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Abstract. Conformance testing is still the main industrial validation
technique for telecommunication protocols. The automatic construction
of test cases based on the model approach is hindered by the state ex-
plosion problem. Our method reduces its magnitude by reconsidering
the test case generation at a higher level and by taking advantage of
some static analysis techniques, in particular the slicing techniques. The
specification is simplified by pipelining a set of three modules, each one
implementing a different slicing technique.

Keywords: conformance testing, asynchronous systems, static analysis, slic-
ing, bisimulation

1 Introduction

Conformance testing is a well-established technique for the validation of telecom-
munication protocols. Currently, it is still the main validation technique used
at an industrial scale, given the inherent complexity of more ambitious tech-
niques such as formal verification. Moreover, in the case of protocols, the confor-
mance testing was completely formalized by [22, 7, 15] and is also standardized
within [12]. Test cases can be automatically generated from formal specifications
and tools such as TGV [11], TVEDA [18], AUTOLINK [21] or TORX [2] concretely
implement this activity.

In the model-based approach, test cases are usually constructed by exploring
a synchronous product between the model of the specification and some test pur-
pose, both represented as labeled transition systems. The central problem arising
here is the well known state explosion problem. To deal with it we propose to
reconsider the test generation at a higher level i.e., to work with specifications
and test purposes represented by some kind of extended automata and to per-
form relevant static simplifications before generating test cases. In this paper,
we consider specifications as asynchronously communicating extended automata
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and test purposes as acyclic automata with constraints. We want to generate
tests describing a finite interaction between the tester and the implementation
under test. Moreover, by the fact that the test purpose is an automaton with
constraints, it is possible to generate symbolic tests.

We propose to simplify specifications by means of slicing [23]. A first slicing
consists in taking into account the set of interactions between specification com-
ponents, starting from inputs enabled in the test purpose, and regardless the
signal parameters. We obtain a first reduction of the specification, consisting of
the part of it which is reachable given the enabled inputs. Then, for the second
slicing, we look at the set of variables and parameters which are relevant to
outputs observed by the test purpose and safely discard the others. Finally, the
specification is sliced with respect to constraints attached to the test purpose.
These analyses transform specifications without loss of information with respect
to the test purpose. They are independent of each other and can be implemented
separately. Each of them inputs a specification, performs a slicing on it, and then
outputs a new equivalent one. They can be applied in any order, until no more
reduction can be obtained. Concerning the overall simplification on the initial
specification, our experiments showed very good results.

The idea of using static analysis to improve model checking and test genera-
tion was already being investigated in different contexts. For instance, TVEDA [18]
produces test cases from SDL specifications by performing simple syntactic trans-
formations on them. Slicing is used in the context of automatic generation of
test data for sequential programs. In [13], the authors present an approach to
selective regression testing using slicing. Selective regression approach identifies
the parts of the program that are affected by a change. In [14], slicing is used
for verification purposes, to extract finite-state machines from multi-threaded
programs.

The paper is structured as follows. Section 2 briefly remember the notions of
conformance testing and presents the underlying model. In section 3 we propose
and formalize three new slicing techniques of the specification with respect to
the test purpose. Finally, we give some results in section 4 and we conclude in
section 5.

2 Conformance test case generation

This section reviews some notions of conformance testing and presents the under-
lying model, which is parallel asynchronous processes communicating via queues.

Conformance testing is a black-box testing method, which aims at validating
that the implementations of protocols conform to their specifications. Confor-
mance testing activity is standardized in [12] and work has been done to formalize
it [22]. In this context, our purpose is to generate automatically conformance test
cases for telecommunication protocols.

In the classification of testing architectures from [12, 20], our method is a lo-
cal single-layer test method with synchronous communication between the tester
and the implementation under test (TUT). It is local because in the interactions
between the tester and the 1UT no event caused by the surrounding environment



appears. It is single-layer because we test implementations of specifications or-
ganized in one layer. The tester interacts with the 1UT via some points of control
and observation (PCOs), which, in our case, are seen as external queues of the
specification (see below). The communication at the PCOs is synchronous. This
architecture is pictured in Figure 1.

