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Abstract. Computing invariants is the key issue in the analysis of
infinite-state systems whether analysis means testing, verification or pa-
rameter synthesis. In particular, methods that allow to treat combina-
tions of loops are of interest. We present a set of algorithms and meth-
ods that can be applied to characterize over-approximations of the set
of reachable states of combinations of self-loops. We present two families
of complementary techniques. The first one identifies a number of basic
cases of pair of self-loops for which we provide an exact characterization
of the reachable states. The second family of techniques is a set of rules
based on static analysis that allow to reduce n self-loops (n ≥ 2) to n−1
independent pairs of self-loops. The results of the analysis of the pairs
of self-loops can then be combined to provide an over-approximation of
the reachable states of the n self-loops. We illustrate our methods by
synthesizing conditions under which the Biphase Mark protocol works
properly.

1 Introduction

This paper proposes techniques for computing over-approximations of the
set of reachable states of a class of infinite state systems. The systems we
consider are systems whose variables can be seen as counters that can
be incremented by positive or negative constants or can be reset to some
constant.

The problem of computing invariants of arithmetical programs in par-
ticular, and infinite state systems in general, has been investigated from
the seventies. Abstract interpretation [CC77,CC92] is a precise and a for-
mal framework which has been used to develop techniques to tackle this
problem. As pioneering work in this field, one can mention M. Karr’s
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work [Kar76] based on constant propagation for computing invariants
that are systems of affine equations, P. & R. Cousot’s work [CC76] which
uses interval analysis to compute invariants of the form x ∈ [a, b], x ≤ a,
etc., and the work by P. Cousot and N. Halbwachs [CH78] which pro-
vides techniques that allow to compute linear constraints that relate the
program variables.

In recent years, the subject has known a renewal of interest with the
development of symbolic model-checking techniques for some classes of
infinite state systems as timed and hybrid automata [HNSY92,HPR94],
finite communicating automata [BG96,ABJ98], parameterized networks
[KMM+97,ABJN99,BBLS], and automata with counters [BGP97,WB98].

In this paper, we consider transition systems with finite control and
with counters as data variables. A transition consists of a guard and a set
of assignments. A guard is given by a Presburger formula that may contain
parameters, that is, variables that are neither initialized nor modified
during execution. Assignments may increment the counters by positive
or negative constants or set them to constant values. It should be noticed
that this model is fairly general. Indeed, it is computationally equivalent
to Turing machines and syntactically subsumes Timed Automa [AD94],
Petri Nets with inhebitors, and Datalog Programs [FO97]. Indeed, each
of these models can easily translated into our transition systems.

Given a transition syste we are interested in computing over-appro-
ximations of the set of reachable states from parametric initial states, that
is, states of the form x̄ = x̄0, where x̄ are the variables of the system and
x̄0, are freeze variables (also called inactive auxiliary variables). In con-
trast to almost all the works mentioned above, the techniques we present
allow to derive non-linear invariants. We concentrate on characterizing
sets of states reachable by n-self-loops. This is not an essential restric-
tion, since every system can be transformed into one with a single control
location. Moreover, several spécification and programming languages such
as UNITY [KJ89] or the synchronous language Lustre [CHPP87] consist
of programs where all transitions are self-loops of a single control point.
Notice also that it is clear that the combined effect of self-loops cannot in
general be characterized by linear constraints. We present two families of
complementary techniques. The first one is presented as set of results that
identify a number of basic cases of pairs of self-loops for which we provide
an exact characterization of the reachable states. The second family of
techniques is a set of rules based on static analysis that allow to reduce
n self-loops (n ≥ 2) to n − 1 independent pairs of self-loops. The results



of the analysis of the pairs of self-loops can then be combined to provide
an over-approximation of the reachable states of the n self-loops.

The reduction techniques we present are in the same line as the de-
composition rules presented by Fribourg and Olsèn in [FO97], where they
consider Datalog programs, i.e., transition systems consisting of a single
control location and counters and where only x > 0 is allowed as guard.
Notable differences are, however, the fact that the systems they consider
are syntactically more restricted and that their rules are exact.

