
HAL Id: hal-00369349
https://hal.science/hal-00369349

Submitted on 19 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated validation of distributed software using the
IF environment

Marius Bozga, Susanne Graf, Laurent Mounier

To cite this version:
Marius Bozga, Susanne Graf, Laurent Mounier. Automated validation of distributed software using
the IF environment. Workshop on Software Model Checking (in connection with CAV ’01), Jul 2001,
Paris, France. pp.370-381. �hal-00369349�

https://hal.science/hal-00369349
https://hal.archives-ouvertes.fr

Automated validation of distributed softwareusing the IF environment
Marius Bozga, Susanne Graf, and Laurent MounierVERIMAG, Centre Equation, 2 avenue de Vignate, F-38610 Gi�eresemail: fbozga,graf,mounierg@imag.fr, phone: (33) 4 76 63 48 52

Abstract. This paper summarizes our experience with IF, an open val-idation environment for distributed software systems. Indeed, face to theincreasing complexity of such systems, none of the existing tools can coverby itself the whole validation process. The IF environment was built uponan expressive intermediate language and allows to connect several valida-tion tools, providing most of the advanced techniques currently available.The results obtained on several large case-studies, including telecommunica-tion protocols and embedded software systems, con�rm the practical interestof this approach.
1 IntroductionAutomated validation of distributed software is a desirable objective to improve theindustrial production of correct systems like communication protocols or embeddedsystems. In spite of the numerous on going researches and tool developments carriedout in this area, this activity remains di�cult in practice: on one hand the initialsoftware description is usually provided in a high-level formalism (either a program-ming language or a formal design notation like Lotos [23], Sdl [25] or Uml [30]),and, on the other hand, a wide range of tools are necessary to cover the wholedevelopment process, operating at di�erent levels of program descriptions. Even ifseveral interesting tools are currently available, either commercial or academic ones,none of them can ful�ll in itself all the practical needs.Commercial tools (such as ObjectGeode [32], Tau [1], StateMate [22],Rational Rose [31], etc.) provide several development facilities, like editing, codegeneration and testing. However, they are usually restricted to basic veri�cationtechniques (exhaustive simulation, deadlock detection, etc) and are \closed" in thesense that there are only limited possibilities to interface them with others. Onthe other hand, there exist numerous academic tools (like Smv [28], Hytech [19],Kronos [34], Uppaal [27], Spin [20], InVeSt [2], etc.) o�ering a broad spectrumof quite e�cient veri�cation facilities (symbolic veri�cation, on-the-
y veri�cation,abstraction techniques, etc.), but often supporting only low-level input languages.This may restrict their use at an industrial scale.This situation motivated the development of IF, an intermediate representationfor distributed software together with an open validation environment. This en-vironment ful�lls several requirements. First of all, it is able to support di�erent

validation techniques, from interactive simulation to automatic property checking,together with test case and executable code generation. Indeed, all these function-alities cannot be embodied in a single tool and only tool integration facilities canprovide all of them. For a sake of e�ciency, this environment supports several lev-els of program representations. For instance it is well-known that model-checkingveri�cation of real life case studies usually needs to combine di�erent optimiza-tion techniques to overcome the state explosion problem. In particular, some ofthese techniques rely on a syntactic level representation (like static analysis andcomputations of abstractions) whereas others techniques operate on the underlyingsemantic level. Another important feature is to keep this environment open andevolutive. Therefore, tool connections are performed by sharing either input/outputformats, or libraries of components. For this purpose several well-de�ned applicationprogramming interfaces (apis) are provided.The IF validation environment is quite similar in its philosophy to the one pro-posed in the Bandera project [12], which also relies on a dedicated intermediateformat to translate (abstract) Java source code into the input language of existingmodel-checkers (like Spin or Smv). However, currently we mainly address with IFdistributed software validation from design formalisms (like Sdl or Uml) whichare widely used in the application area we consider (communication protocols andembedded systems).
2 ArchitectureThe IF validation environment relies on three levels of program representation:the speci�cation level, the IF intermediate level, and the Lts semantic model level.Figure 1 describes the overall architecture and the connections between the toolboxcomponents.The speci�cation level is the initial program description, expressed for instanceusing an existing language. To be processed, this description is (automatically)translated into its IF representation. The main input speci�cation formalism isSdl, but connections with other languages such as Uml, Lotos and Promela areenvisaged.The intermediate level corresponds to the IF representation [8]. In IF, a systemis expressed by a set of parallel processes communicating either asynchronouslythrough a set of bu�ers, or synchronously through a set of gates. Processes are basedon timed automata with deadlines [3], extended with discrete variables. Processtransitions are guarded commands consisting of synchronous/asynchronous inputsand outputs, variable assignments, and clock settings. Bu�ers have various queuingpolicies (�fo, stack, bag, etc.), can be bounded or unbounded, and reliable or lossy.A well-de�ned api allows to consult and modify the abstract tree of the IF represen-tation. Since all the variables, clocks, bu�ers and the communication structure arestill explicit, high-level transformations based on static analysis (such as live vari-ables computation) or program abstraction can be applied. Moreover, this api isalso well suited to implement translators from IF to other speci�cation formalisms.