In order to assure the feasibility of our method (correctness, compatibility
with the industrial practice) we require that the tester, the TUT and the specifi-
cation satisfy some conditions :

1. controllability condition : the tester always controls its outputs and can feed
the specification only at one PCO at the time (therefore, for each state of the
test purpose, whenever an input is enabled, it is the only transition starting
in this state),

2. consistency relation : between the test purpose and the specification (which
ensures that the set of behaviors described by the test purpose is included
in the set of behaviors described by the specification)?,

3. conformance relation : ensures that the outputs of the implementation must
be produced also by the specification.

Specification (SP) Test purpose (TP

J

Implementation under test (IUT) Tester

Fig. 1. Test architecture

2.1 The specification

We consider specifications consisting of asynchronous parallel composition of a
number of processes that communicate through parameterized signals passing via
a set of unbounded fifo queues. We distinguish between internal queues (closed
inside the specification) and external queues (opened to the environment). In the
context of conformance testing with local tester, external queues contents are
controlled by the tester. Then, we make explicit the assumption of synchronicity
between the tester and the TUT. Processes are extended finite-state automata.
They perform actions on queues and local variables. For the sake of simplicity,
the actions are simple guarded commands.

! This assumption is strong, however it can be verified during the test generation
process (as in TGV [10]).



Definition 1 (specification syntax). A specification SP is a tuple (S,C, P)
where S is the set of signals, C = C™ U C*" is the set of queues (internal
and external ones) and P is the set of processes. A process p € P is a tuple
(Xp,Qp,Tp,qg) where X, is a set of local variables, @, is a set of states, X,
is a set of actions which can be performed by p, and T, C Q, X X, X Qp is a
set of transitions. An action can be either a guarded assignment [b] x :=e, a
guarded input [ b ] c?s(x), or a guarded output [ b ] c!s(e). Above, b and e are
expressions, v € X, is a variable, c € C is a queue and s € S is a signal.

We give the semantics of specifications in terms of labeled transition systems.
We assume the existence of the universal domain D which contains the values
of variables and signal parameters. We suppose that the boolean values {t,f}
and also the special undefined 1 value are contained in D. We define variable
contexts as being total mappings p : UpEP X, — D which associate to each
variable x a value v from the domain. We extend these mappings to expressions
in the usual way. We define internal queue contexts as being also total mappings
§ : C™ — (S x D)* which associates to each internal queue ¢ a sequence
(s1,v1), ..., (g, vk ) of messages, that is pairs (s, v) noted also by s(v), where s is
a signal and v is the carried parameter value. We assume also the existence of
some special undefined message 0. The empty sequence is noted with e.

Definition 2 (specification semantics). The semantics of a specification SP
is given by a labeled transition system SP = (@Sp,fsp,qu). States Gsp of this
system are triples of the form (p, 4, 0), where p is a variable context, § is a queue
context and 0 = {(q1,...qn) € XpepQp s a global control state. Transitions are
either internal and labeled with T, when derived from assignments or internal
communication, either visible and labeled with the concrete action when derived
from external communication. Transitions are constructed by the following rules:

[b] z:=e [b] ¢!s(e) ex
ap 1= q, p(b) =t ple) =v g 1="q, p(b) =t ple)=v ce

(p,6,0) 1= (plv/x],6,0") (0.6,0)° 8 (. 6,0

qpmfige)q; p(b) =t ple) =v c€ C™ §(c) =w
(p,6,0) 1 (p, 6[w.s(v)/c],0")
b]j_—) q p(b) =t ce C j.—) @, p(b) =t ce C™ §(c) = s(v).w
(0,6,0) % (p[v/a], 6,0 (p,68.0) 1% (plv/z], 8[w/c].0")

where §' was obtained from 6 by considering one step in process p from gp
to ql',), and the initial state qu is obtained considering the default value of the
variables, empty queues and processes initial states.

2.2 Test purpose

The test purpose is an acyclic finite state automaton which describe a pattern
of interactions between the tester and the 1UT. It is described from the imple-
mentation side i.e., inputs and outputs in the test purpose means respectively



inputs and outputs in the implementation. Tt contains both constrained signal
inputs and unconstrained signal outputs.

A constraint C is a boolean combination of atoms, each of them being a
particular restriction on the used value. For example, we can test the containment
of an element to an interval or to a set of values. The notation v = C stands
for the value v satisfies the constraint €. For a given input of the test purpose,
there is a constraint related to the signal parameter [12]. There are no relational
dependencies between constraints attached to different inputs.

