ Bε | ∂vε ∂ν | 2 dx is bounded in M + ( Ω × S m-1
). On the other hand, from Lemma 2.2, one can extract a subsequence of (

v ε ) ε>0 which converges in L 2 (Ω, R m ) to some v ∈ W 1,2 ∂Ω (Ω \ Σ, R m ). Then one can extract a subsequence such that (v ε ) ε>0 generates some (v, μ) ∈ YC, that is (v ε , δ ∂vε ∂ν / ∂vε ∂ν (x) ⊗ ε½ Bε | ∂vε ∂ν | 2 dx) (v, μ) ∈ YC. Note that, according to Lemma 2.1, the sequence (v ε ) ε>0 of solutions of Dirichlet problems vε ∈ argmin v∈W 1,2 0 (Ω,R m ) G ε satisfies (2.
3), then generates a gradient Young-concentration measure (v, μ).

Characterization of the set of gradient Young-concentration measures

This section is devoted to the proof of the following characterization of YC:

Theorem 3.1 (characterization). A pair (v, μ = μ x ⊗ π) belongs to YC if and only if v ∈ W 1,2 ∂Ω (Ω \ Σ, R m ), π is concentrated on S and, for every ϕ ∈ C(S m-1 ) such that ϕ * * > -∞, dπ dH N -1 S (x) S m-1 ϕ(ζ) dμ x ≥ ϕ * * ([v](x)) for H N -1 a.e. x ∈ S S m-1 ϕ(ζ) dμ x ≥ 0 for π s a.e. x ∈ S (3.1)
where π = dπ dH N -1 S H N -1 S +π s is the Radon-Nikodym decomposition of π with respect to the measure H N -1 S. By analogy with the gradient Young measures (see [START_REF] Kinderlehrer | Characterization of Young measures generated by gradients[END_REF]), the Sobolev function v will be refered to as the underlying deformation of the measure μ. Note that for each

v ∈ W 1,2 ∂Ω (Ω \ Σ, R m ), the pair (v, δ [v] |[v]| (x) ⊗ |[v](x)| 2 H N -1 S
) belongs to YC (more precisely to YC abs ) and v is its underlying deformation. We call these pairs elementary limit gradient Young-concentration measures.

Gradient Young-concentration measures which are not elementary limit gradient Young-concentration measures and which are generated by a sequence of solutions of Dirichlet problems of the type (1.4) exist in abundance, as seen in the next example. Consider the measure μ = μ x ⊗ μx H N -1 S. According to Jensen's inequality, clearly the pair (v, μ) fulfills all the conditions of Theorem 3.1, but it is a non elementary limit concentration measure when φ ≡ 0 (the elementary limit concentration measures correspond to the case when φ ≡ 0). In the scalar case m = 1 where S m-1 = {-1, 1} and μ x = a(x)δ 1 + b(x)δ -1 , we can express a and b completely thanks to Theorem 3.1. Indeed ϕ ∈ C(S m-1 ) fulfills the condition ϕ * * > -∞, if and only if its extension is of the form

Example 3.2. Fix an arbitrary open interval

I in R, a function φ : I → R m in W 1,2 0 (I, R m ) and v ∈ W 1,2 ∂Ω (Ω\ Σ, R m ). For H N -1 almost every x ∈ Σ,
ϕ(ζ) = cζ 2 , if ζ ≥ 0 dζ 2 , if ζ ≤ 0
where c and d are two non-negative real numbers (note that in this case ϕ * * = ϕ). With these considerations taking successively c > 0, d = 0 and c = 0, d > 0, we easily deduce

a(x) = [[v](x)>-dφ dy ] [v](x) + dφ dy (y) 2 dy I [v](x) + dφ dy (y) 2 dy , b(x) = [[v](x)<-dφ dy ] [v](x) + dφ dy (y) 2 dy I [v](x) + dφ dy (y) 2 dy • Let us now exhibit a sequence (v ε ) ε>0 generating (v, μ). To this end we define R ε : W 1,2 (Ω \ Σ, R m ) → W 1,2 (Ω, R m ) by R ε v(x, x N ) = xN ε [v(x, ε/2) -v(x, -ε/2)] + 1 2 [v(x, ε/2) + v(x, -ε/2)] if x ∈ Σ ε v if x ∈ Ω \ Σ ε , ( 3.2) 
where v ε (x, ε/2) and v ε (x, -ε/2) should be taken within the meaning of traces on Σ + ε 2 e N and Σ -ε 2 e N respectively. Take I = (- 1 2 , 1 2 ) and set

v ε (x) := R ε v(x)+φ( xN ε ), B = S×I. For all θ ∈ C( Ω) and all ϕ ∈ C(S m-1 )
we have

