
HAL Id: hal-00369366
https://hal.science/hal-00369366

Submitted on 19 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Representation of Probabilities over Structured
Domains

Marius Bozga, Oded Maler

To cite this version:
Marius Bozga, Oded Maler. On the Representation of Probabilities over Structured Domains. Com-
puter Aided Verification 11th International Conference, CAV’99, Jul 1999, Trento, Italy. pp.261-273,
�10.1007/3-540-48683-6�. �hal-00369366�

https://hal.science/hal-00369366
https://hal.archives-ouvertes.fr

On the Representation of Probabilitiesover Structured Domains?Marius Bozga and Oded MalerVerimag, Centre Equation, 2, av. de Vignate, 38610 Gi�eres, France,bozga@imag.fr maler@imag.frAbstract. In this paper we extend one of the main tools used in veri�-cation of discrete systems, namely Binary Decision Diagrams (BDD), totreat probabilistic transition systems. We show how probabilistic vectorsand matrices can be represented canonically and succinctly using proba-bilistic trees and graphs, and how simulation of large-scale probabilisticsystems can be performed. We consider this work as an important con-tribution of the veri�cation community to numerous domains which needto manipulate very large matrices.1 IntroductionMany problems in discrete veri�cation can be reduced to the the following one:given a non-deterministic �nite-state automaton A = (Q; �) and a set P � Q ofstates, �nd the set P � of all the states reachable from P . One common way todo this calculation is to let P 0 = P and P i+1 = �(P i) until P i is included inthe union P 0 [: : : [P i�1. Here P i is the set of states reachable from P afterexactly i steps.This method can be formulated using Boolean state-vectors and transitionmatrices. Each subset P of an n-element set of states can be written as ann-dimensional Boolean row vector p (a function from Q to f0; 1g) and any tran-sition relation � as an n � n Boolean matrix A� (a function from Q � Q tof0; 1g). Thus, the calculation step P i+1 = �(P i) is equivalent to the multipli-cation of a vector by a matrix: pi+1 = pi � A�. For example, consider Figure 1where a 5-state automaton is depicted along with its corresponding 5 � 5 ma-trix A� . The reader can verify that calculating the states reachable in one stepfrom P = f1; 2g is done via the multiplication [1; 1; 0; 0; 0] � A� = [0; 1; 1; 0; 1]where logical conjunction and disjunction replace multiplication and addition,respectively.Probabilistic transition systems, such as discrete Markov chains, operate ina similar but di�erent fashion. At any given stage of the system's evolution thestate is given by a probability function p : Q! [0; 1] such that Pq2Q p(q) = 1.The transition structure is probabilistic as well and is represented by a function? This work was partially supported by the European Community Esprit-LTR Project26270 VHS (Veri�cation of Hybrid systems) and the French-Israeli collaborationproject 970maefut5 (Hybrid Models of Industrial Plants).

1

5

3

2 4

0 1 1 0 00 1 0 0 01 0 0 0 10 1 0 0 10 0 0 0 1Fig. 1. A non-deterministic automaton and its transition matrix.� : Q � Q ! [0; 1] where �(q; q0) denotes the conditional probability of beingin q0 in the next-state given that the current state is q. The evolution fromone probabilistic state vector to another is captured by the vector by matrixmultiplication pi+1 = pi �A� , this time over the reals.The state-explosion problem, also known as the curse of dimensionality, ariseswhen the system under consideration is composed of many sub-systems. Thesize of the global state-space is exponential in the number of components andveri�cation by explicit enumeration of states and transitions becomes impossible.Symbolic methods provide an alternative to explicit state enumeration. They arebased on the following observation: the global state-space of a composed systemcan be encoded naturally using state-variables (a variable for the local stateof each component). The evolution of each variable usually depends on a smallsubset of the other variables and the corresponding transition law can be writtenconcisely as a formula in some adequate formalism (e.g. propositional logic whenthe variables are Boolean) and the global transition relation is a conjunction ofsuch formulae. Similarly, sets of states can be written down as formulae. With theaid of appropriate data-structures, a symbolic version of the basic computationP i+1 = �(P i) can be performed, calculating a (hopefully concise) representationof P i+1 from a representation of P i and �.In veri�cation of systems modeled as automata this technique is called sym-bolic model-checking [McM93,BCM+93] and it had a great success. In fact it canbe seen as one of the breakthroughs in veri�cation, facilitating the analysis ofsystems with hundreds of state variables, far beyond the capabilities of explicitenumeration on current and future computers. The most popular representa-tion scheme used in symbolic veri�cation is the binary decision diagram (BDD),which is a formalism for representing Boolean functions, admitting the followingproperties [B86,MT98]:1. It is canonic { given an ordering of the variables, a unique BDD correspondsto every Boolean function.2. There are relatively-e�cient algorithms for manipulating BDDs, in particu-lar for the operations needed to compute P i+1 = �(P i).3. It performs well in the analysis of many structured systems: the size of theBDD remains small relative to the size of the state-space.The goal of the paper is to apply this recipe to probabilistic systems, thatis, to de�ne a representation formalism for probabilistic vectors and transition

