Marius Bozga
email: marius.bozga@imag.fr

Jean-Claude Fernandez
email: claude.fernandez@imag.fr

Lucian Ghirvu
email: lucian.ghirvu@imag.fr

Using Static Analysis To Improve Automatic Test Generation

Keywords: conformance testing, asynchronous systems, static analysis, slicing, bisimulation

Conformance testing is still the main industrial validation technique for telecommunication protocols. The automatic construction of test cases based on the model approach is hindered by the state explosion problem. Our method reduces its magnitude by reconsidering the test case generation at a higher level and by taking advantage of some static analysis techniques, in particular the slicing techniques. The speci cation is simpli ed by pipelining a set of three modules, each one implementing a di erent slicing technique.

Introduction

Conformance testing is a well-established technique for the validation of telecommunication protocols. Currently, it is still the main validation technique used at an industrial scale, given the inherent complexity of more ambitious techniques such as formal veri cation. Moreover, in the case of protocols, the conformance testing was completely formalized by [START_REF] Tretmans | A Formal Approach to Conformance Testing[END_REF][START_REF] Brinksma | A Formal Approach to Conformance Testing[END_REF][START_REF]Information Retrieval, Transfer and Management for OSI; Framework: Formal Methods in Conformance Testing[END_REF] and is also standardized within 12]. Test cases can be automatically generated from formal speci cations and tools such as tgv 11], tveda 18], autolink 21] or torx 2] concretely implement this activity.

In the model-based approach, test cases are usually constructed by exploring a synchronous product between the model of the speci cation and some test purpose, both represented as labeled transition systems. The central problem arising here is the well known state explosion problem. To deal with it we propose to reconsider the test generation at a higher level i.e., to work with speci cations and test purposes represented by some kind of extended automata and to perform relevant static simpli cations before generating test cases. In this paper, we consider speci cations as asynchronously communicating extended automata and test purposes as acyclic automata with constraints. We want to generate tests describing a nite interaction between the tester and the implementation under test. Moreover, by the fact that the test purpose is an automaton with constraints, it is possible to generate symbolic tests.

We propose to simplify speci cations by means of slicing 23]. A rst slicing consists in taking into account the set of interactions between speci cation components, starting from inputs enabled in the test purpose, and regardless the signal parameters. We obtain a rst reduction of the speci cation, consisting of the part of it which is reachable given the enabled inputs. Then, for the second slicing, we look at the set of variables and parameters which are relevant to outputs observed by the test purpose and safely discard the others. Finally, the speci cation is sliced with respect to constraints attached to the test purpose. These analyses transform speci cations without loss of information with respect to the test purpose. They are independent of each other and can be implemented separately. Each of them inputs a speci cation, performs a slicing on it, and then outputs a new equivalent one. They can be applied in any order, until no more reduction can be obtained. Concerning the overall simpli cation on the initial speci cation, our experiments showed very good results.

The idea of using static analysis to improve model checking and test generation was already being investigated in di erent contexts. For instance, tveda 18] produces test cases from sdl speci cations by performing simple syntactic transformations on them. Slicing is used in the context of automatic generation of test data for sequential programs. [START_REF] Gupta | Program Slicing-Based Regression Testing Techniques[END_REF], the authors present an approach to selective regression testing using slicing. Selective regression approach identi es the parts of the program that are a ected by a change. In 14], slicing is used for veri cation purposes, to extract nite-state machines from multi-threaded programs.

The paper is structured as follows. Section 2 brie y remember the notions of conformance testing and presents the underlying model. In section 3 we propose and formalize three new slicing techniques of the speci cation with respect to the test purpose. Finally, we give some results in section 4 and we conclude in section 5.

Conformance test case generation

This section reviews some notions of conformance testing and presents the underlying model, which is parallel asynchronous processes communicating via queues.

Conformance testing is a black-box testing method, which aims at validating that the implementations of protocols conform to their speci cations. Conformance testing activity is standardized in 12] and work has been done to formalize it 22]. In this context, our purpose is to generate automatically conformance test cases for telecommunication protocols.