This test purpose definition was inspired by TTCN and has the following

intuition : if the tester provide a signal to the implementation with the value
of its parameter satisfying a constraint then we would like to approximate the
value of outputs parameters.
Definition 3 (test purpose). A test purpose TP is a tuple (Qp, Ttp, q?p, Q°)
where Qi s a set of states, Ty, C Qi X Xy X Qp 15 a set of transitions and
Qi C Qup is a set of accepting states, without successors by Tyy,. Xy, is the set of
interactions oy, which can be fized within the test purpose. This set contains both
constrained signal inputs of the form ¢?s(C) and unconstrained signal outputs of
the form cls(x), where ¢ € C°*' is an external queue and s € S is a signal. C
denotes a generic constraint e.g., interval constraint, on the received value and
* denotes any value.

The feeds are the set of inputs we intend to supply to the 1UT during the
test. Feeds are a parameter completely controlled by the tester. They will be
taken into account during the test case generation process. That is, any external
input in the specification will be enabled if and only if it is contained in the set
of feeds. Intuitively, the set of feeds must cover the set of inputs given in the test
purpose.

Definition 4 (feeds). The feeds X; are a set of constrained signal inputs
{c?s(C) | c € C**t, s € S}.

2.3 Synchronous product

The tests are automatically derived by exploring a kind of synchronous prod-
uct between the model of the specification (QSP,TSP,QEP), the test purpose
(Qip, Tip, 4ty Qfs°), and taking into account the set of feeds Xy = {c?s(C) |
ceC se S}

Definition 5 (synchronous product). We define the synchronous product

H(gﬁ,TP, XY¢) as the labeled transition system (Qx,Tr,q2), with Q. C @Sp X
Qtp, where Qr and T are the smallest sets obtained by the application of the
following rules:

1 ((jspaqtp) € Qw ﬁspi;dgp Qtp ¢ Q?;F
A 0 ~ ~ ~
(q-gp’ qtp) € Q"r (qua Qtp) € Qﬂ' (qu7 qtp)Jj_)(q;pv qtp)




. . c?s(v) . c?s(€)
(qspa Qtp) € Qﬂ' QSp ES q,gp qtp 1= qu v ‘: e

. . c?s(v), .
(@hps aip) € Qr (dsps Gip) 1= (s G1p)

c?s(v

N . )
(Gsps tp) € Qr Gsp 145, c?s(C) € Xy v = C

c?s(v)

(qua Qtp) € Q'rr ((jspa Qtp) 1= (‘j;pa Qtp)

cls(v (*) cls(v) .,

cls N N
(qspa qtp) € QTF QSp 1= q;p qtp 1= qtp (QSpa Qtp) S Q‘I\' QSp 1= qsp

py , R cls(v) e , e R cls(v) y
(quv qf,p) € Q‘I\' (qspa Qtp) 1= (qspa Qf,p) (qspv qtp) S Q‘I\' (qspa qtp) e (qspa qtp)

Ezample 1. The previous definitions are exemplified in Figure 2. The specifica-
tion is composed of two processes which communicate through an internal queue
cl € C'". The external queues of the specification are ci,co € C**. The set of
feeds are Xy = {ci?sr([1,10])}. This example will be used throughout the pa-
per in order to picture the changes of the specification induced by the following
slicing algorithms.

e N N
)

cl?p(n cl?s(n) ci?sr(n
br:=f br:=t clls(n)
z:=0

N AN J
Fig. 2. Example

i ci?sr([1,10])

colsa(*)

ci?sr([1,10])

3 Static analysis for testing

The purpose of static analysis is to compute, given the test purpose and the
feeds, the part of the specification which is relevant to them. We present three
kinds of analyses :

1. the relevant control analysis: restricts the processes contained in the specifi-
cation, to the sets of states and transitions which might be statically reached,
given the set of feeds,

2. the relevant variables analysis: computes and simplifies processes, with re-
spect to variables which might be used to compute values needed for outputs
mentioned in the test purpose and



3. the constraint propagation: aims to further simplify processes, given the con-
crete constraints attached to feeds.

Each one of the analysis takes as input a specification and provides an equiv-
alent one with respect to the test generation method presented below. They
are completely independent and can be applied in any order. Furthermore, they
could be applied iteratively as the code optimization techniques ([17]). The re-
duction obtained by one can be further exploited by another and so on, until no
more reductions are possible.