functions such that the operation pi+1 = pi �A� could be performed for systemsfor which it is impossible to do so using currently existing methods. To this endwe de�ne probabilistic decision graphs (PDG)1 , a data-structure for representingprobabilities over structured domains which enjoys the nice properties of BDDs.The rest of the paper is organized as follows. In section 2 we present proba-bilistic decision trees and graphs and show they constitute a canonic represen-tation for probabilities. In section 3 we rephrase the basic de�nitions of Markovchains. Section 4 is devoted to the representation of probabilistic transition func-tions by conditional probabilistic graphs and sketch the PDG structure of somegeneric classes of probabilistic systems. The calculation of next-state proba-bilities on PDGs via the projection operation described in section 5 and somepreliminary experimental results are reported in section 6. Finally we discuss thesigni�cance of this work and mention some of the previous relevant applicationsof BDD technology outside the Boolean realm.2 Probabilistic Decision GraphsLet B = f0; 1g. We assume an underlying set Q = Bn , and a probability distribu-tion on Q, i.e. a function p : Q! [0; 1] such thatPq2Q p(q) = 1. Such a functioncan be extended naturally to subsets of Q by letting p(Q0) =Pq2Q0 p(q) for ev-ery Q0 � Q. We will abuse strings from B�n (the set of binary strings of lengthnot greater than n) to denote certain subsets of Bn . A string u = x1x2 � � �xnwill stand for the singleton f(x1; : : : ; xn)g while a string x1x2 � � �xi, i < n willstand for the set f(x1; : : : ; xi; xi+1; : : : ; xn) : (xi+1; : : : ; xn) 2 Bn�ig. This can bede�ned recursively by associating with u the union of the sets associated with u0and u1. Note that the empty string " denotes the whole Bn . To avoid additionalsymbols we use the same notation for a string and for the set it denotes. The setB�n has a binary tree structure and every level B i corresponds to a partition ofBn . The next de�nition is the essence of this paper.De�nition 1 (Probabilistic Decision Trees). A probabilistic decision tree(PDT) of depth n is a tuple P = (S; 0; 1; v) where S = B�n , 0 and 1 arerespectively the left-successor and right-successor partial functions on S, andv : S ! [0; 1] is a function satisfying v(") = 1 and for every non-leaf node s,v(s0) + v(s1) = 1.Theorem 1 (Unique Representation). There is a one-to-one2 correspon-dence between probabilities on Bn and PDTs.Proof: First we assign probabilities to nodes by letting p(") = 1 andp(sx) = p(s) � v(sx) x 2 B (1)It is not hard to see that all p values are in [0; 1] and that their sum at each level ofthe tree is 1. Conversely, given a probability on the leaves, it is straightforward to1 We say \graphs" instead of \diagrams" to avoid yet another xDD acronym.2 In our de�nition there is an implicit ordering on the \variables".