CADP

PROMELA
IF2PML

SDL2IF
IF2IF

IF2C
KRONOS

TGV

ObjectGEODEspeci�cationdesign
translation to IF

static analysis
simulation

model checking

test generationtranslation from IF
SDL IF LTS

Fig. 1. An open validation environment for IF
The semantic model level gives access to the Lts representing the behaviour ofthe IF program. Depending on the application considered, three kinds of api areproposed:� The implicit enumerative representation consists in a set of C functions anddata structures allowing to compute on demand the successors of a given state(following the Open/C�sar [16] philosophy). This piece of C code is generatedby the if2c compiler, and it can be linked with a \generic" exploration programperforming on-the-
y analysis.� In the symbolic representation sets of states and transitions of the Lts are ex-pressed by their characteristic predicates over a set of �nite variables. Thesepredicates are implemented using decision diagrams (Bdds). Existing applica-tions based on this api are symbolic model-checking and minimal model gener-ation.� Finally, the explicit enumerative representation simply consists in an Lts �lewith an associated access library. Although such an explicit representation isnot suitable for handling large systems globally, it is still useful in practice tominimize some of its abstractions with respect to bisimulation based relations.
3 Components descriptionWe brie
y present here the main components of the environment, together withsome external tools for which a strong connection exists.The speci�cation level components. ObjectGeode [32] is a commercialtoolset developed by Telelogic supporting Sdl, Msc and Omt. In particular,

this toolset provides an api to access the abstract tree generated from an Sdl spec-i�cation. We have used this api to implement the sdl2if translator, which generatesoperationally equivalent IF speci�cations from Sdl ones. Given the static nature ofthe current version of IF, this translation does not cover yet the dynamical featuresof Sdl (e.g., process instances creation).The intermediate level components. if2if [6] implements several algorithmsbased on static analysis to transform an IF speci�cation. A �rst transformationconcerns dead variable resetting (a variable is dead at some control point if its valueis not used before being rede�ned). This optimisation can be also applied to bu�ercontents (a message parameter is dead if its value is not used when the message isconsumed). Although very simple, such optimisation is particularly e�cient for statespace generation (reductions up to a factor 100 were frequently observed), whilepreserving the exact behaviour of the original speci�cation. A second transformationis based on the slicing technique [33]. It allows to automatically abstract a givenspeci�cation by eliminating some irrelevant parts w.r.t. a given property or testpurpose [7].if2pml [4] is a tool developed at Eindhoven TU to translate IF speci�cations intoPromela.The semantic model level components. Cadp [14] is a toolset for the veri�ca-tion of Lotos speci�cations. It is developed by theVasy team of Inria Rhône-Alpesand Verimag. Two of its model-checkers are connected to the IF environment:Aldebaran (bisimulation based), and Evaluator (alternating-free �-calculus).For both tools, diagnostic sequences are computed on the Lts level and they canbe translated back into Msc to be observed at the speci�cation level.Kronos [34] is a model-checker for symbolic veri�cation of Tctl formulae on com-municating timed automata. The current connection with the IF environment is asfollows: control states and discrete variables are expressed using the implicit enumer-ative representation, whereas clocks are expressed using a symbolic representation(particular polyhedra).Tgv [15] is a test sequence generator for conformance testing of distributed systems(joint work between Verimag and the Pampa project of Irisa). Test cases arecomputed during the exploration of the model and they are selected by means oftest purposes.
4 Case studiesThe IF environment was used in several case studies, including as well telecom-munication protocols and embedded software. The most relevant ones, from thecomplexity point of view, and the results obtained are summarized below.
4.1 SSCOP ProtocolThe Sscop (Service Speci�c Connection Oriented) protocol is standardized underreference itu-t q2110 [24]. Originally, it was conceived to reliably transfer data