We detail each one of these analysis below and illustrate them on the example
presented before.

3.1 Relevant control analysis

A conservative approximation for the specification is computed, by taking into
account the set of feeds. We restrict each process to the set of states and tran-
sitions that might be reached given the feeds. Intuitively, this analysis can be
seen as building the largest sub-processes, after the removal of external inputs
uncovered by feeds, and subsequently the internal inputs uncovered by internal
outputs.

Definition 6 (slicing wrt feeds). We define the slice of a specification SP =
(S,C, P) with respect to a set of feeds Xt to be the specification SP\; Xy =
(S,C,P\; Xf), where P\ Xy contains a sliced process p’ for each process
p € P. The slice for a process p = (Xp, Qp, T, qg) € P is defined as the process
p = (Xp,Q;],T[’],qg), with the same sets of variables. The sets of states Q;, C
Qp and transitions T, C T, are defined as the smallest ones which satisfy the
following rules:

[b]r:i—e [blc!s(e)
1 ap € Q;) dp f_) Q;) dp € le qp i_> q;,
0 / blz:= ble!
W € % €Q 0 5 g e Ty % €Qy 0"y e 1y

blc?s(x
qp € Q) qp[ st )q; c e C c?5(C) € Xy

?s(x
g€ Q¢ g ey

7 € Q, qp[b]j_?igz)q; ceCint Elr.qr[b llf!—s>(e)q; eT!

blc?
q, € Q) qp[ ]ii(f)q;) €T}

We must notice here the input/output propagation between processes. That
is, we keep an input inside some process p if and only if there exists some dual
output enabled in some other process r.

The algorithm computing the sliced system proceeds in an iterative manner.
It maintains the sets of states and transitions reached for each process. Initially,
the sets of states contain the initial state of the processes, and the sets of tran-
sitions are empty. Then, at each step, one of the rules before is applied until the
least fixed point is reached and no more rule is applicable.



This algorithm is similar to reachability analysis but it is performed at the
control level.

Ezxample 2. If one applies the previous algorithm for the specification and the
feeds from Figure 2, one obtains the specification shown in Figure 3. The external
input ¢i?pr(n) is uncovered by the feeds so its elimination induces the elimination
of c¢l!p(n) and thus ¢l?p(n) is no more covered by an internal output so it is
eliminated together with br := f.

( N 7

cl?s(m) ci?sr(n)
ci?sr([1,10])
clls(n) o)

ci?sr([1,10])

N J /
Fig. 3. Example slicing wrt feeds

The slicing with respect to feeds preserves the synchronous product, that is,
the following proposition holds.

Proposition 1 (slicing wrt feeds correctness). Let SP = (S,C,P) be a
specification, TP a test purpose and Xy a set of feeds which covers TP. The
synchronous products between the models of SP and respectively SP \; Xy
with the test purpose TP, given the feeds X are strongly bisimilar. That is,

[I(SP,TP,5;) ~T1(SP\; 5}, TP, 5).

3.2 Relevant variables analysis

This calculus is an extension of live variable analysis [4]. It attempts to compute,
for each process, the set of relevant variables in each state. The relevance is
defined with respect to test purpose outputs: a variable will be relevant in a
state if its value at that state might be used to compute the parameter value of
some signal output occurring in the test purpose. Or, similar to the live variables
definition, we consider a variable to be relevant in a state if and only if there
exists a path starting at that state such that the variable is used before being
redefined on the path. But, in our case, we consider a variable to be used only in
external outputs mentioned by the test purpose, or in assignments (eventually
via internal inputs) to relevant variables.



Definition 7 (relevant variables wrt outputs). Let SP = (S,C, P) be a
specification and TP = (Qtp,Ttp,q?p,Q;"If") be a test purpose. Let X, be the
set of signal outputs mentioned in the test purpose. The relevant variables are
defined for each process p = (X, Qp, Tp, qg) € P by a function Rlv, : Qp — 2Xp
mapping states to subsets of variables. The sets Rlv,(gp) for states ¢, € QQp are
defined as the least fized point of the following equation system:

Rlvy(qp) = Utp:qpﬁ,q; Rlv(q;,) \ Defy(ty) UUsep(tp)

where
Defy(ty) = Usep(ty) =
vars(b) Uvars(e)
{z} if tp = qp[blfz—:)eq; and x € Rlv,(q;,)
if tp = qp[blf:—ieq;, ort, = qp[b]jﬂe)q; and