calculate the probability of the sets associated with the upper nodes by lettingp(s) = p(s0) + p(s1) and then compute v via normalization, i.e. the inverseof (1): v(sx) = p(sx)=p(s). In the case when p(s) = 0 we can put any number inv(sx) = 0=0, and a convention such as 1=2 can be used.PDTs are nothing but the presentation of probabilities using the so-called\chain-rule", the probabilistic analogue of Shannon factorization of Booleanfunctions which underlies BDDs:p(x1x2 � � �xn) = p(x1) � p(x1x2jx1) � � � p(x1x2 � � �xnjx1 � � �xn�1)where p(rjs) is the conditional probability of r given s. We will replace thisunfortunate (but very common) notation with ps(r) such that the above rulewill be written asp(x1x2 � � �xn) = p(x1) � px1(x1x2) � � � px1���xn�1(x1 � � �xn):Decision trees are exponential in the number of variables and, by themselves,do not solve the state explosion problems. However, when there is some structurein the objects they represent, di�erent nodes may have identical sub-trees andthe tree can be represented concisely by a directed acyclic graph (DAG) carryingthe same information. The transformation of a tree into a DAG is a variation ofthe classical procedure for minimizing automata, and can be phrased as follows.De�nition 2 (Probabilistic Decision Graphs). Let P = (S; 0; 1; v) be aPDT and let � be a congruence relation3 on S de�ned as s � s0 if v(s) = v(s0)and both s0 � s00 and s1 � s01. The associated probabilistic decision graph(PDG) is G = (S= �; 0; 1; v).In other words, the nodes of G are the equivalence classes of �. Graphicallyspeaking, the process starts from the bottom of the tree by merging leaves sxand s0x0 which have identical v's. Then the edge from s labeled by x and theedge from s0 labeled by x0 are redirected toward the merged node and the processcontinues recursively upward. Note that sx = ? for a leaf s, hence s � s0 only ifboth belong to the same level of the tree.Example: Consider the following probability function over B 3 :000 001 010 011 100 101 110 11116 0 215 130 415 115 115 415Figure 2-(a) shows the probabilities of all subsets in B�3 . The PDT in Figure 2-(b) is obtained via the normalization v(sx) = p(sx)=p(s). The reduction modulo� into a PDG starts in Figure 2-(c) by merging identical leaves and terminatesin Figure 2-(d) by merging some of their parents.4 Like in BDDs, when there is3 Congruence with respect to the 0 and 1 operations.4 Unlike BDDs we do not go further and eliminate nodes whose left and right successorsare identical: we restrict ourselves to balanced DAGs where all paths from the rootto the leaves are of the same length, otherwise we cannot satisfy the requirementthat the sum of the leaves at every level is 1.

a lot of independence between the variables, the size of the PDG is much smallerthan the size of Q. In the rest of the paper we describe algorithms in terms offull trees, bearing in mind that the actual implementation reduces every treeinto its corresponding minimal DAG.
0

0

0 0 0 11

1

1

11 0

0 1

1/6 1/3

1

1/6 0 2/15 1/30 4/15 1/15 1/15 4/15

1/31/6

1/3 2/3 1/3

1/2 1/2 1/2 1/2

0

0

0 0 0

1

1

1

1 10 1 1

0

1 0 4/5 1/5 4/5 1/5 1/5 4/5

2/3

1

(a) (b)
1/3

1/2 1/2 1/2 1/2

0

0 0 1

1

1

10

1/54/5

2/3

1

01

0
11

0

10

1/3

1/2 1/2

0

0 11

10

1/2

1/54/5

00 1 1

0

1
1

2/3

1 0(c) (d)Fig. 2. Transforming a probability function (a) into a PDT (b) and successively via(c) into a PDG (d).
3 Markov Transition FunctionsHaving de�ned a canonical representation for probabilistic state vectors, we nowmove to the representation of transition matrices. In a non-probabilistic settingthere is not much di�erence between sets (subsets of Bn) and relations (subsetsof B 2n) and both can be represented by BDDs of the same type. For probabilisticsystems, we must be more careful.De�nition 3 (Markov Transition Function). A Markov transition functionon Q is a function � : Q! (Q! [0; 1]) such that for every q 2 Q, �q : Q! [0; 1]is a probability function on Q.