To illustrate the techniques we present in this paper, we consider
the Biphase mark protocol which is a parameterized protocol used as a
convention for representing both a string of bits and clock edges in a
square wave. Using our techniques we have been able to provide a full
parametric analysis of this protocol.

2 Preliminaries

We assume an underlying assertion language A that includes first-order
predicate logic and interpreted symbols for expressing the standard op-
erations and relations over some concrete domains. We assume to have
the set of integers among these domains. Assertions (we also say predi-
cates) in A are interpreted in states that assign values to the variables
of A. Given a predicate P , we denote by free(P ) the set of free variables
occurring in it. Similarly, if e is an expression in A, we also write free(e)
to denote the set of all variables which occur in e. As expressiveness is
not our issue in this paper, we will tacitly identify a predicate with the
set of its models.

As computational model we use transition systems. We restrict our-
selves to transition systems where the expressions occurring in an assign-
ment to variables x are either constants or of the form x + k. Thus, a
transition system is given by a tuple (X ,Q,T , E ,Π) where X is a finite
set of typed data variables, Q is a finite set of control locations, T is a
finite set of transition names, E associates with each transition τ a pair
(E1(τ), E2(τ)) consisting of a source and a target control location, and Π
associates with each transition a guard gua(τ) which is an assertion in
the Presburger fragment of A with free variables in X and a list affe(τ) of
assignments of the form x := x + k or x := k with x ∈ X and k ∈ ZZ and
such that for each x ∈ X there is at most one assignment x := e in affe(t).
We denote by Base(τ) the set of variables occurring in τ . Notice that we
allow parameters in the guards of the transitions; parameters can be seen
as program variables that are not modified during execution. This allow



us to model parameterized protocols as the Biphase protocol, which we
consider later on, and to analyze these protocols using our techniques.

Clearly, (Q,T , E) builds a labeled graph which we call the control
graph. Henceforth, we denote the set of transitions τ with E1(τ) = E2(τ) =
q by L(q), i.e., L(q) is the set of self-loops in q. Moreover, we write τ(x̄),
where x̄ is a set of variables, for the projection of τ on x̄, that is, the
transition whose guard is obtained from the guard of τ by existentially
quantifying all variables but x̄ and whose assignments are obtained from
τ by removing all assignments to other variables than x̄.

A transition τ induces a relation
τ

−→ on configurations which are pairs
of control locations and valuations of the variables in X . Given a transition
τ , and configurations (q, s) and (q′, s′), (q′, s′) is called τ -successor of
(q, s), denoted by (q, s)

τ
−→ (q′, s′), if E(τ) = (q, q′), s satisfies gua(τ)

and s′ satisfies s′(x) = s(e), for each x := e in affe(τ), s′(x) = s(x),
for each x that is not affected by τ . Given a regular language L over
T and given configurations (q, s) and (q′, s′), we say that (q′, s′) is L-

reachable from (q, s), denoted by (q, s)
L

−→ (q′, s′), if there exists a word
τ1 · · · τn ∈ L and configurations (qi, si)i≤n such that (q0, s0) = (q, s),

(qn, sn) = (q′, s′), and (qi, si)
τi−→ (qi+1, si+1). If ϕ and ϕ′ are predicates,

we write ϕ
L

−→ ϕ′ to denote the fact that there exists a state s that

satisfies ϕ and a state s′ that satisfies ϕ′ such that s
L

−→ s′. Identifying, a

state with a predicate characterizing it, we also use the notations ϕ
L

−→ s′

and s
L

−→ ϕ′, respectively. Henceforth, given a control location q, in
case all transitions in L have q as source and target locations, we omit
mentioning q in configurations. Furthermore, given a predicate ϕ(x̄0, x̄),
where x0 are freeze variables (also called inactive auxiliary variables),
and given a set L ⊆ L(q) of self-loops, we say that ϕ(x̄0, x̄) is an L-
invariant at q, if for every state s′ that is L-reachable from a state s,
ϕ[s(x̄)/x̄0, s

′(x̄)/x̄] is valid. Thus, ϕ(x̄0, x̄) is the set of states reachable
from a parametric state x̄ = x̄0 by taking sequences of transitions in L.
The predicate ϕ(x̄0, x̄) corresponds to the strongest postcondition of so-
called most general formulas used in [Gor75] and investigated in [AM80]
in the context of axiomatic verification of recursive procedures.