ε Bε θ(x)ϕ ∂v ε ∂ν dx = ε Bε θ(x)ϕ 1 ε v(x, ε/2) -v(x, -ε/2) + dφ dν x N ε dx = 1 ε Bε θ(x)ϕ v(x, ε/2) -v(x, -ε/2) + dφ dν x N ε dx = B θ(x, εx N )ϕ v(x, ε/2) -v(x, -ε/2) + dφ dν (x N ) dx which tends to S θ(x, 0) I ϕ [v](x) + dφ dy (y) dy dx = μx ⊗ H N -1 S, θ ⊗ ϕ . Since moreover clearly v ε → v in L 2 (Ω, R m ), the sequence (v ε ) ε>0 generates (v, μ).
We claim that u ε = √ εv ε , where v ε is the function constructed above, is the solution to a Dirichlet problem with large source. In order to shorten the calculation we prove the claim in the scalar case (m = 1) and we begin by the one dimensional case (N = 1).

Take

φ ∈ C 2 0 (I), v ∈ C 2 ((-1, 0) ∪ (0, 1)) with v(-1) = v(1) = 0 and denote by [v] ε the approximate jump v(ε/2) -v(-ε/2).
Then by an elementary computation, it is readily seen that u ε is solution to

(σ ε u ε ) = 1 √ ε F ε in (-1, 1) u ε (-1) = u ε (1) = 0, where F ε is the measure v -1, - ε 2 ∪ ε 2 , 1 + 1 ε φ t ε - ε 2 , ε 2 + [v] ε -v - ε 2 δ -ε 2 + v - ε 2 -[v] ε δ ε 2 .
Note that, choosing v such that v = 0, i.e. v of the form v(t) = a -(t + 1) on (-1, 0) and v(t) = a + (t -1) on (0, 1), the measure F ε is concentrated on (-ε 2 , ε 2 ). We treat now the case N = 2 (the calculation in the general case is similar). We set Ω = (-1, 1) 2 and Σ = (-1, 1) × {0}. Take φ ∈ C 2 0 (I) and v ∈ C 2 (Ω \ Σ) satisfying v = 0 on ∂Ω. One can easily show that u ε is the solution of the Dirichlet problem div(σ

ε ∇u ε ) = 1 √ ε F ε in Ω u ε = 0 on ∂Ω,
where σ ε := 1 ε ½ Ω\Σε + ½ Σε , and F ε is given by

F ε = Δu ε (Ω \ Σ ε ) + [v] ε (x 1 ) - ∂v ∂x 2 x 1 , - ε 2 H 1 S - ε 2 e 2 + ∂v ∂x 2 x 1 , ε 2 -[v] ε (x 1 ) H 1 S + ε 2 e 2 + x 2 ∂ 2 v ∂ 2 x 1 x 1 , ε 2 - ∂ 2 v ∂ 2 x 1 x 1 , - ε 2 + ε 2 ∂ 2 v ∂ 2 x 1 x 1 , ε 2 + ∂ 2 v ∂ 2 x 1 x 1 , - ε 2 Σ ε + 1 ε d 2 φ d 2 x 2 x 2 ε Σ ε . The approximated jump [v] ε is given now by [v] ε (x 1 ) := v(x 1 , ε 2 ) -v(x 1 , -ε 2 ). Note that, taking v solution of the Dirichlet-Neumann problem ⎧ ⎨ ⎩ Δv = 0 in Ω + v = 0 on ∂Ω + \ Σ ∂v ∂x2 prescribed on Σ, ⎧ ⎨ ⎩ Δv = 0 in Ω - v = 0 on ∂Ω -\ Σ ∂v ∂x2 prescribed on Σ, the source F ε is concentrated on Σ ε .
The proof of Theorem 3.1 is divided into two propositions, the necessary condition (Prop. 3.3) and the sufficient condition (Prop. 3.5).

Proposition 3.3 (necessary condition). Assume that

(v, μ = μ x ⊗ π) belongs to YC. Then v ∈ W 1,2
∂Ω (Ω\Σ, R m ), π is concentrated on S and, for every ϕ ∈ C(S m-1 ) such that ϕ * * > -∞, (3.1) holds.

The proof of Proposition 3.3 is based on next Lemma 3.4.

Lemma 3.4. Let (v ε ) ε>0 be a sequence in W 1,2 0 (Ω, R m ) satisfying (2.3) and converging to v in L 2 (Ω, R m ). Then v ∈ W 1,2 ∂Ω (Ω \ Σ, R m )
; moreover for all continuous functions ϕ on S m-1 and all non-negative functions θ in C( S), we have

lim inf ε→0 ε Bε θ(x)ϕ ∂v ε ∂ν dx ≥ S θ(x)ϕ * * ([v]) dx. (3.3) Proof. According to Lemma 2.2, one has v ∈ W 1,2 ∂Ω (Ω \ Σ, R m ).
Consider the Moreau-Yosida proximal approximation ϕ p of the continuous function ϕ : S m-1 → R defined by