In 20th century mathematics, such functions used to be written as jQj � jQjmatrices such as A� = �1(1) �1(2) : : : �1(n)�2(1) �2(2) : : : �2(n): : : : : : : : : : : :�n(1) �n(2) : : : �n(n)where each line represents a particular �q. The action of � on a probabilisticstate-vector p can be decomposed into two stages. The �rst can be viewed asapplying a function �̂ : (Q ! [0; 1]) ! (Q � Q ! [0; 1]) where p̂ = �̂(p) if forevery q; q0 2 Q, p̂(q; q0) = p(q) � �q(q0). In other words, given that the currentstate probability is p, �̂(p) denotes the probability of any transition to happen.Matrix-wise, when p is written as a vector [p1; : : : ; pn], calculating �̂(p) amountsto multiplying every element of p by the elements of its corresponding row in �to obtain A�̂(p) = p1 � �1(1) p1 � �1(2) : : : p1 � �1(n)p2 � �2(1) p2 � �2(2) : : : p2 � �2(n): : : : : : : : : : : :pn � �n(1) pn � �n(2) : : : pn � �n(n)Note that unlike �, �̂(p) is a probability function on Q�Q.The probability of being in the next step at a state q0 is then the sum of theprobabilities of the form p̂(q; q0), i.e. those leading to q0. This can be captured bya function: w : (Q�Q! [0; 1])! (Q! [0; 1]) de�ned as w(�̂) =Pi �̂i. Matrixlyspeaking, this is equivalent to summing up every column of A�̂(p) to obtain avector p0. Hence the composition w � �̂ : (Q ! [0; 1]) ! (Q ! [0; 1]) gives theevolution of the system as the action of a probabilistic transition matrix on aprobabilistic state vector.5Next we de�ne a data-structure for representing � whenQ = Bn and a naturalway to transform it, given a PDG-represented probability p, into a PDG of depth2n for �̂(p). After that we de�ne the basic operation on PDGs, the projectionwhich is used in the calculation of w.4 Conditional Probabilistic Decision GraphsThe basic idea is to extend PDTs such that nodes at certain levels of the treeare empty (with v unde�ned) to denote undetermined variables.6 To this end wewill use somewhat more elaborate notations.LetX = f1x; 2x; : : : ; nxg and Y = f1y; 2y; : : : ; nyg be two copies of f1; : : : ; ng.An order relation � on X [Y can be written as a bijection J : f1; 2; : : : ; 2ng !5 For those familiar with BDDs, we mention that these operations resemble the non-probabilistic ones: �̂(q; q0) = p(q) ^ �(q; q0) and w(q0) = 9q �̂(q; q0) = Wq �̂(q; q0).6 In fact we could have started the paper by de�ning data-structures for conditionalprobability functions, with a partition of variables into two types. This way we couldobtain probability functions as the special case where all the variables are determined,and Markov transition functions as a special case where the sizes of the two sets ofvariables are the same and certain restrictions are imposed on variable dependencies.However, we prefer clarity over generality.