3 Characterizing reachable states of self-loops

Throughout this section, we fix a transition system S = (X ,Q,T , E ,Π).
Our goal is to transform S into a transition system S# such that S# does
not contain self-loops and such that the set of states reachable from a state



s in S# is a super-set of the set of states reachable from s in S, that is, S#

is an abstraction of S [CC77]. Thus, we will entirely concentrate on self-
loops. The motivation and justification behind this is many-fold. First, it
is obvious that our model is as expressive as Turing machines, since a two
counter-machine is trivially encoded in this model. Moreover, arithmetical
programs, which can easily encoded in our model, represent an interesting
class of programs that have been widely investigated starting with the
pioneering work [CH78]. Moreover, even if we restrict the control graph
to a single node, we obtain, as discussed in [FO97], an interesting class
of Datalog programs. Our model allows to encode in a natural way Petri
Nets with inhibitors.

The main idea behind the transformation of S into S# is the following.
Consider a control location q and let ϕ(x̄0, x̄) be an L(q)-invariant at q.
Then, we obtain S# by applying the following transformations:

1. Add a new list of variables x̄0 with the same length as x̄.

2. Remove all transitions in L(q).

3. Let τ1, · · · , τn be all transitions with E2(τi) = q and let x̄ := ēi be the
assignment associated to τi. Add to x̄ := ēi the assignment x̄0 := ēi.

4. Replace each assignment x̄ := ē of a transition τ with E1(τ) = q
and E2(τ) 6= q, by the predicate ∃ȳ · ϕ(x̄0, ȳ) ∧ gua(τ) ∧ x̄′ = ē[ȳ/x̄],
where x̄′ stands for the state variables after taking the transition. Note
that S# does not satisfy the syntactic restrictions on assignments as
introduced in Section2; it is, however, a transition system in the usual
sense.

It is not difficult to check that S# is indeed an abstraction of S. No-
tice also that in case all predicates ϕ(x̄0, x̄) used in the transformation
for characterizing reachable states by self-loops are exact, the obtained
system S# is then an exact abstraction of S.

Our approach in computing invariants characterizing the effect of a
set of loops is based on the particular case of two self-loops that satisfy
syntactic conditions that allow us to analyze each self-loop in isolation
and on a set of static analysis techniques which allow us to reduce the
analysis of n self-loops to the analysis of a number of particular cases.

Given two transitions τ0 and τ1 with Base(τ0) = x̄ and Base(τ1) = x̄ȳ,
where x̄ and ȳ are two disjoint sets of variables, and such that x̄ is assigned
the list c̄ of constants in τ1. We say that τ0 enables τ1, if for every state

s with s(x̄) = c̄, there exists a state s′ such that s
τ∗

0−→ s′ and s′ satisfies
the projection on x̄ of the guard of τ1, i.e., s′ satisfies ∃ȳ · gua(τ1). Notice



that τ0 does not enable τ1 iff for every state s with s(x̄) = c̄, there is no

state s′ such that s
τ∗

0−→ s′ and s′ satisfies ∃ȳ · gua(τ1).

Lemma 1. Let τ0 and τ1 be two transitions such that Base(τ0) = x̄,
Base(τ1) = x̄ȳ, where x̄ and ȳ are two disjoint sets of variables, and such
that x̄ is assigned the list c̄ of constants in τ1.