between two high bandwidth network entities. Although its design makes it readyto treat signi�cant volumes of data, currently its use is con�ned in ones of theunderlayers of the aal layer (Atm Adaptation Layer). The services it provides areconnection control (establishment,
ow-control, release), data transfer, and errordetection.The Sscop standardization document contains an Sdl description of the pro-tocol. This description has been coded by France Telecom R&D usingObjectGeode. It consists in approximately 2000 lines of Sdl textual code whichdescribes the protocol as one single process with 10 control states, 134 vari-ables, and 4 timers. The description was centered on signaling and some sim-pli�cations have been made according to Sscop implementations available inFrance Telecom R&D. Our main goals were the formal validation of the speci-�cation and, in addition, automatic test-case generation starting from it.Clearly, the size and complexity of this speci�cation made any brute force validationapproach not applicable. In particular the data part was very large, and each stateof the underlying model could not be stored in less than 2kB. Therefore only asmall part of the state space could be explored from this initial speci�cation, notsu�cient to verify interesting properties.Consequently, we adopted a more incremental veri�cation strategy. A �rst step wasto apply a very rough abstraction by (automatically) eliminating all the variables inthe speci�cation. Thus, it was possible to compare this very abstract speci�cationwith the one supplied by the standard to model the interactions between adjacentlayers of Sscop, to check if the abstract speci�cation provides at least the expectedbehaviour. This comparison was performed using Aldebaran, with respect to theso-called safety preorder [5]. Some subtle errors, such as omission of timers setting,were found using this method.After this debugging phase, the second step was to \prepare" the initial Sdl speci-�cation for a more accurate state space analysis. It consisted in basic static analysistechniques like dead code elimination and live variable detection using if2if. Thebene�ts were really spectacular on this example, and, in particular, the amount ofmemory required to store a model state fell to 0.2 kB.Finally, these optimisations made possible the use of exhaustive simulation tech-niques. More precisely we considered a system consisting in a pair of entities, com-municating through a bounded �fo channel, and we concentrated our validatione�ort to a set of representative distinct scenarios (connection establishment, discon-nection, data transfer, : : :). Using speci�c slicing criteria, it was therefore possibleto (automatically) simplify even more the speci�cation, depending on the prop-erty under veri�cation or the test purpose. The underlying models obtained wereabout 20 000 states large, and errors were found in the data transfer phase of thespeci�cation. The complete experiment is reported in [9].
4.2 Mascara ProtocolThe Mascara(Mobile Access Scheme based on Contention And Reservation forAtm) protocol is a special medium access control protocol designed for wirelessAtm

communication and developed by the wand(Wireless Atm Network Demonstrator)consortium [13]. A wireless Atm network extends transparently services to mobileterminals (mt) via a number of geographically distributed access points (ap). Thetask of the Mascara protocol is to mediate between aps and mts via a wirelesslink. The protocol has a layered structure, where we consider only the highest layer,the Mascara control layer.The overall description of theMascara protocol which we got is 300 pages of Sdltextual code. We concentrate on the veri�cation of the Mascara control layer,for which the Sdl description could be made reasonably complete. Here we brie
ypresent the veri�cation of the dynamic control. For complete information, we referthe reader to [17] which reports the complete experiment on the dynamic part. Inaddition, another veri�cation experiment has been carried out on static control[4].Veri�cation should be carried out under a general environment with realistic re-strictions. As we have not obtained information on the Mascara upper layer, weconsidered initially an open system with an unconstrained upper layer, which wouldallow us to obtain the most general veri�cation results. But communication via un-bounded channels, leads to in�nitely growing channel contents and thus an in�nitestate model in case that the environment sends requests too often. This is typicallythe case in reactive systems always ready to treat requests from the environment.The approach we have chosen to provide a more restricted, but still realistic envi-ronment consists in limiting the number of requests it can make per time unit. Weassume that within one time unit, no more than N requests can be sent by the envi-ronment. The system has never to deal with more than N requests simultaneouslywhich leads, in the Mascara protocol, to bounded channel contents. The successof the method depends on the use of a realistic bound. We use N=4.Unfortunately, even with such a restricted environment, it was impossible to gen-erate the state graph of the global system as a whole. However, we have appliedtwo di�erent types of compositional veri�cation: the �rst one is based on propertydecomposition [26], and the second one is based on compositional generation of astate graph minimized with respect to a behavioral equivalence [18]. In particular,using in addition both live analysis and partial order reduction for the generationof the subsystems, we were able to compositionally generate a reduced model of theglobal system using compositional generation.Table 4.2 gives an overview of a subset of the models we have generated using dif-ferent reduction techniques and allows to compare their sizes and generation times.Finally, several properties ranging for generic ones such as deadlocks and livelocksto more speci�c such as association establishment, connection, disconnection, wereveri�ed on the generated models.
4.3 Ariane-5 Flight ProgramThe work on this experiment was initiated by Eads Launch Vehicles to betterevaluate the applicability of formal validation techniques on an existing software,