X [Y . Without loss of generality we assume that � is compatible with the nat-ural ordering of X and of Y , i.e. 1x � 2x � : : : � nx. Given J , any binary strings 2 B�2n can be mapped into a pair of strings Jx(s) and Jy(s) from B�n . For ex-ample, if J = 1x � 2x � 1y � 3x � 2y � 3y then for a string s = x1x2y1x3y2y3,Jx(s) = x1x2x3 and Jy(s) = y1y2. We also extend our string notation for sets:a string of the form xi1xi1 � � �xim with 0 < i1 < i2 < : : : < im � n will denotea subset of Bn with the obvious meaning, i.e. the set of n-tuples such that thevalue of every ij-coordinate is xij .A Markov transition function over Bn is a function � : Bn ! (Bn ! [0; 1])whose instances are written as �x1���xn(y1 � � � yn). For every x1 � � �xn, �x1���xn isa probability function which can be written using the chain rule just as as anyother probability:�x1���xn(y1 � � � yn) = �x1���xn(y1) � �x1���xny1(y1y2) � � � �x1���xny1���yn�1(y1 � � � yn):We restrict our attention to Markov chains in which every coordinate of thestate-space behaves causally, i.e. it depends only on the previous values of thestate variables.7 This means that for every x1 : : : xn and every yi, yj we have�x1���xnyi(yj) = �x1���xn(yj). Hence � can be written as:�x1���xn(y1 � � � yn) = �x1���xn(y1) � �x1���xn(y2) � � � �x1���xn(yn): (2)We say that jy is independent of ix if for every x1; : : : ; xi�1; xi+1; : : : xn,�x1���xi�10xi+1���xn(yj) = �x1���xi�11xi+1���xn(yj):In this case we can use the notation �x1���xi�1xi+1���xn(yj). When this is not thecase we say that ix inuences jy and denote it by ix + jy.An order relation � on X[Y is compatible with a Markov transition function� i� for every ix 2 X; jy 2 Y , ix + jy implies ix � jy. The default ordering1x � : : : � nx � 1y � : : : � ny is compatible with any � and is the only onecompatible with a � for which every jy depends on all X .De�nition 4 (Conditional PDT and PDG). A conditional probabilisticdecision tree (CPDT) of depth n is a tuple P = (S; 0; 1; J; v) where S = B�2n , 0and 1 are as in a PDT, J is the ordering bijection and v : S! [0; 1] is a partialfunction, de�ned only on nodes s such that J(jsj) 2 Y , satisfying v(") = 1and for every node s, v(s0) + v(s1) = 1 whenever it is de�ned. A conditionalprobabilistic decision graph (CPDG) is G = (S= �; 0; 1; J; v) where � is thecongruence relation of De�nition 2.Theorem 2 (CPDT=Markov Transition Function). There is a one-to-onecorrespondence between Markov transition functions and CPDTs.7 Note that one can write Markov transition functions over Q which do not admitsuch a causal decomposition, and this observation might be a source of interestinginvestigations in the theory of stochastic processes. In fact, the above implies thateverym-state Markov chain which admits a causal decomposition can be representedin space O(m logm) instead of O(m2).

Sketch of Proof: Similar to that of Theorem 1. We assume a �xed orderingbijection J compatible with �. For every Y -node syi of the CPDT we associatev(syi) with the conditional probability �Jx(s)(yi), for example v(x1x2y1x3y2) =�x1x2x3(y2). To reconstruct � from a tree we go down the tree until we calculate� for the lowest Y -nodes. To build a CPDT from � we climb-up starting fromthe Y -leaves and construct the tree.
(a) (b) (c)Fig. 3. Schematic CPDGs for Markov transition function which consist of: (a) Inde-pendent Bernoulli trials (b) Independent Markov chains (c) A cascade with k = 2. Thedark nodes indicate Y -nodes.

Fig. 4. A schematic CPDG for an arbitrary (but causal) Markov transition function.We mention some classes of probabilistic transition systems such that thepattern of interaction between their components alone su�ces for giving anupper-bound on the size of their CPDGs. Consider �rst the degenerate caseof n independent Bernoulli trials. It can be modeled as a direct product of nmemory-less automata, for which the probability of the next state is independentof the current state. Thus, �x1:::xn(y1 : : : yn) can be written as �(y1) � � � �(yn) andrepresented by a CPDG without empty nodes, which is in fact a PDG, like inFigure 3-(a).As a slightly less trivial example consider a direct product of n independent2-state Markov chains. In this case each iy depends only on ix and the transi-tion function can be represented by the CPDG of Figure 3-(b). More generally,