ϕ p (ζ) = inf ξ∈S m-1 ϕ(ξ) + p|ξ -ζ| 2 .
It is well known that ϕ p is a Lipschitz function and that the sequence (ϕ p ) p∈N converges increasing to ϕ (for a proof consult [START_REF] Attouch | Variational Convergence for Functions and Operators, Applicable Mathematics Series[END_REF], Thm. 2.6.4). Consequently, according to Dini's theorem (ϕ p ) p∈N converges uniformly to ϕ on S m-1 . Let η > 0 and p(η) ∈ N be such that sup

ξ∈S m-1 |ϕ(ξ) -ϕ p(η) (ξ)| < η. (3.4)
We establish the existence of a non-negative constant C independent on ε and η such that

lim inf ε→0 ε Bε θ(x)ϕ p(η) ∂v ε ∂ν dx ≥ S θ(x)ϕ * * ([v]) dx -Cη. (3.5)
Consider the function

w ε := v ε -R ε v, where R ε : W 1,2 (Ω \ Σ, R m ) → W 1,2 (Ω, R m ) is the map defined in (3.2). It is readily seen that w ε converges to 0 in L 2 (Ω, R m ), since v ε → v in L 2 (Ω, R m )
. By using the locally Lipschitz property (2.7) satisfied by the 2-homogeneous extension of ϕ p(η) (recall that ϕ p(η) is Lipschitz), we have

lim inf ε→0 ε Bε θ (x) ϕ p(η) ∂v ε ∂ν dx = lim inf ε→0 1 ε Bε θ (x) ϕ p(η) ε ∂v ε ∂ν dx = lim inf ε→0 1 ε Bε θ (x) ϕ p(η) ε ∂w ε ∂ν + v (x, ε/2) -v (x, -ε/2) dx = lim inf ε→0 1 ε Bε θ (x) ϕ p(η) [v] + ε ∂w ε ∂ν dx. (3.6)
Indeed using the Cauchy-Schwartz inequality and (2.3), it is easy to establish

lim ε→0 1 ε Bε |v (x, ε/2) -v (x, -ε/2) -[v]| |v (x, ε/2) -v (x, -ε/2) | + |[v]| + 2 ε ∂w ε ∂ν dx = 0.
Since w ε → 0 in L 2 (Ω, R m ), by using a truncation argument, one can modify w ε into a Sobolev function wε vanishing at the boundary of S ± ε 2 ν of B ε where ε := ε(1 + t(ε)) and t(ε) > 0 is suitably chosen so that lim ε→0 t(ε) = 0 and

lim inf ε→0 - Bε θ(x)ϕ p(η) [v] + ε ∂w ε ∂ν dx = lim inf ε→0 - B ε θ(x)ϕ p(η) [v] + ε ∂ wε ∂ν dx (3.7)
(see Lem. 4.5 in [START_REF] Licht | A modelling of elastic adhesive bonded joints[END_REF]). According to (3.7), (3.4) and Jensen's inequality, we have

lim inf ε→0 - Bε θ (x) ϕ p(η) [v] + ε ∂w ε ∂ν dx = lim inf ε→0 - B ε θ (x) ϕ p(η) [v] + ε ∂ wε ∂ν dx ≥ lim inf ε→0 - B ε θ (x) ϕ [v] + ε ∂ wε ∂ν dx -η θ ∞ |S| sup ε>0 1 ε B ε [v] + ε ∂ wε ∂ν 2 dx ≥ lim inf ε→0 - S×(-ε 2 , ε 2 ) θ (x) ϕ * * [v] + ε ∂ wε ∂ν dx -Cη ≥ S θ (x) ϕ * * ([v]) dx -Cη. (3.8)
Notice that in the second inequality, we have used the bound sup ε>0

1 ε Bε |[v] + ∂ wε ∂ν | 2 dx < +∞:
this is a straightforward consequence of (3.7) applied with ϕ = |.| 2 and (2.3). We conclude the proof of (3.5) by combining (3.6) and (3.8). Estimate (3.3) follows letting η → 0 and noticing that ϕ ≥ ϕ p(η) .

Proof of Proposition 3.3. Let (v, μ) in YC. Then, by definition of YC, there exists a sequence

(v ε ) ε>0 in W 1,2 0 (Ω, R m ) satisfying (2.3) such that v ε → v strongly in L 2 (Ω, R m ), μ ε := δ ∂vε ∂ν / ∂vε ∂ν (x) ⊗ ε½ Bε | ∂vε ∂ν | 2 dx * μ when ε → 0. According to Lemma 2.2, v belongs to W 1,2 ∂Ω (Ω \ Σ, R m ).
The fact that π is concentrated on S is easy to see. We are going to prove (3.1). Let θ be a non-negative function in C( S) and ϕ in C(S m-1 ) such that where μ = μ x ⊗ π is the slicing decomposition of μ with respect to its projection π on Ω. Combining (3.9) and (3.10), it follows that

ϕ * * > -∞. Since v ε → v in L 2 (Ω, R m ),
dπ dH N -1 (x) S m-1 ϕ(ζ) dμ x ≥ ϕ * * ([u](x)) for H N -1 S a.e. x, S m-1 ϕ(ζ) dμ x ≥ 0 for π s a.e. x ∈ S. Proposition 3.5 (sufficient conditions). Assume that (v, μ = μ x ⊗ π) belongs to W 1,2 ∂Ω (Ω \ Σ, R m ) × M + ( Ω × S m-1
), satisfies (3.1), and that π is concentrated on S. Then (v, μ) belongs to YC.