ap mt ap + mtgeneration model time model time modelstrategy size size size- live reduction 7 308 400 st. 20703500 4 388 765 st. 17105800- partial order 30 689 244 tr. 12 811 961 tr.+ live reduction 351 202 st. 1202200 63 628 st. 100300- partial order 1 536 699 tr. 325 312 tr.+ live reduction 28 069 st. 105300 6 580 st. 700 218 130 st.+ partial order 52 983 tr. 20 913 tr. 1 142 215 tr.+ live reduction 1 630 st. 900 977 st. 300+ partial order 2 885 tr. 2 845 tr.+ slicing Table 1. Mascara veri�cation results
the Ariane-51 Flight Program. This is the embedded software which solely controlsthe Ariane-5 launcher during its
ight, from the ground, through the atmosphereand up to the �nal orbit.The veri�cation experiment is reported in [11]. First, this software has been formallyspeci�ed in Sdl by reverse engineering from the existing code. Then, following aset of general methodological guidelines, the speci�cation has been continuouslyimproved and all the initial requirements were veri�ed on the �nal version. In par-ticular, the combination of di�erent optimisation techniques, operating either atthe source level (like static analysis or slicing) or at the semantic level (like partial-order reductions) happened to be particularly useful in order to deal with large sizestate spaces. For example, the initial Sdl version of the
ight program used no lessthan 130 timers. Using our static analysis tool we were able to reduce them to only55 timers, functionally independent ones. Afterward, the whole speci�cation wasrewritten taking into account the redundancies discovered by the analyzer.The main di�culty of this case-study comes from the combination of various kindof time constraints. On one hand, the functionality of the
ight program stronglydepends on an absolute time: coordination dates are frequently exchanged betweencomponents in order to synchronise their behaviour during the whole
ight. On theother hand, this system has to be veri�ed within a partially constrained environ-ment, reacting with some degree of temporal uncertainty. In this experiment, thisexpressivity problem was solved at the IF level thanks to explicit urgency attributes.Clearly, such features should be made available at speci�cation level. In particular,ongoing work address the introduction of high-level time and performance annota-tions in Sdl [10].In practice, we have considered two di�erent situations regarding the environment.The �rst one is time-deterministic, which means that all environment actions (inparticular the control part) take place at precise moments in time. The second one istime-nondeterministic which means that environment actions take place with some1 Ariane-5 is an European Space Agency Project delegated to CNES France.

degree of time uncertainty (within a prede�ned time interval). From the environmentpoint of view, the later situation corresponds to a whole set of scenarios, whereas theformer situation focus only on a single one. Table 2 presents the sizes of both modelsgenerated according to di�erent generation strategies. It gives also the average timerequired for verifying each kind of property (by temporal logic model checking andmodel minimisation respectively).
time timedeterministic non-deterministic- live reduction na na- partial ordermodel + live reduction 2 201 760 st. nageneration - partial order 18 706 871 tr.+ live reduction 1 604 st. 195 718 st.+ partial order 1 642 tr. 278 263 tr.modelmodel minimisation � 100 � 2000veri�cation modelchecking � 1500 � 200000Table 2. Ariane-5 Flight Program veri�cation results.