?7s(x)

b s (%
ort, = qp[ 7S ce C and Elqtpcf(—>)qu €Ty, or

. ?
cec C™ and EIr.qTCJ_S(—J;)q; €T, and

0 otherwise z € Rlv, (q.)
vars(b) otherwise

%

The relevant variables are computed simultaneously for all processes. The
algorithm operates in a backward manner on the control graphs. It starts with
empty sets of variables for each state, and at each step one transition is analyzed:
the set of used variables is recomputed in the current context and then, the
relevant variables set for the source state is updated. The algorithms ends when
the least fixed point is reached and no more change in the relevance sets occurs
for any of the transitions.

For this analysis too, we notice that the relevance of variables is propagated
interprocesses. In fact, variables used in expressions sent through internal chan-
nels will become relevant only if, at the destination side their value is further
relevant.

The slicing with respect to relevant variables attempts to reduce the num-
ber of variables used inside processes. Concretely, we cut off all the definitions
assigning irrelevant variables. Irrelevant variables used in inputs are replaced by
some special, don’t care, variable T. Finally, expressions occurring in unused
outputs are replaced by the undefined value 1. This transformation is formally
described below.

Definition 8 (slicing wrt outputs). Let SP = (S,C, P) be a specification
and TP be a test purpose. We define the slice of the specification SP given
the relevant variables computed wrt outputs to be the specification SP\, X, =
(S,C, P\, X,), where P\, X, contains a sliced process p' for each process
p € P. The slice for a process p = (Xp,Qp,Tp,qg) is defined as a process
P = (X}, Qp T}, qg) which has the same set of states and the same initial state,



but operates only on relevant variables. We put X, =, . Rlvy(qp) and tran-
sitions TI') are constructed from T, such that they do not more define irrelevant
variables :

[blz:=e [blz:=e
4 1= 'q, = €Rlvy(q)) ¢ 1 q, =& Rlvy(q))

blz:=e bl T
g 5 e Ty g 15, € T

blc?s(x blc?s(x
qp[ 1§75 )q; r € Rlvy(q;,) qp[ it )q; r ¢ Rlvy(q),)

g 50 e Ty g g e
ig( )q' Use(c!s) b]i—> q, —Use(cls)
p
oy e Ty o g e

where Use(cls) = Elqtpr g(—>)q£p € Typ or 3r.g, J_(—>) 4

denote the global utility of outputs of the form c!s.

€ T, and z € Rlv,.(q,.)

Ezample 3. The slicing wrt outputs algorithm, applied for the specification and
the test purpose from Figure 3, produces the specification shown in Figure 4.
The transitions labeled y := 1 and y := y x ¢ are relabeled with 7 and the output
co'pa(y) become colpa(L) because —Use(colpa).

s N N

cl?s(n) ci?sr(n)
ci?sr([1,10])
clls(n) o)

ci?sr([1,10])

\ J U J
Fig. 4. Example slicing wrt outputs

Intuitively, the slicing wrt relevant outputs preserves the model of the speci-
fication up to concrete values carried by signals not observed in the test purpose.
We define the renaming of the specification model SP with respect to the set of
output actions X, in the following way: each visible output action ¢!s(v) which
is not specified by the test purpose i.e., cls(x) € X, is renamed into c!s(L). The
other actions are left unchanged. In this way, we left out the exact parameter
values for outputs, other than ones occurring in the test purpose. We note the
renamed model with SP 1 X,. The following proposition holds.



Proposition 2 (slicing wrt outputs correctness). Let SP = (S,C, P) be
a specification and TP = (Qtp.,ﬂp,q?p,Q%“). The model of SP renamed with
respect to the observable outputs X, and respectively the model of SP\, X, are

strongly bisimilar, that is, SP 32X~ SP/\D\ED.

A final remark concerns a more general utility of relevant variables. In fact,
we tried here to exploit them at a purely syntactic level e.g., by eliminating
the irrelevant ones and their dependencies in the specification. However, it is
possible to take them into account in a deeper manner. For instance, using a
technique similar to [4], one can reinitialize them with a default value as soon
as they become irrelevant, thereby achieving a bisimilar reduced model.