Proof. We divide the proof into three steps. In Step 1, using the Hahn-Banach separation theorem, we approximate the homogeneous components μ of YC (i.e. μ x does not depend of x) by the same type of measures as in Example 3.2. In Step 2, we construct a sequence of Sobolev functions generating these measures and conclude by a standard diagonalization argument. In Step 3, we build a sequence of Sobolev functions generating the components μ of YC: according to a standard covering argument, we localize the construction above and stick together the various generating functions obtained in Step 2. We show that this sequence generates the pair (v, μ). In order to make easier the reading of the proof, we begin by treating the case N = m = 1.

Proof in the case

N = m = 1. Let (v, μ) in W 1,2 ∂Ω ((-1/2, 0) ∪ (0, 1/2)) ⊗ M + ([-1/2, 1/2] × S 0
), satisfying (3.1) with π concentrated in {0}. The measure μ = μ 0 ⊗π(0)δ 0 can be written as π(0)μ 0 ⊗δ 0 , where π(0)μ 0 ∈ M + (S 0 ) satisfies

S 0 ϕ(ζ) d(π(0)μ 0 ) ≥ ϕ * * ([v](0)) (3.11)
for all ϕ ∈ C(S 0 ) such that ϕ * * > -∞. Note that such functions ϕ, (actually their extensions) are of the form

ϕ(ζ) = cζ 2 , if ζ ≤ 0 dζ 2 , if ζ ≥ 0
where c and d are two nonnegative real numbers. Note also that since μ is homogeneous, Step 3 described above is not necessary.

Step 1. Let us consider the following subset of M + (S 0 ):

H := λ ∈ M + (S 0 ) : ∀ϕ ∈ C(S 0 ), s.t. ϕ * * > -∞, S 0 ϕ dλ ≥ ϕ * * ([v](0)) .
H is non empty, because it contains π(0)μ(0) as (3.11) shows. It is easily seen that H is convex and closed with respect to the weak convergence in M + (S 0 ). For all w ∈ W 1,2 0 ((-1/2, 1/2)), consider the measure μ w in M + (S 0 ) which acts on all ϕ ∈ C(S 0 ) as follows:

μ w , ϕ := (-1/2,1/2) ϕ([v](0) + ẇ) dx.
According to Jensen's inequality we have

μ w , ϕ ≥ (-1/2,1/2) ϕ * * ([v](0) + ẇ) dx ≥ ϕ * * ([v](0))
so that μ w belongs to H. Let us introduce the subset C of H made up of such measures μ w , i.e.,

C := μ w : w ∈ W 1,2 0 ((-1/2, 1/2)) .
In this step we prove that C is a dense convex subset of H for the weak convergence of measures. Let us first prove the convexity of C. Let a, b in (0, 1) be such that a + b = 1, w 1 , w 2 in W 1,2 0 ((-1/2, 1/2)). Then

aμ w1 + bμ w2 , ϕ = a 1/2 -1/2 ϕ([v](0) + w 1 ) dx + b 1/2 -1/2 ϕ([v](0) + w 2 ) dx.
The change of scale x = t a -1 2 + a 2 in the first integral and x = t 1-a -a 2(1-a) in the second one give

aμ w1 + bμ w2 , ϕ = μ w , ϕ
where w is the function of W 1,2 0 ((-1/2, 1/2)) defined by

w(t) = ⎧ ⎨ ⎩ aw 1 t-a 2 + 1 2 a , if t ∈ -1 2 , -1 2 + a , bw 2 t+ b 2 -1 2 b , if t ∈ -1 2 + a, 1 2 .
It remains to establish that C is a dense subset of H. Indeed otherwise there exists λ 0 in H which does not belong to C. According to the Hahn-Banach theorem, there exist ϕ 0 ∈ C(S 0 ) and r ∈ R such that for all μ ∈ C, μ, ϕ 0 > r > λ 0 , ϕ 0 . In particular for all w ∈ W 1,2 0 ((-1/2, 1/2)) we have μ w , ϕ 0 > r > λ 0 , ϕ 0 ; from the characterization of the convexification ϕ * * of ϕ, this implies

ϕ * * 0 ([v](0)) = inf w∈W 1,2 0 ((-1/2,1/2))
μ w , ϕ 0 ≥ r > λ 0 , ϕ 0 .