consider a cascade A1; : : : ;An of probabilistic automata where the transitionprobabilities of each automaton Ai depends on the states of its k predecessors(including itself) Ai�k+1; : : : ;Ai�1;Ai. Such systems will have a CPDG of sizeO(n2k) similar to the one appearing in Figure 3-c for k = 2.When there are no such constraints on variable dependencies, the defaultorder needs to be used and no a-priori lower-bound better than n2n can bestated (although some independencies might make the corresponding CPDGsmaller). We repeat that even this bound is better than the 22n size impliedby a straightforward encoding of the transition matrix. The general structure ofsuch a CPDG is depicted in Figure 4.Going from p and � to �̂(p) is straightforward: take v(s) from the PDT for pand put it in any nodes s0 of the CPDT of � such that Jx(s0) = s. This way thewhole tree becomes full and represents the probability �̂(p) over B 2n .5 ProjectionThe basic operation on probabilities (and PDGs) is the probabilistic analogue ofthe elimination of a quanti�ed variable in Boolean functions (and BDDs). Thisis what is needed to transform �̂(p) into �(p).De�nition 5 (Projection). Let p : Bn ! [0; 1] be a probability. The k-projectionof p, is a function p#k : Bn�1 ! [0; 1] de�ned asp#k(x1 � � �xk�1xk+1 � � �xn) = p(x1 � � �xk�10xk+1 � � �xn)+p(x1 � � �xk�11xk+1 � � �xn) (3)Using conditional probabilities, (3) can be rewritten asp(x1 : : : xk�1) � 24px1���xk�1(0xk+1 � � �xn)+px1���xk�1(1xk+1 : : : xn)35and further asp(x1 � � �xk�1) � 24v(x1 � � �xk�10) � px1���xk�10(xk+1 � � �xn)+v(x1 � � �xk�11) � px1���xk�11(xk+1 � � �xn)35As one can see, performing a k-projection on the PDT representation of p consistsof copying the �rst k � 1 levels of the tree and then plugging at each branchx1 � � �xk�1 a sub-tree which encodes the weighted sum of the functions px1���xk�10and px1���xk�11. This is the main computational burden in the manipulation ofPDGs. The transformation of a PDT P = (S; 0; 1; v) for p with S = Bn into aPDT P#k = (S#k; 0; 1; v#k) for p#k with S#k = Bn�1 is performed as follows. Forany node s 2 B�k�1 we have p#k(s) = p(s). For the other nodes we havep#k(x1 � � �xk�1s) = p(x1 � � �xk�10s) + p(x1 � � �xk�11s)

These values are calculated from the top down and every calculation of p#k(sx)is followed by calculating v#k(sx) as v#k(sx) = p#k(sx)=p#k(s), which in the �rstk � 1 levels reduces simply to v#k(s) = v(s). Aplying this procedure n times8we transform a probability on B 2n to a probability on Bn and complete thecomputation of p0 = p � A�. While working with PDGs, one can avoid part ofthe computation whenever there is an equivalence of the form ps0 = ps1. In thatcase the weighted sum r � ps0 + (1� r)ps1 is equal to both.6 Implementation and Experimental ResultsThe treatment of the mathematical real numbers by computer involves an addi-tional dimension of problematics absent from traditional applications of veri�-cation methodology. The continuum is approximated by a very large (but �nite)subset of the rationals, the oating point numbers. Practitioners seem to be sat-is�ed with this approximation. It turns out that for exploiting the advantages ofPDGs we had to go further and round node values to multiples of 2�m (for mranging between 3 to 10), otherwise the size of non-trivial PDGs becomes expo-nential after few iterations because of the low probability of two nodes havingexactly the same oating-point value. With this discretization, systems with lim-ited interaction among variables usually converge to vectors with a small PDGdescription. As for the semantic price of the approximation, if we reect a bit onthe empirical source of probability estimations in models, we realize that thesenumbers are not sacred and an initial \imprecision" of 2�m does not make anydi�erence.We have implemented these data-structures and algorithms and tested theirperformance on some generic examples. The implementation is preliminary anddoes not yet employ all the optimizations one can �nd in BDD packages. Let us�rst mention the trivial cases. For n randomly-generated mutually-independentMarkov chains we can treat almost any n. This is, of course, not so impressive ifone realizes that each chain could be simulated separately. Yet someone unawareof BDDs will be rather surprised to see how fast you can multiply a 215 � 215transition matrix void of any apparent structure or sparseness (see table 1). Aslightly less trivial example is a chain of noisy communication channels whereeach component copies the value of its predecessor with probability 1� �. Sucha chain converges to a uniform probability vector where p(q) = 1=2n for everystate. Here again we could iterate for very large n with a linear growth in thesize of the PDGs.Next, we have tested randomly-generated cascades of communication depth2, which using the previously mentioned discretization, usually converge to vec-tors with small PDGs, although exponential ones are, of course, still possible.We demonstrate the time and space behavior of the algorithm on a family con-sisting of a cascade of noisy AND gates such that each component becomes theconjunction of its previous value and that of its predecessors (Figure 5) with8 Like in BDDS, this procedure can be extended naturally to a procedure that elimi-nates several variables in a single pass.