In the classi cation of testing architectures from 12, 20], our method is a local single-layer test method with synchronous communication between the tester and the implementation under test (iut). It is local because in the interactions between the tester and the iut no event caused by the surrounding environment appears. It is single-layer because we test implementations of speci cations organized in one layer. The tester interacts with the iut via some points of control and observation (pcos), which, in our case, are seen as external queues of the speci cation (see below). The communication at the pcos is synchronous. This architecture is pictured in Figure 1.

In order to assure the feasibility of our method (correctness, compatibility with the industrial practice) we require that the tester, the iut and the specication satisfy some conditions :

1. controllability condition : the tester always controls its outputs and can feed the speci cation only at one pco at the time (therefore, for each state of the test purpose, whenever an input is enabled, it is the only transition starting in this state), 2. consistency relation : between the test purpose and the speci cation (which ensures that the set of behaviors described by the test purpose is included in the set of behaviors described by the speci cation)1 , 3. conformance relation : ensures that the outputs of the implementation must be produced also by the speci cation.

The speci cation

We consider speci cations consisting of asynchronous parallel composition of a number of processes that communicate through parameterized signals passing via a set of unbounded fo queues. We distinguish between internal queues (closed inside the speci cation) and external queues (opened to the environment). In the context of conformance testing with local tester, external queues contents are controlled by the tester. Then, we make explicit the assumption of synchronicity between the tester and the iut. Processes are extended nite-state automata. They perform actions on queues and local variables. For the sake of simplicity, the actions are simple guarded commands.

De nition 1 (speci cation syntax). A speci cation SP is a tuple (S; C; P) where S is the set of signals, C = C int C ext is the set of queues (internal and external ones) and P is the set of processes. A process p 2 P is a tuple (X p ; Q p ; T p ; q 0 p) where X p is a set of local variables, Q p is a set of states, p is a set of actions which can be performed by p, and T p Q p p Q p is a set of transitions. An action can be either a guarded assignment b] x := e, a guarded input b] c?s(x), or a guarded output b] c!s(e). Above, b and e are expressions, x 2 X p is a variable, c 2 C is a queue and s 2 S is a signal.

We give the semantics of speci cations in terms of labeled transition systems.

We assume the existence of the universal domain D which contains the values of variables and signal parameters. We suppose that the boolean values ft; fg and also the special unde ned ? value are contained in D. We de ne variable contexts as being total mappings : S p2P X p ! D which associate to each variable x a value v from the domain. We extend these mappings to expressions in the usual way. We de ne internal queue contexts as being also total mappings : C int ! (S D) which associates to each internal queue c a sequence (s 1 ; v 1); :::; (s k ; v k) of messages, that is pairs (s; v) noted also by s(v), where s is a signal and v is the carried parameter value. We assume also the existence of some special unde ned message . The empty sequence is noted with .

De nition 2 (speci cation semantics). The semantics of a speci cation SP is given by a labeled transition system d SP = (b Q sp ; b T sp ; q0 sp). States qsp of this system are triples of the form (; ;), where is a variable context, is a queue context and = hq 1 ; :::q n i 2 p2P Q p is a global control state. Transitions are either internal and labeled with , when derived from assignments or internal communication, either visible and labeled with the concrete action when derived from external communication. Transitions are constructed by the following rules: q p b] x:=e ?! q 0 p (b) = t (e) = v (; ;) ?!(v=x]; ; 0) q p b] c!s(e) ?! q 0 p (b) = t (e) = v c 2 C ext (; ;) c!s(v) ?! (; ; 0) q p b] c!s(e)

?! q 0 p (b) = t (e) = v c 2 C int (c) = w (; ;) ?!(; w:s

(v)=c]; 0) q p b] c?s(x) ?! q 0 p (b) = t c 2 C ext (; ;) c?s(v) ?! (v=x]; ; 0) q p b] c?s(x) ?! q 0 p (b) = t c 2 C int (c) = s(v):w (; ;) ?!(v=x]; w=c]; 0)
where 0 was obtained from by considering one step in process p from q p to q 0 p , and the initial state q0 sp is obtained considering the default value of the variables, empty queues and processes initial states.