(3.12)

The first inequality forces ϕ * * 0 to be finite; since λ 0 ∈ H one has λ 0 , ϕ 0 ≥ ϕ * * 0 ([v](0)). Therefore (3.12) involves a contradiction.

Step 2. Since π(0)μ 0 belongs to H and, from Step 1, C is dense in H, there exists a sequence (

w n ) n∈N in W 1,2 0 ((-1/2, 1/2)) such that μ wn * μ = π(0)μ 0 in M + (S 0 ) when n → +∞. Consequently μ n := μ wn ⊗ δ 0 * μ = π(0)μ 0 ⊗ δ 0 (3.13) for the weak convergence of σ(M + ([-1/2, 1/2] × S 0 )). Taking θ ≡ 1 and ϕ ≡ 1 (i.e. φ = |.| 2 )
we also obtain

μ n → μ = π(0);
this implies that for n large enough, say n ≥ n 0 , μ n belongs to the ball B(0, π(0

) + 1) of M + ([-1/2, 1/2] × S 0 ).
We take n ≥ n 0 and we are going to approximate the measure μ n by a measure of the form

δ vn,ε/| vn,ε| (x) ⊗ ε½ Bε | vn,ε | 2 dx. Consider the W 1,2 0 ((-1/2, 1/2)) function v n,ε defined by v n,ε (x) := R ε v + w n (x/ε), where R ε v(x) = x ε v( ε 2 ) -v(-ε 2 ) + 1 2 v( ε 2 ) + v(-ε 2 ) , if x ∈ (-ε 2 , ε 2 ), v, otherwise,
and set μ n,ε := δ vn,ε/| vn,ε| (x) ⊗ ε½ Bε | vn,ε | 2 dx. A straightforward calculation and a change of scale give, for all θ ∈ C([-1/2, 1/2]) and all ϕ ∈ C(S 0 ),

μ n,ε , θ ⊗ ϕ = ε ε/2 -ε/2 θ (x) ϕ 1 ε v ε 2 -v -ε 2 + ẇn x ε dx = - (-ε/2,ε/2) θ (x) ϕ v ε 2 -v -ε 2 + ẇn x ε dx = 1/2 -1/2 θ (εy) ϕ v ε 2 -v -ε 2 + ẇn (y) dy → θ (0) 1/2 -1/2 ϕ ([v] (0) + ẇn (y)) dy = μ wn ⊗ δ 0 , θ ⊗ ϕ when ε → 0, that is μ n,ε * μ wn ⊗ δ 0 = μ n . (3.14)
We are going to show, using a standard diagonalization argument, that a sequence constructed from v n,ε generates (v, μ). By a straightforward calculation, we get, taking θ ≡ 1 and ϕ ≡ 1 as test functions

μ n,ε = 1/2 -1/2 v ε 2 -v -ε 2 + ẇn (y) 2 dy ≤ 2 1/2 -1/2 v ε 2 -v -ε 2 -[v] (0) 2 dy + 2 μ n ≤ 2 1/2 -1/2 v ε 2 -v -ε 2 -[v] (0) 2 dy + 2 (1 + π (0)) .
This implies, for ε small enough, say ε < ε 0 where ε 0 does not depend on n, that μ n,ε belongs to the closed ball B(0, 2(π(0

) + 2) of M + ([-1/2, 1/2] × S 0 )). Since the closed balls of M + ([-1/2, 1/2] × S 0 ) are metrizable, combining (3.13) 
, (3.14) and using a standard diagonalization argument, there exists a map ε → n(ε) such that

μ ε := δ vn(ε),ε | vn(ε),ε | (x) ⊗ ε½ Bε | vn(ε),ε | 2 dx * μ (3.15) when ε → 0. Set v ε := v n(ε),ε . Condition (2.
3) follows straightforwardly from (3.15) (take θ ≡ 1 and ϕ ≡ 1 as test functions). To prove that v ε generates (v, μ), it remains to establish that

v ε → v in L 2 ((-1, 1)). Noticing that v ε = v on (-1, 1) \ (-ε/2, ε/2
), and by using Poincaré's inequality and condition (2.3) satisfied by v ε , we have

(-1,1) |v ε -v| 2 dx = (-ε/2,ε/2) |v ε -v| 2 dx ≤ ε 2 (-ε/2,ε/2) | vε -v| 2 dx ≤ Cε
where C is a non negative constant independent on ε.

Proof of the general case.

Let (v, μ) in W 1,2 ∂Ω (Ω \ Σ, R m ) ⊗ M + (Ω × S m-1
) satisfying (3.1) with π concentrated in S. We want to prove that (v, μ) belongs to YC. The proof is very close to the previous one but with an additional step.