3.3 Constraint propagation

This section provides an approach to simplify the specification, using the con-
straints imposed on the feeds and the inputs of the test purpose. First, these
constraints will be attached to possible matching inputs. Then, by using some in-
tra/interprocesses data flow analysis algorithms, the constraints are propagated
in the specification. Thus, for each control state, a conservative approximation
of the set of possible values for each variable is computed. Finally, this informa-
tion is used to evaluate the transitions guards and to eliminate those ones never
firable.

In the following we will sketch the constraint propagation problem and how
to solve it. It is a data flow analysis problem whose basic components are :

1. the flow graph is composed of the states and the transitions of each process
and some auxiliary constructions in order to simulate the internal queues,

. the complete powerset lattice of D, the constraints being some of its elements,

. the class of transfer functions Tmnsfertp, for each transition %,,.

4. the confluence functions | |, one for each state.

W N

Let us observe that by choosing the constraints to be the elements of 2 we
have ensured the possibility of testing the emptiness of a constraint and also the
possibility of having a partial order among them.

In order to define the transfer functions for transitions, one has to ensure
that the actions of transitions (assignments and arithmetic operations) can be
realized with constraints (that is, with set of values of D instead of only one
value of D). This requirement is fulfilled by defining the operations with set of
values similarly as in the interval arithmetic [19].

Having seen what are the basic requirements and an approach to fulfill them,
the definition of constraint propagation problem follows below.

Definition 9 (constraint propagation). Let SP = (S,C, P) be the specifi-
cation and Xy the set of feeds. Constraints are represented, for each process,
as a function Val : Q, — 20 With the notations presented before, the con-
straint propagation problem is defined as finding the least fiz point solution of
the following equation system:



Val(q)) = |—|f,,,:q,,i>q;, Tmnsfertp(Val(qp))

In order to solve this problem we have considered the cases where constraints
are expressed by means of constants and by integer intervals. This is due to the
fact that in TTCN [12] the constraints have this kind of simple forms. The formal
framework defined above is applicable in these cases, using the Galois connection,
a classical abstract interpretation technique [8].

The algorithm used for solving the constraint propagation problem in the
case of the lattice of constants is the classical iterative algorithm from [16] with
an interprocesses variant such as [9]. In the case of the integer intervals lattice,
due to the fact that it has infinite height, we use for each process a widening
technique as in [3].

The results of the constraint propagation problem are used in simplifying
the specification by means of slicing. However, they also allow, for the outgoing
output transitions of a control state, to have a conservative approximation of the
parameters of the signals, thereby enabling generation of symbolic test cases.

Definition 10 (slicing wrt constraints). Let SP = (S,C, P) be a specifica-
tion and Xy a set of feeds. We define the slice of the specification SP given the
constraints computed wrt feeds to be the specification SP\.X; = (S,C,P\. X}),
where P \. X contains a sliced process p' for each process p € P. The slice
for a process p = (Xp,Qp,Tp,qg) is defined as a process p' = (Xp, ;,T;,qg),
which operates on the same set of variables X,,. The sets of states Q; C @y and
transitions Trlw C T, are the smallest ones which satisfy the following rules:

n ap € Q) tp = qp 154, Transfer, (Val,(q,)) # 0
qQ € Q, @€ Q) ty =q,15q, €T

Ezxzample 4. The slicing wrt constraints algorithm, applied for the specification
and the test purpose from Figure 4, produces the specification shown in Figure
5. The value t for br is propagated to the source state of the transition with the
guard [—br] and thus determining that this transition and the following colpa(L)
will be never fired. These transitions are detached from the specification. The
constraint propagation problem, in this case, given the feed ¢i?sr([1,10]), pro-
vides for the parameter z in the transition colsa(x) the interval [1,100].

We have the following preservation result.

Proposition 3 (slicing wrt constraints correctness). Let SP = (S,C, P)
be a specification, TP = (Qtp,Ttp,q?p,ngfc) and X; a set of feeds which
cover T'P. The synchronous product between the models of SP and respectively

SP\. X with the test purpose given the feeds Xy are strongly bisimilar, that is
[1(SP, TP, 5¢) ~ T1(SP\e £4, TP, 5y)

4 Experimentation

These techniques were implemented and currently we are experimenting with
them on some case studies. We use the 1F [5] framework, which is an interme-
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Fig. 5. Example slicing wrt constraints

diate program representation for protocols, based on asynchronously communi-
cating timed automata. IF was designed right from the beginning to support the
application of static analysis techniques used in compiler optimization [1,17].