Test purpose

The test purpose is an acyclic nite state automaton which describe a pattern of interactions between the tester and the iut. It is described from the implementation side i.e., inputs and outputs in the test purpose means respectively inputs and outputs in the implementation. It contains both constrained signal inputs and unconstrained signal outputs.

A constraint C is a boolean combination of atoms, each of them being a particular restriction on the used value. For example, we can test the containment of an element to an interval or to a set of values. The notation v j = C stands for the value v satis es the constraint C. For a given input of the test purpose, there is a constraint related to the signal parameter 12]. There are no relational dependencies between constraints attached to di erent inputs.

This test purpose de nition was inspired by ttcn and has the following intuition : if the tester provide a signal to the implementation with the value of its parameter satisfying a constraint then we would like to approximate the value of outputs parameters.

De nition 3 (test purpose).

A test purpose TP is a tuple (Q tp ; T tp ; q 0 tp ; Q acc tp) where Q tp is a set of states, T tp Q tp tp Q tp is a set of transitions and Q acc tp Q tp is a set of accepting states, without successors by T tp . tp is the set of interactions tp which can be xed within the test purpose. This set contains both constrained signal inputs of the form c?s(C) and unconstrained signal outputs of the form c!s(), where c 2 C ext is an external queue and s 2 S is a signal. C denotes a generic constraint e.g., interval constraint, on the received value and denotes any value.

The feeds are the set of inputs we intend to supply to the iut during the test. Feeds are a parameter completely controlled by the tester. They will be taken into account during the test case generation process. That is, any external input in the speci cation will be enabled if and only if it is contained in the set of feeds. Intuitively, the set of feeds must cover the set of inputs given in the test purpose.

De nition 4 (feeds). The feeds f are a set of constrained signal inputs fc?s(C) j c 2 C ext ; s 2 Sg.

Synchronous product

The tests are automatically derived by exploring a kind of synchronous product between the model of the speci cation (b Q sp ; b T sp ; q0 sp), the test purpose (Q tp ; T tp ; q 0 tp ; Q acc tp), and taking into account the set of feeds f = fc?s(C) j c 2 C ext ; s 2 Sg. De nition 5 (synchronous product). We de ne the synchronous product Q (d SP; TP; f) as the labeled transition system (Q ; T ; q 0), with Q b Q sp Q tp , where Q and T are the smallest sets obtained by the application of the following rules: ? (q 0 sp ; q 0 tp) 2 Q (q sp ; q tp) 2 Q qsp ?!q 0 sp q tp 6 2 Q acc tp (q 0 sp ; q tp) 2 Q (q sp ; q tp) ?!(q 0 sp ; q tp) (q sp ; q tp) 2 Q qsp c?s(v)

?! q0 sp q tp c?s(C) ?! q 0 tp v j = C (q 0 sp ; q 0 tp) 2 Q (q sp ; q tp) c?s(v) ?! (q 0 sp ; q 0 tp) (q sp ; q tp) 2 Q qsp c?s(v)

?! q0 sp c?s(C) 2 f v j = C (q 0 sp ; q tp) 2 Q (q sp ; q tp) c?s(v) ?! (q 0 sp ; q tp) (q sp ; q tp) 2 Q qsp c!s(v) ?! q0 sp q tp c!s() ?! q 0 tp (q 0 sp ; q 0 tp) 2 Q (q sp ; q tp) c!s(v) ?! (q 0 sp ; q 0 tp)