Step 1. Let a ∈ R m be fixed, and consider the following subset of M + (S m-1 ): 

H(a) := λ ∈ M(S m-1 ) : ∀ϕ ∈ C(S m-1 ), s.t. ϕ * * > -∞,
C(a) := μ w : w ∈ W 1,2 0 (I, R m ) .
Using the same arguments of the first step in the one dimensional case (N = 1), we obtain that C(a) is a dense convex subset of H(a) for the σ(M(S m-1 ), C(S m-1 )) topology.

Step 2. Let x 0 be a fixed element of S and Q(x 0 ) a fixed open cube of R N -1 centered at x 0 . Given m ∈ H(a), according to the first step, there exists a sequence (w n ) n∈N of functions in W 1,2 0 (I, R m ) such that

μ wn * m in M + (S m-1
), when n → +∞. Consequently

μ n := μ wn ⊗ H N -1 Q(x 0 ) ∩ S | Q(x 0 )| * m ⊗ H N -1 Q(x 0 ) ∩ S | Q(x 0 )| (3.17) in M( Ω × S m-1
). For each w n we define the function ξ n,ε on B ε depending only of the variable x N by

ξ n,ε (x) := | Q(x 0 )| -1 2 x N ε a + w n x N ε • (3.18) A straightforward calculation gives lim ε→0 ε Q(x0)×( -ε 2 , ε 2 )∩ Ω θ(x)ϕ ∂ξ n,ε ∂ν dx = - Q(x0) θ(x, 0)dH N -1 S I ϕ a + dw n dν dx
for all ϕ ∈ C(S m-1 ) and all θ ∈ C( Ω), so that

μ n,ε := ε½ Q(x0)×( -ε 2 , ε 2 ) δ ∂ξn,ε ∂ν / ∂ξn,ε ∂ν (x) ⊗ | ∂ξ n,ε ∂ν | 2 dx * μ wn ⊗ H N -1 Q(x 0 ) ∩ S | Q(x 0 )| (3.19) in M( Ω × S m-1
) when ε → 0. Combining (3.17), (3.19) and using a diagonalization argument like in Step 2 of the 1-dimensional case N = 1, there exists a map n → n(ε) and ξ ε such that

ξ ε := ξ n(ε),ε = | Q(x 0 )| -1 2 x N ε a + w n(ε) x N ε , w n(ε) ∈ C 1 0 (I, R m ), ε½ Q(x0)×( -ε 2 , ε 2 ) δ ∂ξε ∂ν /| ∂ξε ∂ν |(x) ⊗ ∂ξ ε ∂ν 2 dx * m ⊗ H N -1 Q(x 0 ) ∩ S | Q(x 0 )| (3.20)
in M( Ω × S m-1 ).

Step 3. Let (v, μ) in YC: we are going to construct a sequence (v ε ) ε>0 which generates (v, μ). The sequence (v ε ) ε>0 is composed by functions in W 1,2 0 (Ω, R m ) whose restriction on Ω \ Σ ε is equal to v, it converges to v in L 2 (Ω, R m ), it satisfies (2.3) and

δ ∂vε ∂ν / ∂vε ∂ν (x) ⊗ ε½ Bε | ∂v ε ∂ν | 2 dx * μ (3.21) in M( Ω × S m-1 ).
In what follows, we continue to write the measure π on R N defined for all Borel set E of R N by π(E) := π( S ∩ E) as π. According to the Vitali covering theorem (see [START_REF] Federer | Geometric Measure Theory[END_REF], Cor. 2.8.15) there exists a finite family ( Qi,k ) i∈I k of disjoint closed squares in R N -1 , centered at x i,k ∈ S, with diameter less than 1/k, k ∈ N * and satisfying

π S \ i∈I k Qi,k < 1 k • (3.22)
One may assume that Qi,k ⊂ Σ. Define the measure μ i,k of M(S m-1 ) by

μ i,k := Qi,k μ x dπ.
From (3.1) and Jensen's inequality, for all ϕ ∈ C(S m-1 ) such that ϕ * * > -∞ we have 

μ i,k , ϕ = Qi,k S m-1 ϕ(ζ) dμ x dπ ≥ Qi,k ϕ * * ([v](x)) dH N -1 S ≥ ϕ * * | Qi,k | 1 2 - Qi,k [v](x) dH N -1 S . (3.23) Let us set a i,k = | Qi,k | 1 2 - Qi,k [v] dH N -1 S. ( 3 
i,k,ε ) ε>0 in W 1,2 (B ε , R m ), of the form ξ i,k,ε (x) = x N ε - Qi,k [v] dH N -1 S + ξi,k,ε (x N ),
with ξi,k,ε in W 1,2 0 (I, R m ) and with the property that,

μ i,k,ε := ε½ Qi,k ×( -ε 2 , ε 2 ) δ ∂ξ i,k,ε ∂ν / ∂ξ i,k,ε ∂ν (x) ⊗ ∂ξ i,k,ε ∂ν 2 dx * μ i,k ⊗ H N -1 Qi,k ∩ S | Qi,k | (3.25) in M( Ω × S m-1
) when ε → 0, and μ i,k,ε ≤ 2π( Qi,k ). For all θ ∈ C( Ω) and all ϕ ∈ C(S m-1 ), (3.25) yields lim