The techniques presented before were applied to improve test case generation
for the sscop protocol [6], a layer from the ATM protocols stack. Previous work
was already done on it in the context of the FORMA research action [6] and
despite its success, it shows also the limitations of the existing test generation
technology. We were interested to see what are the concrete benefits of our add-
ons.

We started with an SDL version of the protocol provided by CNET France
Telecom. Tt is about 2000 lines of code which describes the whole protocol as
a single SDL process. It was translated into an IF extended automaton, with
1075 states, 1291 transitions and 134 variables. We considered 10 test purposes
conceived for different phases of the protocol (connection, data transmission).
The results obtained using previous analysis are summarized below:

slicing wrt feeds: By carefully choosing the appropriate set of feeds for each
test purpose, we obtained reductions up to 80% of the specification. That is,
we started usually with the smallest set of feeds covering the test purpose in-
puts. This choice is often too restrictive i.e., test cases cannot be constructed
from the model of sliced specification. Thus, we iteratively added other in-
puts to the feeds until the model became sufficiently large to cover the test
purpose behavior. In this way, we are able to work on some minimal version
of the specification, still allowing the generation of test cases.

slicing wrt outputs: This analysis gives very good results too. When applied
on the sliced specification wrt to feeds, it reduces the number of variables up
to 40%. More generally, for the SSCOP protocol we obtained, in average, that,
from total number of variables, 30% are relevant with respect to outputs,
while the maximum reaches 60%. Also, when used at the model generation
time, the relevant variables still allow important reductions on the number
of model states and transitions.



constraint propagation: The constraint propagation is still under develop-
ment. At this time, we experimented only the constant propagation algo-
rithm. The results obtained are good, mainly when the test purpose and the
feeds contains punctual constraints i.e., the values provided in test purpose
inputs are fixed at some constants. We work currently to adapt the interval
propagation algorithm.

These results are very encouraging. However, given the particular nature
of the sscoP protocol, we need further experimentations to clearly set up our
techniques. We will consider experimentations for interprocesses slicing and the
interaction between the three slicing techniques.

5 Conclusion and future work

In this paper, we show that automatic test generation can take advantages of
static analysis. Our test generation method, derived from the so-called on the fly
model checking, consists in traversing a product defined between the specification
and the test purpose. Before test generation, simplifications may be made on the
specification, by collecting informations on the test purposes.

Our general approach to define static analysis is based on the following
considerations and remarks. The specification is a set of extended automata,
asynchronously communicating via a set of queues. The test purpose is also an
extended automaton with constraints. In the context of test generation, we dis-
tinguish between inputs and outputs. The static analysis we define transform
specifications into others, smaller ones, without loss of information with respect
to test purpose. This approach is compatible with the standard definition of
conformance testing.

In this work, we proposed three kinds of slicing, based on different analysis.
The first one consists in restricting each automaton, starting from the set of feeds.
It includes the propagation through the dependence relation between the input
of a process and the outputs of the others process. The second analysis computes
the set of variables, necessary to determine values occurring into the outputs,
and safely discards the others. The last analysis is the constraint propagation.

We have shown that the combination of these three interprocesses analyses
may reduce the specification. We have implemented these analysis in the context
of 1F tools and we obtain very good results on the SSCOP protocol.

Our results can be further extended in several directions. Firstly, we aim at
experimenting more systematically the static analysis in the context of test case
generation for industrial protocols. The results on SSCOP were very encouraging
but other experimentations are further needed to conclude the practical use of
our techniques.

At short term too, we plan to extend these analysis techniques to work on
timed specifications. In fact, the generated test cases usually uses timers, which
are set and test to more or less arbitrarily values in order to observe deadlocks
or livelocks in the implementation. However, a more fine analysis can be done
on timed specifications to obtain relevant values to be used in this context.



A more speculative direction concerns the generation of symbolic tests. In
this respect, we are currently thinking about the appropriate extension for the
test purposes concept. For instance, the explicit use of variables in addition
to constraints can make them much more expressive. Furthermore, it may be
interesting to reconsider the definition of the synchronous product i.e., to be
done at a higher level in such a way that it will allow the derivation of symbolic
test cases.
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