(q sp ; q tp) 2 Q qsp c!s(v)
?! q0 sp (q 0 sp ; q tp) 2 Q (q sp ; q tp) c!s(v) ?! (q 0 sp ; q tp) Example 1. The previous de nitions are exempli ed in Figure 2. The speci cation is composed of two processes which communicate through an internal queue cl 2 C int . The external queues of the speci cation are ci; co 2 C ext . The set of feeds are f = fci?sr(1; 10])g. This example will be used throughout the paper in order to picture the changes of the speci cation induced by the following slicing algorithms. The purpose of static analysis is to compute, given the test purpose and the feeds, the part of the speci cation which is relevant to them. We present three kinds of analyses : 1. the relevant control analysis: restricts the processes contained in the specication, to the sets of states and transitions which might be statically reached, given the set of feeds, 2. the relevant variables analysis: computes and simpli es processes, with respect to variables which might be used to compute values needed for outputs mentioned in the test purpose and 3. the constraint propagation: aims to further simplify processes, given the concrete constraints attached to feeds. Each one of the analysis takes as input a speci cation and provides an equivalent one with respect to the test generation method presented below. They are completely independent and can be applied in any order. Furthermore, they could be applied iteratively as the code optimization techniques [START_REF] Muchnick | Advanced Compiler Design Implementation[END_REF]). The reduction obtained by one can be further exploited by another and so on, until no more reductions are possible.

We detail each one of these analysis below and illustrate them on the example presented before.

Relevant control analysis

A conservative approximation for the speci cation is computed, by taking into account the set of feeds. We restrict each process to the set of states and transitions that might be reached given the feeds. Intuitively, this analysis can be seen as building the largest sub-processes, after the removal of external inputs uncovered by feeds, and subsequently the internal inputs uncovered by internal outputs.

De nition 6 (slicing wrt feeds). We de ne the slice of a speci cation SP = (S; C; P) with respect to a set of feeds f to be the speci cation SP n f f = (S; C; P n f f), where P n f f contains a sliced process p 0 for each process p 2 P. The slice for a process p = (X p ; Q p ; T p ; q 0 p) 2 P is de ned as the process p 0 = (X p ; Q 0 p ; T 0 p ; q 0 p), with the same sets of variables. The sets of states Q 0 p Q p and transitions T 0 p T p are de ned as the smallest ones which satisfy the following rules: ? q 0 p 2 Q 0 p q p 2 Q 0 p q p b]x:=e ?! q 0 p q 0 p 2 Q 0 p q p b]x:=e ?! q 0 p 2 T 0 p q p 2 Q 0 p q p b]c!s(e)

?! q 0 p q 0 p 2 Q 0 p q p b]c!s(e)

?! q 0 p 2 T 0 p q p 2 Q 0 p q p b]c?s(x)

?! q 0 p c 2 C ext c?s(C) 2 f q 0 p 2 Q 0 p q p b]c?s(x)

?! q 0 p 2 T 0 p q p 2 Q 0 p q p b]c?s(x)

?! q 0 p c 2 C int 9r:q r b 0]c!s(e)

?! q 0 r 2 T 0 r q 0 p 2 Q 0 p q p b]c?s(x)

?! q 0 p 2 T 0 p We must notice here the input/output propagation between processes. That is, we keep an input inside some process p if and only if there exists some dual output enabled in some other process r.

The algorithm computing the sliced system proceeds in an iterative manner. It maintains the sets of states and transitions reached for each process. Initially, the sets of states contain the initial state of the processes, and the sets of transitions are empty. Then, at each step, one of the rules before is applied until the least xed point is reached and no more rule is applicable. This algorithm is similar to reachability analysis but it is performed at the control level.

Example 2. If one applies the previous algorithm for the speci cation and the feeds from Figure 2, one obtains the speci cation shown in Figure 3. The external input ci?pr(n) is uncovered by the feeds so its elimination induces the elimination of cl!p(n) and thus cl?p(n) is no more covered by an internal output so it is eliminated together with br := f. The slicing with respect to feeds preserves the synchronous product, that is, the following proposition holds.