ε→0 i∈I k ε Qi,k ×(-ε 2 , ε 2 )∩ Ω θ(x)ϕ ∂ξ i,k,ε ∂ν dx = i∈I k - Qi,k θ(x) dH N -1 S S m-1 ϕ(ζ) dμ i,k = i∈I k - Qi,k θ(x) dH N -1 S Qi,k S m-1 ϕ(ζ) dμ x dπ.
When θ is a Lipschitz-continuous function, one easily deduces from (3.22) that lim

k→+∞ lim ε→0 i∈I k ε Qi,k ×(-ε 2 , ε 2 )∩ Ω θ(x)ϕ ∂ξ i,k,ε ∂ν dx = S S m-1 θϕ dμ. (3.26)
In the general case, when θ ∈ C( Ω), the same conclusion holds by an approximation argument.

Set ξ k,ε (x) := i∈I k ξ i,k,ε (x N ) ½ Qi,k (x). In order that the value of ξ k,ε agrees with that of v on Ω \ Σ ε , we modify ξ i,k,ε into the function v i,k,ε given by

v i,k,ε (x) := R ε v(x) + ξi,k,ε (x N ) ½ Qi,k (x) 
where

R ε : W 1,2 (Ω \ Σ, R m ) → W 1,2 (Ω, R m ) is the operator defined in (3.2).
We claim that (3.26) holds when we replace ξ i,k,ε by v i,k,ε . Indeed one may assume ϕ ∈ Lip(S m-1 ) and, from the Lipschitz property (2.7), it is easily seen that we are reduced to establish

lim k→+∞ lim ε→0 i∈I k ε Qi,k ×(-ε 2 , ε 2 )∩ Ω 1 ε - Qi,k [v]dH N -1 S - ∂R ε v ∂ν 2 dx = 0 :
this can be straightforward checked. Thus (3.26) becomes Note that v k,δ,ε belongs to W 1,2 0 (Ω, R m ). Now, using a standard diagonalization argument (all the considered measures are bounded by 2π( S) in M( Ω × S m-1 )), we infer 

lim k→+∞ lim ε→0 i∈I k ε Qi,k ×(-ε 2 , ε 2 )∩ Ω θ(x)ϕ ∂v i,k,ε ∂ν dx = S S m-1 θϕ dμ. (3.27) It is worth noticing that v k,ε := i∈I k v i,k,ε ½ Qi,
δ ∂vε ∂ν / ∂vε ∂ν (x) ⊗ ε½ Bε | ∂v ε ∂ν | 2 dx * μ where v ε := v k(ε),δ(ε),ε for some map ε → (k(ε), δ(ε)
|v -v ε | 2 dx = Σε |v -v ε | 2 dx ≤ ε 2 Σε ∂(v -v ε ) ∂ν 2 dx ≤ Cε
where we have used Poincaré's inequality, and (2.3) in the two last inequalities. 

(x)δ -1 ) ⊗ π) belongs to YC if and only if v ∈ W 1,2 ∂Ω (Ω \ Σ), π is concentrated on S and dπ dH N -1 S (x) a(x)c + b(x)d ≥ ϕ([v](x)) for H N -1 S a.e.
x and for all (c, d

) ∈ R + × R + where ϕ(ζ) = cζ 2 if ζ ≥ 0, dζ 2 if ζ ≤ 0.
Consequently the following estimates hold:

a(x) ≥ |[v](x)| 2 dπ dH N -1 S (x) for H N -1 S a.e. x such that [v](x) > 0 b(x) ≥ |[v](x)| 2 dπ dH N -1 S (x)
for H N -1 S a.e. x such that [v](x) < 0.

(3.28) 

Proof. Since m = 1 we have S m-1 = {-1, 1}, μ x = a(x)δ 1 + b(x)δ -1 with 0 ≤ a(x) ≤ 1, 0 ≤ b(x) ≤ 1,
σ ε (x) = 1 ε if x ∈ (-1, 1) \ (-ε 2 , ε 2 ) 1 if x ∈ -ε 2 , ε 2 .
Clearly ū ε is of the form

ū ε (x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ εc ε , if x ∈ (-1, -ε 2 ) c ε + s k √ ε , if x ∈ (t ε k , t ε k+1 ), k = 0, . . . , m -1 ε c ε + sm √ ε , if x ∈ ( ε 2 , 1),
where s k := k i=0 a i and c ε is a constant which can be computed from the boundary conditions.