Then, s
(τ0+τ1)∗
−→ s′ iff s

τ∗

0−→ s′ or there exists a state s′′ such that 1)

s
τ∗

0
τ1

−→ s′′, 2) x̄ = c̄
τ∗

0−→ s′(x̄) and 3) one of the following conditions holds:

1. τ0 enables τ1 and s(ȳ)
τ1(ȳ)∗
−→ s′(ȳ) or

2. τ0 does not enable τ1 and s(ȳ)
τ1−→ s′(ȳ).

2

Proof. We prove the implication from left to right by induction on the
number of times transition τ1 is taken from s to s′. Thus, suppose we have

s
(τ0+τ1)∗
−→ s′. The induction basis follows immediately, since then we have

s
τ∗

0−→ s′. Suppose now that τ1 is taken n times with n > 0. Then, we have

s
τ∗

0−→ s1
τ1−→ s′′

(τ0+τ1)∗
−→ s′ and τ1 is taken n− 1 times in the computation

from s′′ to s′. In case, τ0 does not enable τ1, we have s′′
τ∗

0−→ s′. Hence,

since ȳ ∩ Base(τ0) = ∅, s′(ȳ) = s′′(ȳ) and x̄ = c̄
τ∗

0−→ s′(x̄). That is,

s(ȳ)
τ1−→ s′(ȳ) and x̄ = c̄

τ∗

0−→ s′(x̄).

Now, suppose that τ0 enables τ1, then, by induction hypothesis, s′′(ȳ)
τ1(ȳ)∗
−→

s′(ȳ). Since, ȳ∩Base(τ0) = ∅, s(ȳ) = s1(ȳ). Consequently, s(ȳ)
τ1(ȳ)∗
−→ s′(ȳ).

Moreover, by induction hypothesis, x̄ = c̄
τ∗

0−→ s′(x̄).
2

Lemma 1 states conditions under which the set of states reachable by
repeated execution of the transitions τ0 and τ1 can be exactly character-
ized by independently considering the values of the variables x̄ that can
be reached by applying τ0 and the values of ȳ that can be reached by
applying τ1.

In the following, we present a lemma that allows us to apply a de-
composition similar to Lemma 1 while allowing τ0 to contain additional
variables z̄ disjoint from x̄ and ȳ that are not modified by τ1.

Lemma 2. Let τ0 and τ1 be two transitions such that Base(τ0) = x̄z̄,
Base(τ1) = x̄ȳ, where x̄, ȳ and z̄ are mutually disjoint sets of variables,
and such that the following conditions are satisfied:



1. For every state s′, if true
τ1−→ s′ then s′ does not satisfy the guard of

τ1.
2. x̄ is assigned the list c̄ of constants in τ1.
3. There is a list c̄′ of constants such that, for every states s and s′ with

s(x̄) = c̄ and s
τ∗

0−→ s′, if s′ satisfies the guard of τ1 then s′(z̄) =
s(z̄) + c̄′.

4. For every state s with s(x̄) = c̄ there is a state s′ such that s
τ∗

0−→ s′

and such that s′ satisfies the projection on x̄ of the guard of τ1.
5. For all states s and s′ with s(x̄) = s′(x̄) = c̄ and for all k ≥ 0,

s
τk

0−→ true iff s′
τk

0−→ true.

Then, s
(τ0+τ1)∗
−→ s′ iff s

τ∗

0−→ s′ or there exists a state s′′ such that

1. s
τ∗

0
τ1

−→ s′′, x̄ = c̄
τ0(x)∗
−→ s′(x̄) and

2. there exists k ∈ IN and a state s′′′ with s′′′(z̄) = s′′(z̄)+k ∗ c̄, s(ȳ)
τ

k+1

1−→

s′(ȳ), and s′′′(z̄)
τ∗

0−→ s′(z̄).

2

Proof. (sketch).

Using Condition 1.,one can prove that s
(τ0+τ1)∗
−→ s′ iff s

τ∗

0−→ s′ or there are
states s′′ and s′′′ and k ≥ 0 such that

s
τ∗

0
τ1

−→ s′′
(τ+

0
τ1)k

−→ s′′′
τ∗

0−→ s′.