Proposition 1 (slicing wrt feeds correctness). Let SP = (S; C; P) be a speci cation, TP a test purpose and f a set of feeds which covers TP. The synchronous products between the models of SP and respectively SP n f f with the test purpose TP, given the feeds f are strongly bisimilar. That is, Q (d SP; TP; f) Q (\ SP n f f ; TP; f).

Relevant variables analysis

This calculus is an extension of live variable analysis 4]. It attempts to compute, for each process, the set of relevant variables in each state. The relevance is de ned with respect to test purpose outputs: a variable will be relevant in a state if its value at that state might be used to compute the parameter value of some signal output occurring in the test purpose. Or, similar to the live variables de nition, we consider a variable to be relevant in a state if and only if there exists a path starting at that state such that the variable is used before being rede ned on the path. But, in our case, we consider a variable to be used only in external outputs mentioned by the test purpose, or in assignments (eventually via internal inputs) to relevant variables. De nition 7 (relevant variables wrt outputs). Let SP = (S; C; P) be a speci cation and TP = (Q tp ; T tp ; q 0 tp ; Q acc tp) be a test purpose. Let o be the set of signal outputs mentioned in the test purpose. The relevant variables are de ned for each process p = (X p ; Q p ; T p ; q 0 p) 2 P by a function Rlv p : Q p ! 2 X p mapping states to subsets of variables. The sets Rlv p (q p) for states q p 2 Q p are de ned as the least xed point of the following equation system: Rlv p (q p) = S t p :q p ?!q 0 p Rlv(q 0 p) n Def p (t p) Use p (t p)

where

Def p (t p) = Use p (t p) = 8 > > > > > < > > > > > : fxg if t p = q p b]x:=e ?! q 0 p or t p = q p b]c?s(x) ?! q 0 p ; otherwise 8 > > > > > > > > > > > < > > > > > > > > > > > :
vars(b) vars(e) if t p = q p b]x:=e ?! q 0 p and x 2 Rlv p (q 0 p) or t p = q p b]c!s(e)

?! q 0 p and c 2 C ext and 9q tp c!s() ?! q 0 tp 2 T tp or c 2 C int and 9r:q r c?s(x) ?! q 0 r 2 T r and x 2 Rlv r (q 0 r)

vars(b) otherwise

The relevant variables are computed simultaneously for all processes. The algorithm operates in a backward manner on the control graphs. It starts with empty sets of variables for each state, and at each step one transition is analyzed: the set of used variables is recomputed in the current context and then, the relevant variables set for the source state is updated. The algorithms ends when the least xed point is reached and no more change in the relevance sets occurs for any of the transitions.

For this analysis too, we notice that the relevance of variables is propagated interprocesses. In fact, variables used in expressions sent through internal channels will become relevant only if, at the destination side their value is further relevant.

The slicing with respect to relevant variables attempts to reduce the number of variables used inside processes. Concretely, we cut o all the de nitions assigning irrelevant variables. Irrelevant variables used in inputs are replaced by some special, don't care, variable >. Finally, expressions occurring in unused outputs are replaced by the unde ned value ?. This transformation is formally described below.

De nition 8 (slicing wrt outputs). Let SP = (S; C; P) be a speci cation and TP be a test purpose. We de ne the slice of the speci cation SP given the relevant variables computed wrt outputs to be the speci cation SP n o o = (S; C; P n o o), where P n o o contains a sliced process p 0 for each process p 2 P. The slice for a process p = (X p ; Q p ; T p ; q 0 p) is de ned as a process p 0 = (X 0 p ; Q p ; T 0 p ; q 0 p) which has the same set of states and the same initial state, but operates only on relevant variables. We put X 0 p = S q p 2Q p Rlv p (q p) and transitions T 0 p are constructed from T p such that they do not more de ne irrelevant variables : q p b]x:=e ?! q 0 p x 2 Rlv p (q 0 p) q p b]x:=e ?! q 0 p 2 T 0 p q p b]x:=e ?! q 0 p x 6 2 Rlv p (q 0 p) q p b]

?!q 0 p 2 T 0 p q p b]c?s(x)