Let us show that ū ε has a concentration phenomenon. To this end we set vε = ūε √ ε and compute the weak limit of the measure πε := ½ (-ε 2 , ε

2 ) ε|v ε | 2 dx in M([-1, 1]). Let θ ∈ C([-1, 1]); we have

1 -1 θ(x)½ (-ε 2 , ε 2 ) ε|v ε | 2 dx = m-1 k=0 ε c ε √ ε + s k ε 2 t ε k+1 t ε k θ(x) dx = m-1 k=0 |c ε √ ε + s k | 2 t ε k+1 -t ε k ε - t ε k+1 t ε k θ(x) dx.
Taking into account that vε is a solution of min 1 2 (-1,1)\(- 

ε 2 , ε 2 ) |v | 2 dx + ε 2 (-ε 2 , ε 2 ) |v | 2 dx + m k=0 a k v(t ε k ) : v ∈ W 1

  define now the probability measure μ x on S m-1 by μ x = μx / μx , where for all ϕ ∈ C(S m-1 ) μx , ϕ := -I ϕ [v](x) + dφ dy (y) dy.

S m- 1 ϕ

 1 dλ ≥ ϕ * * (a) . (3.16) For all w ∈ W 1,2 0 (I, R m ) where I = (-1 2 , 1 2 ), consider the measure μ w in M(S m-1 ) which acts on all ϕ ∈ C(S m-1 ) as follows: μ w , ϕ := I the following subset C(a) of M(S m-1 ):

  k is not a Sobolev function. Take now a partition of unity (ϕ i,δ ) i∈I k subordined to the family ( Qi,k ) i∈I k , satisfying lim δ→0 Qi,k |ϕ δ -1| 2 dx = 0, and set v k,δ,ε := i∈I k v i,k,ε ϕ i,δ . Taking into account that ϕ δ depends only on x, it is readily seen that[START_REF] Fonseca | Analysis of concentration and oscillation effects generated by gradients[END_REF]

Corollary 3 . 6 (

 36 characterization of YC in the scalar case m = 1). Assume that m = 1. Then (v, μ = (a(x)δ 1 + b

4 . 1 )

 41 and a(x) + b(x) = 1 for H N -1 S a.e. x. Moreover ϕ ∈ C(S m-1 ) fulfils the condition ϕ * * > -∞ if and only if its extension is of the formϕ(ζ) = cζ 2 , if ζ ≥ 0 dζ 2 , if ζ ≤ 0where c and d are two non-negative real numbers. Note that in this case ϕ * * = ϕ. Then (3.1) is equivalent todπ dH N -1 S (x) a(x)c + b(x)d ≥ ϕ([v](x)) for H N -1 S a.e. x.Estimates (3.28) follow easily, choosing d = 0 or c = 0. Computations in the 1-dimensional case Let us consider the elementary Dirichlet problem described in the introduction: = u(1) = 0, where a k ∈ R * , (t ε k ) k=0,...,m is a non decreasing family of numbers in [-ε 2 , ε 2 ] with t ε 0 = -ε 2 , l for k = 0, . . . , m -1, and σ ε is given by

1 - 1 θ(x)½ (-ε 2 , ε 2 ) 1 k=0( 1 k=0(L + s k ) 2 δ 0 and ū ε presents a concentration phenomenon of intensity l m- 1 k=0⊗ ½ (-ε 2 , ε 2 ) 1 - 1 ½

 11221112211 ,2 0 ((-1, 1)) , and using point (c) of Lemma 2.1, c e √ ε is bounded and tends to some constant L. This implies that limε→0 ε|v ε | 2 dx = l m-L + s k ) 2 θ(0).Thus πε weakly converges to the measure π = l m-(L + s k ) 2 at 0.We are going to compute the weak limit μ of the measure με := δ v ε |v ε | (x) ε|v ε | 2 dx. We assume for instance that L ≥ 0. Let ϕ be any 2-homogeneous continuous function on R and θ any function in C([-1, 1]). We have for small ε ε (-ε 2 , ε 2 ) ϕ(v ε )θ(x) dx = k=0,...,m-1:s k <0

2 m- 1 k=0(L + s k ) 2 , 2 m- 1 k=0(L + s k ) 2 • ( 4 . 1 )

 21221241 ..,m-1:s k <0 (L + s k ) 2 ϕ(-1) + k=0,...,m-1:s k ≥0 (L + s k ) 2 ϕ(1) s k ) 2 θ(0), where a = k=0,...,m-1:s k ≥0 (L + s k ) b= k=0,...,m-1:s k <0 (L + s k )This proves that the measure με := δ v ε |v ε | (x) ⊗ ½ (-ε 2 , ε 2 ) ε|v ε | 2 dxweakly converges to the measure μ = (aδ 1 + bδ -1 ) ⊗ π, where π = l m-1 k=0 (L + s k ) 2 δ 0 and a and b are given by (4.1).

  ). We have thus proved(3.21). Estimate (2.3) follows straightforward from (3.21) (take θ ≡ 1 and ϕ ≡ 1 as a test function). At last we have
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