0:000564 0:000093 0:000412 0:000068 0:000094 0:000015 0:000068 0:000011 0:000727 0:000120 : : :0:000653 0:000003 0:000477 0:000002 0:000108 0:000001 0:000079 0:000000 0:000842 0:000004 : : :0:000823 0:000135 0:000153 0:000025 0:000137 0:000022 0:000025 0:000004 0:001061 0:000175 : : :0:000953 0:000005 0:000177 0:000001 0:000158 0:000001 0:000029 0:000000 0:001229 0:000006 : : :: :Table 1. An initial fragment of a 215 � 215 matrix which can be iterated until conver-gence within less than a second.probability 0:9. The performance results are depicted in Figure 6 and althoughspace behaves nicely, computation time still grows exponentially, reaching almost4 hours for n = 54. The reason lies in the fundamental di�erence between BDDsand PDGs: in the former, when an algorithms encounters a node, it does notneed to remember via which branch the node is reached, and thus the hashingmechanism prevents duplicate calls. On the other hand, in PDGs, each time theprojection procedure is called with a node, it has, as an additional parameter,the probability associated with its parent. Hence procedure calls with identicalarguments are rather rare and the current implementation needs to do exponen-tial work on linear-sized PDGs. We are currently investigating improvements ofthe implementation.
Fig. 5. A chain of noisy AND gates.

10 20 30 40 50 60

n

100

1000

pd
d

si
ze

 (
no

de
s)

delta = 1 / 1024
delta = 1 / 512

10 20 30 40 50 60

n

1

60

3600

ti
m

e
(s

ec
on

ds
)

Fig. 6. The PDG size and time until convergence as a function of the number ofvariables, for discretizations of 1=1024 and 1=512.

7 DiscussionWe have introduced and implemented a new method for manipulating largeprobabilistic transition systems. We hope that this technique will improve theperformance of probabilistic simulation tools. In addition, the investigation of thestructure of PDGs might contribute to a better understanding of the structureof probabilistic functions. The application domains which might bene�t fromsuch a technique are numerous and include performance and reliability analysis,probabilistic veri�cation, planning under uncertainty [P94,BDH99], calculationof equilibria in economics, statistical mechanics and more.This work is built on what we consider to be the main insight of the BDDexperience: in many situations the indices of rows and columns in matrices arethe outcome of \attenning" of much more structured domains. This atten-ing, which is unavoidable if one wants to draw a matrix on a two-dimensionalsheet of paper, hides the structure of the problem, or at least makes it veryhard to retrieve.9 BDDs and PDGs suggest a way of maintaining this structuralinformation and exploiting it in e�cient computations.Among previous extensions of BDD technology to represent functions fromBn to N (motivated chiey by arithmetical circuits), R and other domains wemention the structure called Multi-terminal BDDs (MTBDD) in [CFM+93] andAlgebraic Decision Diagrams (ADD) in [BFG+93]. This is a straightforward ex-tension of BDDs with leaves having values in non-Boolean domains. Algorithmsfor performing matrix multiplications and other operations on these representa-tions have been proposed and applied, for example, to probabilistic veri�cation[BCG+97]. The main drawback of MTBDDs/ADDs is that they yield a succintrepresentation only if the corresponding vectors and matrices have a lot of iden-tical entries, e.g. sparse matrices having many zeros. In contrast many genericexamples of functions with no interaction between the variables will lead to ex-ponential MTBDDs: for example it is not hard to create probabilities on Bn withall variables mutually-independent, and yet no two elements will have the sameprobability. In fact, the ability to represent functions concisely as decision graphswithout putting any information on the non-leaf nodes is a special property ofBoolean algebra.The above observation has led some researchers in the hardware veri�cationcommunity [VPL96,TP97] to consider extending BDD with values on their edges(which is practically the same as putting values on the nodes, as we do here).This structure is called Edge-valued BDD (EVBDD) and it has been used toencode the so-called Pseudo-Boolean functions which are essentially functionsfrom f0; 1gn to N. EVBDDs contain both additive and multiplicative constantsand in some cases overcome the limitations of MTBDDs. However, since theclass of functions treated by EVBDDs is much less constrained than the class of9 Just compare the non-intuitive de�nition of the Kronecker product (also knownas Tensor product) of two matrices with the straightforward Cartesian product ofautomata.