?! q 0 p x 2 Rlv p (q 0 p) q p b]c?s(x)

?! q 0 p 2 T 0 p q p b]c?s(x)

?! q 0 p x 6 2 Rlv p (q 0 p)

q p b]c?s(>) ?! q 0 p 2 T 0 p q p b]c!s(e) ?! q 0 p Use(c!s) q p b]c!s(e) ?! q 0 p 2 T 0 p q p b]c!s(e)
?! q 0 p :Use(c!s) q p b]c!s(?) ?! q 0 p 2 T 0 p where Use(c!s) = 9q tp c!s() ?! q 0 tp 2 T tp or 9r:q r c?s(x)

?! q 0 r 2 T r and x 2 Rlv r (q 0 r)

denote the global utility of outputs of the form c!s.

Example 3. The slicing wrt outputs algorithm, applied for the speci cation and the test purpose from Figure 3, produces the speci cation shown in Figure 4.

The transitions labeled y := 1 and y := y i are relabeled with and the output co!pa(y) become co!pa(?) because :Use(co!pa). Proposition 2 (slicing wrt outputs correctness). Let SP = (S; C; P) be a speci cation and TP = (Q tp ; T tp ; q 0 tp ; Q acc tp). The model of SP renamed with respect to the observable outputs o and respectively the model of SP n o o are strongly bisimilar, that is, d SP # o \ SP n o o .

A nal remark concerns a more general utility of relevant variables. In fact, we tried here to exploit them at a purely syntactic level e.g., by eliminating the irrelevant ones and their dependencies in the speci cation. However, it is possible to take them into account in a deeper manner. For instance, using a technique similar to 4], one can reinitialize them with a default value as soon as they become irrelevant, thereby achieving a bisimilar reduced model.

Constraint propagation

This section provides an approach to simplify the speci cation, using the constraints imposed on the feeds and the inputs of the test purpose. First, these constraints will be attached to possible matching inputs. Then, by using some intra/interprocesses data ow analysis algorithms, the constraints are propagated in the speci cation. Thus, for each control state, a conservative approximation of the set of possible values for each variable is computed. Finally, this information is used to evaluate the transitions guards and to eliminate those ones never rable.

In the following we will sketch the constraint propagation problem and how to solve it. It is a data ow analysis problem whose basic components are :

1. the ow graph is composed of the states and the transitions of each process and some auxiliary constructions in order to simulate the internal queues, 2. the complete powerset lattice of D, the constraints being some of its elements, 3. the class of transfer functions Transfer t p , for each transition t p .

4. the con uence functions F , one for each state.

Let us observe that by choosing the constraints to be the elements of 2 D we have ensured the possibility of testing the emptiness of a constraint and also the possibility of having a partial order among them.

In order to de ne the transfer functions for transitions, one has to ensure that the actions of transitions (assignments and arithmetic operations) can be realized with constraints (that is, with set of values of D instead of only one value of D). This requirement is ful lled by de ning the operations with set of values similarly as in the interval arithmetic 19].

Having seen what are the basic requirements and an approach to ful ll them, the de nition of constraint propagation problem follows below.

De nition 9 (constraint propagation). Let SP = (S; C; P) be the specication and f the set of feeds. Constraints are represented, for each process, as a function Val : Q p ! 2 D . With the notations presented before, the constraint propagation problem is de ned as nding the least x point solution of the following equation system:

Val(q 0 p) = F t p :q p ?!q 0 p Transfer t p (Val(q p)) In order to solve this problem we have considered the cases where constraints are expressed by means of constants and by integer intervals. This is due to the fact that in ttcn 12] the constraints have this kind of simple forms. The formal framework de ned above is applicable in these cases, using the Galois connection, a classical abstract interpretation technique 8].

The algorithm used for solving the constraint propagation problem in the case of the lattice of constants is the classical iterative algorithm from 16] with an interprocesses variant such as 9]. In the case of the integer intervals lattice, due to the fact that it has in nite height, we use for each process a widening technique as in 3].