5 Conclusion and PerspectivesThe IF environment has already been used to analyze some representative Sdlspeci�cations such as Sscop, an Atm signalisation protocol, Mascara, an Atmwireless transport protocol and Ariane-5
ight program, a part of the embeddedsoftware of Ariane-5 launchers. It is currently used in several on going industrialcase-studies, including respectively real-time multicast protocols Pgm and Rmtp-ii,and the session initiation protocol Sip. The bene�ts of combining several techniques,working at di�erent program level, were clearly demonstrated. In particular, tradi-tional model-checking techniques were not su�cient to complete on these large sizeexamples.Several directions can be investigated to improve this environment.The �rst direction of improvement concerns the IF language. As currently de�ned,it allows only the description of static systems, were the number of components (pro-cesses and bu�ers) as well as their interactions are �xed throughout the execution.This strongly limits our ability to handle complex dynamic speci�cations. We workon a less restrictive de�nition, were both parameterized descriptions (containingsome �xed number of replicated components) as well as general dynamic creationand destruction of components are allowed. Furthermore, some improvements willbe made regarding the description of components itself, such as the possibility toexpress structured control using composed states (like in statecharts).

A second direction of improvement concerns the IF simulator, the core componentallowing to construct and to explore the underlying semantic model of IF speci-�cations. Currently, this model is labeled transition systems, and its constructionand exploration are quite restricted: �rst, only pure asynchronous execution (byinterleaving) is possible and second, no access is provided to the state of the system(e.g, current values of variables, current states of processes). We envisage to improvethese points, by implementing a
exible simulator able, for instance, to deal withboth synchronous and synchronous components, or more generally, to take into ac-count some scheduling policy over components during the simulation. In addition,this simulator will interact with running components through a well-de�ned ab-stract interface, thus allowing to integrate also external components (for example,directly expressed as executable code).A third direction of improvement concerns the validation methods. Clearly, we willcontinue to adapt and to improve our static analysers as well as our model checkersto handle the extended IF descriptions. Also, some work must be done to reducethe manual overhead, yet important, needed by sophisticated techniques such ascompositional veri�cation. Finally, another important issue concerns the validationof non-functional requirements. In particular, performance evaluation becomes cru-cial for an important part of internet protocols (such as Pgm or Rmtp-ii) whichare not necessarily designed to achieve full reliability, but only an average correctbehaviour with respect to probabilistic assumptions on their execution environment(e.g, propagation delays, message loss, network elements speed, etc). At middle term,we plan to connect to IF environment to simulation environments like Opnet [29]and Ses/Workbench [21].The IF package can be downloaded at http://www-verimag.imag.fr/DIST SYS/IF.AcknowledgementsWe gratefully thank Guoping Jia and Lucian Ghirvu for their help on tools devel-opment and experimentations.
References1. Telelogic AB. SDT Reference Manual. http://www.telelogic.se.2. S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of In�nite StateSystems Compositionally and Automatically. In A. Hu and M. Vardi, editors, Proceed-ings of CAV'98 (Vancouver, Canada), volume 1427 of LNCS, pages 319{331. Springer,June 1998.3. S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency in Timed Systems. In Interna-tional Symposium: Compositionality - The Signi�cant Di�erence (Holstein, Germany),volume 1536 of LNCS. Springer, September 1997.4. D. Bo�sna�cki, D. Dams, L. Holenderski, and N. Sidorova. Model Checking SDL withSpin. In S. Graf and M. Schwartzbach, editors, Proceedings of TACAS'2000 (Berlin,Germany), volume 1785 of LNCS, pages 363{377. Springer, March 2000.5. A. Bouajjani, J.Cl. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety for Branch-ing Time Semantics. In Proceedings of ICALP'91, volume 510 of LNCS. Springer, July1991.