probabilistic functions, normalization and matrix multiplication are much morecomplicated than the ones reported in this paper.Finally, let us mention another formalism, related to PDGs, the BayesianNetworks which are used extensively in AI [P88,J96]. Like PDGs, Bayesian net-works consist of a graphical representation of variables and their probabilisticdependencies. The comparison between the two formalisms is outside the scopeof this paper, but it seems that PDGs can be viewed as a constrained and well-behaving sub-class of networks, with a special emphasis on the dynamic aspects(next-state probabilities) which makes them, perhaps, more suitable for treatinglarge-scale Markov decision processes.Acknowledgements: We are grateful to Moshe Tennenholz for raising the pos-sibility of applying some veri�cation techniques to AI problems of planning underuncertainty. His visit in Grenoble, in fact, triggered this work. We thank AmirPnueli for many fruitful discussions at various stages of this work, and in partic-ular for the observations concerning causal Markov chains and weighted sum ofidentical sub-trees. Eugene Asarin reminded us of certain facts concerning theconvergence of probabilistic matrix multiplications.References[B86] R.E. Bryant, Graph-based Algorithms for Boolean Function Manipulation,IEEE Trans. on Computers C-35, 677-691, 1986.[BCM+93] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang, Sym-bolic Model-Checking: 1020 States and Beyond, Information and Computa-tion 98, 142-70, 1992.[BDH99] C. Boutilier, T. Dean and S. Hanks, Decision Theoretic Planning: StructuralAssumptions and Computational Leverage, J. of AI Research (to appear).[BFG+93] R.I. Bahar, E.A. Frohm, C.M. Ganoa, G.D. Hachtel, E. Macii, A. Pardoand F. Somenzi, Algebraic Decision Diagrams and their Applications, Proc.ICCAD'93, 188-191, 1993.[BCG+97] C. Baier, E. Clarke, V. Garmhausen-Hartonas, M. Kwiatkowska and M.Ryan, Symbolic Model Checking for Probabilistic Processes, in P. Degano,R. Gorrieri and A. Marchetti-Spaccamela (Eds.), Proc. ICALP'97, 430-440,LNCS 1256, Springer, 1997.[CFM+93] E. M. Clarke, M. Fujita, P. C. McGeer, K. L. Mcmillan and J. C.-Y. Yang,Multi-terminal Binary decision Diagrams: An E�cient Data-structure forMatrix Representation, Proc. ILWS'93, 1-15, 1993.[J96] F.V. Jensen, An Introduction to Bayesian Networks, Springer, 1996.[McM93] K.L. McMillan, Symbolic Model-Checking: an Approach to the State-Explosion problem, Kluwer, 1993.[MT98] C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI De-sign: OBDD - Foundations and Applications, Springer, 1998.[P88] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann,1988.[P94] M.L. Puterman, Markov Decision Processes, Wiley, 1994.[TP97] P. Tafertshofer and M. Pedram, Factored Edge-Valued Binary Decision Di-agrams, Formal Methods in system Design 10, 137-164, 1997.[VPL96] S. B. K. Vrudhula, M. Pedram and Y.-T. Lai, Edge-valued Binary DecisionDiagrams, in T. Sasao and M. Fujita (Eds.), Representations of DiscreteFunctions, 109-132, Kluwer, 1996.