The results of the constraint propagation problem are used in simplifying the speci cation by means of slicing. However, they also allow, for the outgoing output transitions of a control state, to have a conservative approximation of the parameters of the signals, thereby enabling generation of symbolic test cases.

De nition 10 (slicing wrt constraints). Let SP = (S; C; P) be a speci cation and f a set of feeds. We de ne the slice of the speci cation SP given the constraints computed wrt feeds to be the speci cation SP n c f = (S; C; P n c f), where P n c f contains a sliced process p 0 for each process p 2 P. The slice for a process p = (X p ; Q p ; T p ; q 0 p) is de ned as a process p 0 = (X p ; Q 0 p ; T 0 p ; q 0 p), which operates on the same set of variables X p . The sets of states Q 0 p Q p and transitions T 0 p T p are the smallest ones which satisfy the following rules: ? q 0 p 2 Q 0 p q p 2 Q 0 p t p = q p ?!q 0 p Transfer t p (V al p (q p)) 6 = ; q 0 p 2 Q 0 p t p = q p ?!q 0 p 2 T 0 p Example 4. The slicing wrt constraints algorithm, applied for the speci cation and the test purpose from Figure 4, produces the speci cation shown in Figure 5. The value t for br is propagated to the source state of the transition with the guard :br] and thus determining that this transition and the following co!pa(?) will be never red. These transitions are detached from the speci cation. The constraint propagation problem, in this case, given the feed ci?sr(1; 10]), provides for the parameter x in the transition co!sa(x) the interval 1; 100].

We have the following preservation result.

Proposition 3 (slicing wrt constraints correctness). Let SP = (S; C; P) be a speci cation, TP = (Q tp ; T tp ; q 0 tp ; Q acc tp) and f a set of feeds which cover TP. The synchronous product between the models of SP and respectively SP n c f with the test purpose given the feeds f are strongly bisimilar, that is

Q (d SP; TP; f) Q (\ SP n c f ; TP; f)

Experimentation

These techniques were implemented and currently we are experimenting with them on some case studies. We use the if 5] framework, which is an interme- The techniques presented before were applied to improve test case generation for the sscop protocol 6], a layer from the atm protocols stack. Previous work was already done on it in the context of the forma research action 6] and despite its success, it shows also the limitations of the existing test generation technology. We were interested to see what are the concrete bene ts of our addons.

We started with an sdl version of the protocol provided by cnet France Telecom. It is about 2000 lines of code which describes the whole protocol as a single sdl process. It was translated into an if extended automaton, with 1075 states, 1291 transitions and 134 variables. We considered 10 test purposes conceived for di erent phases of the protocol (connection, data transmission). The results obtained using previous analysis are summarized below: slicing wrt feeds: By carefully choosing the appropriate set of feeds for each test purpose, we obtained reductions up to 80% of the speci cation. That is, we started usually with the smallest set of feeds covering the test purpose inputs. This choice is often too restrictive i.e., test cases cannot be constructed from the model of sliced speci cation. Thus, we iteratively added other inputs to the feeds until the model became su ciently large to cover the test purpose behavior. In this way, we are able to work on some minimal version of the speci cation, still allowing the generation of test cases. slicing wrt outputs: This analysis gives very good results too. When applied on the sliced speci cation wrt to feeds, it reduces the number of variables up to 40%. More generally, for the sscop protocol we obtained, in average, that, from total number of variables, 30% are relevant with respect to outputs, while the maximum reaches 60%. Also, when used at the model generation time, the relevant variables still allow important reductions on the number of model states and transitions. constraint propagation: The constraint propagation is still under development. At this time, we experimented only the constant propagation algorithm. The results obtained are good, mainly when the test purpose and the feeds contains punctual constraints i.e., the values provided in test purpose inputs are xed at some constants. We work currently to adapt the interval propagation algorithm.

These results are very encouraging. However, given the particular nature of the sscop protocol, we need further experimentations to clearly set up our techniques. We will consider experimentations for interprocesses slicing and the interaction between the three slicing techniques.