Let us consider the second case. Here, by Condition 2., we have s′′(x̄) = c̄.
Hence, by Condition 3., in any state reachable from s′′ by applying (τ+

0 τ1)
k′-times, the value of z̄ is s′′(z̄) + k′ ∗ c̄′. Therefore, s′′′(z̄) = s′′(z̄) + k ∗ c̄.

Notice that Condition 4., is used to prove the ”only if” part of the
statement. Condition 5. guarantees that s′′′ is reachable from s′′ by (τ+

0 τ1)
k-times. It also guarantees that the number of times τ0 can be taking
starting in a state satisfying x̄ = c̄ does not depend on z̄.

2

Remark 1. It is important to notice that Condition 2 is syntactic, so it
can be easily checked. Moreover, the remaining conditions can be checked
effectively, since the sets of reachable states involved are expressible in
Presburger arithmetic. Indeed, if a language L is of the form L1+· · ·+Ln,
where each Li is either finite or of the form w∗, where w is a word, then
the set of states reachable by L from a (parametric) state x̄ = x̄0 is



easily expressible in Presburger arithmetic. Nevertheless, it is easy to give
sufficient syntactic conditions that can be easily checked. For instance,
Condition 5. is satisfied, if z̄ does not occur in the guard of transition τ0.

Example 1.
Let us consider the following self-loops:

{

τ0 : x < T → x := x + 1; z := z + 1
τ1 : x = T ∧ y < C → x := 0; y := y + 1

It is easy to check that the premises of Lemma 2 are satisfied. Using the
characterization stated by the lemma and after simplification, we obtain
the following invariant:

(x − z = x0 − z0 ∧ x ≥ x0 ∧ z ≥ z0 ∧ y = y0)
∨ ∃k ≥ 1·

(y = y0 + k ∧ y ≤ C ∧ z = (z0 − x0) + k ∗ T + x ∧ x ≤ T )

2

Lemma 2 can be generalized as follows to the case where z̄ is not aug-
mented by the same list c̄′ of constants:

Lemma 3. Assume the same premises as in Lemma 2 but condition 3.
replaced by:

There is a set I of values such that, for every states s and s′ with

s(x̄) = c̄ and s
τ∗

0−→ s′, if s′ satisfies the guard of τ1 then

3.a there is c̄′ ∈ I with s′(z̄) = s(z̄) + c̄′ and

3.b for every c̄′′ ∈ I there is a state s′′ with s′′(z̄) = s(z̄) + c̄′′, s
τ∗

0−→ s′′,
and such that s′′ satisfies the guard of τ1.

Then, s
(τ0+τ1)∗
−→ s′ iff s

τ∗

0−→ s′ or there exists a state s′′ such that

1. s
τ∗

0
τ1

−→ s′′, x̄ = c̄
τ0(x)∗
−→ s′(x̄) and

2. there exists k ∈ IN and a state s′′′ with s′′′(z̄) = s′′(z̄) +
i=k
∑

i=1
c̄i with

c̄i ∈ I, s(ȳ)
τ

k+1

1−→ s′(ȳ), and s′′′(z̄)
τ∗

0−→ s′(z̄).

2

Example 2.
Let us consider the following self-loops:

{

τ0 : x < T → x := x + 1; z := z + 1
τ1 : t ≤ x ≤ T ∧ y < C → x := 0; y := y + 1



Now, applying Lemma 3 we obtain the following invariant:

(x − z = x0 − z0 ∧ x ≥ x0 ∧ z ≥ z0 ∧ y = y0)
∨ ∃k ≥ 1·

(y = y0 + k ∧ y ≤ C ∧ z ∈ (z0 − x0) + [k ∗ t, k ∗ T ] + x ∧ x ≤ T )

2

Remark 2. Notice that, if we remove Condition 3.b in Lemma 3, then only

the ”only if” part of the conclusion is true, that is, we have s
(τ0+τ1)∗
−→ s′

implies s
τ∗

0−→ s′ or there exists a state s′′ such that

1. s
τ∗

0
τ1

−→ s′′, x̄ = c̄
τ∗

0−→ s′(x̄) and

2. there exists k ∈ IN and a state s′′′ with s′′′(z̄) = s′′(z̄) +
i=k
∑

i=1
c̄i with

c̄i ∈ I, s(ȳ)
τ

k+1

1−→ s′(ȳ), and s′′′(z̄)
τ∗

0−→ s′(z̄).