Conclusion and future work

In this paper, we show that automatic test generation can take advantages of static analysis. Our test generation method, derived from the so-called on the y model checking, consists in traversing a product de ned between the speci cation and the test purpose. Before test generation, simpli cations may be made on the speci cation, by collecting informations on the test purposes.

Our general approach to de ne static analysis is based on the following considerations and remarks. The speci cation is a set of extended automata, asynchronously communicating via a set of queues. The test purpose is also an extended automaton with constraints. In the context of test generation, we distinguish between inputs and outputs. The static analysis we de ne transform speci cations into others, smaller ones, without loss of information with respect to test purpose. This approach is compatible with the standard de nition of conformance testing.

In this work, we proposed three kinds of slicing, based on di erent analysis. The rst one consists in restricting each automaton, starting from the set of feeds. It includes the propagation through the dependence relation between the input of a process and the outputs of the others process. The second analysis computes the set of variables, necessary to determine values occurring into the outputs, and safely discards the others. The last analysis is the constraint propagation.

We have shown that the combination of these three interprocesses analyses may reduce the speci cation. We have implemented these analysis in the context of if tools and we obtain very good results on the sscop protocol.

Our results can be further extended in several directions. Firstly, we aim at experimenting more systematically the static analysis in the context of test case generation for industrial protocols. The results on sscop were very encouraging but other experimentations are further needed to conclude the practical use of our techniques.

At short term too, we plan to extend these analysis techniques to work on timed speci cations. In fact, the generated test cases usually uses timers, which are set and test to more or less arbitrarily values in order to observe deadlocks or livelocks in the implementation. However, a more ne analysis can be done on timed speci cations to obtain relevant values to be used in this context.

A more speculative direction concerns the generation of symbolic tests. In this respect, we are currently thinking about the appropriate extension for the test purposes concept. For instance, the explicit use of variables in addition to constraints can make them much more expressive. Furthermore, it may be interesting to reconsider the de nition of the synchronous product i.e., to be done at a higher level in such a way that it will allow the derivation of symbolic test cases.

 Fig. 1. Test architecture

 Fig. 2. Example 3 Static analysis for testing

Fig. 3 .

 3 Fig. 3. Example slicing wrt feeds

Fig. 4 .

 4 Fig. 4. Example slicing wrt outputs Intuitively, the slicing wrt relevant outputs preserves the model of the specication up to concrete values carried by signals not observed in the test purpose. We de ne the renaming of the speci cation model d SP with respect to the set of output actions o in the following way: each visible output action c!s(v) which is not speci ed by the test purpose i.e., c!s() 6 2 o , is renamed into c!s(?). The other actions are left unchanged. In this way, we left out the exact parameter values for outputs, other than ones occurring in the test purpose. We note the renamed model with d SP # o . The following proposition holds.

Fig. 5 .

 5 Fig. 5. Example slicing wrt constraints diate program representation for protocols, based on asynchronously communicating timed automata. if was designed right from the beginning to support the application of static analysis techniques used in compiler optimization 1, 17].The techniques presented before were applied to improve test case generation for the sscop protocol 6], a layer from the atm protocols stack. Previous work was already done on it in the context of the forma research action 6] and despite its success, it shows also the limitations of the existing test generation technology. We were interested to see what are the concrete bene ts of our addons.We started with an sdl version of the protocol provided by cnet France Telecom. It is about 2000 lines of code which describes the whole protocol as a single sdl process. It was translated into an if extended automaton, with 1075 states, 1291 transitions and 134 variables. We considered 10 test purposes conceived for di erent phases of the protocol (connection, data transmission). The results obtained using previous analysis are summarized below:

? Work partially supported by R egion Rhône-Alpes, France ? ? ? VERIMAG is a joint laboratory of CNRS, UJF and INPG Grenoble

This assumption is strong, however it can be veri ed during the test generation process (as in tgv 10]).