This result can of course be used to derive an invariant that is not neces-
sarily the strongest. 2

4 Decomposition techniques

We present hereafter heuristics which allow us to reduce the analysis of
n ≥ 2 self-loops to simpler cases such that, finally, we can apply the
lemmata introduced in Section 3.

Basically, we consider the case of n + 1 loosely-coupled self-loops. We
show that, their global analysis can be effectively reduced to n analysis of
2 self-loop problems, when some syntactic conditions on the sets of used
variables occurs. The decomposition technique is stated by the following
lemma and can be seen as a direct generalization of lemma 1.

Lemma 4. Let τ0, τ1, · · · , τn be transitions such that Base(τ0) = x̄1 · · · x̄n,
Base(τi) = x̄iȳi and for each i = 1, · · · , n, x̄i is assigned by τi the list c̄i

of constants, and the sets of variables x̄i and ȳi are all pairwise disjoint.
If each ϕi is a (τ0(x̄i)+τi)

∗-invariant, then
∧n

i=1 ϕi is a (τ0+· · ·+τn)∗-
invariant. 2

Example 3. Let us consider the following three self-loops borrowed from
the description of the Biphase protocol, which we will consider in Sec-
tion 5:











τ0 : x < max ∧ y < max → x := x + 1 y := y + 1
τ1 : x ≥ min ∧ n < cell → x := 0 n := n + 1
τ2 : y ≥ min ∧ m < sample → y := 0 m := m + 1



We can easily check that the premises of Lemma 4 are satisfied. Hence, we
can split the analysis of the three self-loops into the independent analysis
of the following sets each consisting of two self-loops, as shown below:

{

τ0(x) : x < max → x := x + 1
τ1 : x ≥ min ∧ n < cell → x := 0 n := n + 1

{

τ0(y) : y < max → y := y + 1
τ2 : y ≥ min ∧ m < sample → y := 0 m := m + 1

Each case can be analyzed independently using the results established
in the previous section. We obtain that

ϕ1 = (x ≤ max ∧ n ≤ cell)

is a (τ0(x) + τ1)
∗-invariant and that

ϕ2 = (y ≤ max ∧ m ≤ sample)

is a (τ0(y) + τ2)
∗-invariant.

Thus, we can infer that

ϕ1 ∧ ϕ2 = (x ≤ max ∧ n ≤ cell ∧ y ≤ max ∧ m ≤ sample)

is a (τ0 + τ1 + τ2)
∗-invariant. 2

However, the invariants obtained in this way are too weak. The rea-
son is that by the decomposition of the set of loops we lost the overall
constraint induced on x̄ variables by the τ0 loop. That is, all variables
occurring in τ0 are strongly related by this transition, and it is no more
the case when taking the projections. The following lemma solves this
problem by adding some re-synchronization variables in order to be able
to reconstruct (at least partially) the existing relation among the x̄ vari-
ables.

Lemma 5. Let τ0, τ1, · · · , τn be transitions s.t. the premises of Lemma 4
are satisfied. Let (zi)i=1,n be fresh variables and let τ ′

0(x̄i) be the transition
obtained from τ0(x̄i) augmented with the assignment zi := zi + 1.

If each ϕ′
i is a (τ ′

0(x̄i) + τi)
∗-invariant, then ∃z1, · · · zn.(z1 = · · · =

zn ∧
∧n

i=1 ϕ′
i) is a (τ0 + · · · + τn)∗-invariant. 2



Intuitively, variables zi keep track of the number of times the transi-
tion τ0 is executed in each case. In this way, the global invariant can be
strengthened by adding the equality on zi variables. That is, when con-
sidered together, the number of times τ0 is executed must be the same in
all 1 ≤ i ≤ n cases.

Example 4. Let us consider again the three-loops presented above. After
splitting them and augmentation with fresh variables zx and zy, we obtain
the following sets of self-loops to be analyzed:

{

τ0(x) : x < max → x := x + 1 zx := zx + 1
τ1 : x ≥ min ∧ n < cell → x := 0 n := n + 1

{

τ0(y) : y < max → y := y + 1 zy := zy + 1
τ2 : y ≥ min ∧ m < sample → y := 0 m := m + 1

Applying, Lemma 3, we obtain that

ϕ′
1 = (x ≤ max ∧ n ≤ cell ∧ n · min + x ≤ zx ≤ n · max + x)

is a (τ ′
0(x) + τ1)

∗-invariant and that

ϕ′
2 = (y ≤ max ∧ m ≤ sample ∧ m · min + y ≤ zy ≤ m · max + y)

is a (τ ′
0(y) + τ2)

∗-invariant.
The global invariant computed is then ∃zx, zy.(zx = zy ∧ ϕ′

1 ∧ ϕ′
2),

which can be simplified to

x ≤ max ∧ n ≤ cell ∧ y ≤ max ∧ m ≤ sample ∧

n · min + x ≤ m · max + y ∧ m · min + y ≤ n · max + x.

This invariant is indeed stronger than the one computed in Example 3. 2

5 The Biphase protocol

The biphase mark protocol is a convention for representing both a string
of bits and clock edges in a square wave. It is widely used in applications
where data written by one device is read by another. It is for instance
used in commercially available micro-controllers as the Intel 82530 Serial
Communication Controller and in the Ethernet.

We borrow the following informal description of the protocol from J.
S. Moore:



In the biphase mark protocol, each bit of messages is encoded in a
cell which is logically divided into a mark subcell and a code subcell.
During the mark subcell, the signal is held at the negation of its
value at the end of the previous cell, providing an edge in the signal
train which marks the beginning of the new cell. During the code
subcell, the signal either returns to its previous value or does not,
depending on whether the cell encodes a ”1” or ”0”. The receiver
is generally waiting for the edge that marks the arrival of a cell.
When the edge is detected, the receiver counts off a fixed number of
cycles, called sampling distance, and samples the signal there. The
sampling distance is determined so as to make the receiver sample
in the middle of the code subcell. If the sample is the same as the
mark, a ”0” was sent; otherwise a ”1” was sent. The receiver takes
up waiting for the next edge, thus phase locking onto the sender’s
clock.

The main interesting aspect (from the verification point of view) of this
protocol is the analysis of the tolerable asynchrony between the sender
and the receiver. Put more directly, the derivation of sufficient conditions
on the jitter between the clock of the sender and the clock of the receiver
such that the protocol works properly.

To our knowledge, there has been some work on the verification of
instances of the protocol either using theorem-proving techniques [Moo93]
or model-checking [IG99,Vaa] and one work presenting full parameter
analysis using PVS and the Duration Calculus, however, without clock
jitter.

Using the techniques presented earlier in this paper, we have been
able to fully analyze the protocol and to derive parameterized sufficient
conditions for its correctness.

5.1 Protocol Modeling

We use extended transition systems to model the protocol which consists
of a sender and a receiver exchanging boolean value. Some of the transi-
tions are marked with synchronization labels. Following, Vaandrager we
model the clock drifts and jitter using two different clocks which will be
reset independently and using two parameters min and max to bound the
drift between these clocks. The models of the sender, the receiver and
their product are given in Figure 1, Figure 2, and Figure 3.
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110 : x < max → x := x + 1
τ s

111 : x ≥ min ∧ n < cell → x := 0 n := n + 1
τ s

112 : x ≥ min ∧ n = cell → x := 0 n := 0 v := ¬v

get !false
τ s

12 : x ≥ min ∧ n = cell → x := 0 n := 0 v := ¬v

get !true
τ s

220 : x < max → x := x + 1
τ s

221 : x ≥ min ∧ n < mark → x := 0 n := n + 1
τ s

21 : x ≥ min ∧ n = mark → x := 0 n := n + 1 v := ¬v

mark

Fig. 1. The sender
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330 : y < max → y := y + 1
τ s

331 : y ≥ min ∧ v = old → y := 0
τ r

34 : y ≥ min ∧ v 6= old → y := 0
m := 0

τ r

440 : y < max → y := y + 1
τ r

441 : y ≥ min ∧ m < sample → y := 0
m := m + 1

τ r

43 : y ≥ min ∧ m = sample → y := 0
put !v 6= old

Fig. 2. The receiver
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τ130, τ140, τ230, τ240 : x < max ∧ y < max → x := x + 1 y := y + 1

Fig. 3. The product

5.2 Invariant generation

Using the techniques presented before we are able to construct the fol-
lowing invariants for the product control locations:

ϕ13 = x ≤ max ∧ y ≤ max ∧ n ≤ cell
ϕ14 = x ≤ max ∧ y ≤ max ∧ n ≤ cell ∧ m ≤ sample

m · min + y ≤ n · max + x ∧ n · min + x ≤ m · max + y
ϕ23 = x ≤ max ∧ y ≤ max ∧ n ≤ mark
ϕ24 = x ≤ max ∧ y ≤ max ∧ n ≤ mark ∧ m ≤ sample

m · min + y ≤ n · max + x ∧ n · min + x ≤ m · max + y

5.3 Parameter synthesis

One of requirements for correctness of the protocol states that the receiver
does not sample too late. That is, a bad behavior is obtained by allowing to
take two consecutive get actions by the protocol, without no put action in
between. For instance, such a scenario is possible when in state 14, the get
transitions τ s

112 or τ s
12 are enabled before the put transition τ r

43. To avoid
such a situation, a sufficient condition will be if ϕ14∧(gua(τ s

112)∨gua(τ s
12))

is not satisfiable. This condition is the following:



x ≤ max ∧ y ≤ max ∧ n ≤ cell ∧ m ≤ sample
m · min + y ≤ n · max + x ∧ n · min + x ≤ m · max + y

x ≥ min ∧ n = cell

and is equivalent after simplification to :

(cell + 1) · min > (sample + 1) · max

A second requirement states that the receiver does not sample too
early. That is, wrong behavior occurs when the receiver samples before
the mark sub-cell started. In this case, a bad scenario is that one in state
24 the put transition τ r

43 is enabled before the mark transition τ s
21. Here

also, this behavior can be avoided if the condition ϕ24 ∧ gua(τ r
43) is not

satisfiable. We obtained in this case:

x ≤ max ∧ y ≤ max ∧ n ≤ mark ∧ m ≤ sample
m · min + y ≤ n · max + x ∧ n · min + x ≤ m · max + y

y ≥ min ∧ m = sample

and can be further simplified to the following condition depending
only on parameters:

(sample + 1) · min > (mark + 1) · max

6 Conclusions

In this paper, we presented a set of techniques which allow to compute
an over-approximation of the set of reachable states of a set of self-loops.
The techniques we presented can be partitioned in two classes: 1.) exact
techniques that under effectively checkable conditions allow to charac-
terize the set of reachable states of pairs of self-loops without loss of
information and 2.) techniques that allow to reduce more general cases
of a set of self-loops to the analysis of a set of pairs of self-loops. Using,
our techniques we have been able to synthesize a set of conditions on
the parameters of the Biphase protocol that are sufficient to ensure its
correctness.

We plan to implement our techniques using decision procedures for
Presburger arithmetic to decide the conditions necessary for applying
them. We also plan to apply these techniques for generating test cases for
protocols and test objectives that involve data.
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