6. M. Bozga, J.Cl. Fernandez, and L. Ghirvu. State Space Reduction based on LiveVariables Analysis. In A. Cortesi and G. Fil�e, editors, Proceedings of SAS'99 (Venice,Italy), volume 1694 of LNCS, pages 164{178. Springer, September 1999.7. M. Bozga, J.Cl. Fernandez, and L. Ghirvu. Using Static Analysis to Improve Au-tomatic Test Generation. In S. Graf and M. Schwartzbach, editors, Proceedings ofTACAS'00 (Berlin, Germany), LNCS, pages 235{250. Springer, March 2000.8. M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, and L. Mounier. IF: AnIntermediate Representation and Validation Environment for Timed AsynchronousSystems. In J.M. Wing, J. Woodcock, and J. Davies, editors, Proceedings of FM'99(Toulouse, France), volume 1708 of LNCS, pages 307{327. Springer, September 1999.9. M. Bozga, J.Cl. Fernandez, L. Ghirvu, C. Jard, T. J�eron, A. Kerbrat, P. Morel, andL. Mounier. Veri�cation and Test Generation for the SSCOP Protocol. Journal ofScience of Computer Programming, Special Isssue on Formal Methods in Industry,36(1):27{52, January 2000.10. M. Bozga, S. Graf, L. Mounier, I. Ober, J.L. Roux, and D. Vincent. Timed Extensionsfor SDL. In Proceedings of SDL FORUM'01, LNCS, 2001. to appear.11. M. Bozga, D. Lesens, and L. Mounier. Model-Checking Ariane-5 Flight Program. InProceedings of FMICS'01, 2001. to appear.12. J. Corbett, M. Dwyer, J. Hatcli�, C. Pasareanu, Robby, S. Laubach, and H. Zheng.Bandera : Extracting Finite-state Models from Java Source Code. In Proceedings ofthe 22nd International Conference on Software Engineering, June 2000.13. I. Dravapoulos, N. Pronios, and S. Denazis et al. The Magic WAND, Deliverable 3D5,Wireless ATM MAC, Final Report, August 1998.14. J.Cl. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-anu. CADP: A Protocol Validation and Veri�cation Toolbox. In R. Alur and T.A.Henzinger, editors, Proceedings of CAV'96 (New Brunswick, USA), volume 1102 ofLNCS, pages 437{440. Springer, August 1996.15. J.Cl. Fernandez, C. Jard, T. J�eron, and C. Viho. An Experiment in Automatic Gener-ation of Test Suites for Protocols with Veri�cation Technology. Science of ComputerProgramming, 29, 1997.16. H. Garavel. OPEN/C�SAR: An Open Software Architecture for Veri�cation, Simula-tion, and Testing. In B. Ste�en, editor, Proceedings of TACAS'98 (Lisbon, Portugal),volume 1384 of LNCS, pages 68{84. Springer, March 1998.17. S. Graf and G. Jia. Veri�cation Experiments on the Mascara Protocol. In Proceedingsof the SPIN'01 Workshop, 2001. to appear.18. S. Graf and B. Ste�en. Compositional Minimisation of Finite State Processes. InE. Clarke and R. Kurshan, editors, Proceedings of CAV'90 (Rutgers, USA), volume 3of DIMACS, pages 57{74. AMS/ACM, 1990.19. T.H. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech : A Model Checker for HybridSystems. In O. Grumberg, editor, Proceedings of CAV'97 (Haifa, Israel), volume 1254of LNCS, pages 460{463. Springer, June 1997.20. Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice HallSoftware Series, 1991.21. HyPerformix. Ses/Workbench. http://www.hyperformix.com.22. I-Logix. StateMate. http://www.ilogix.com/.23. ISO/IEC. LOTOS | A Formal Description Technique Based on the Temporal Order-ing of Observational Behaviour. Technical Report 8807, International Organization forStandardization | Information Processing Systems | Open Systems Interconnection,Gen�eve, 1988.24. ITU-T. Recommendation Q.2110. ATM Adaptation Layer - Service Speci�c Connec-tion Oriented Protocol (SSCOP). Technical Report Q-2110, International Telecom-munication Union { Standardization Sector, Gen�eve, 1994.

25. ITU-T. Recommendation Z.100. Speci�cation and Description Language (SDL). Tech-nical Report Z-100, International Telecommunication Union { Standardization Sector,Gen�eve, November 1999.26. R.P. Kurshan. Computer-Aided Veri�cation of Coordinating Processes: The Automata-Theoretic Approach. Princeton University Press, Princeton, New Jersey, 1994.27. K.G. Larsen, P. Petterson, and W. Yi. UPPAAL: Status & Developments. In O. Grum-berg, editor, Proceedings of CAV'97 (Haifa, Israel), volume 1254 of LNCS, pages 456{459. Springer, June 1997.28. K.L. McMillan. Symbolic Model Checking: an Approach to the State Explosion Prob-lem. Kluwer Academic Publisher, 1993.29. Inc MIL3. Optimized Network Engineering Tool OPNET. http://www.opnet.com/.30. OMG. Uni�ed Modeling Language Speci�cation. Technical Report OMG UML v1.3{ ad/99-06-09, Object Management Group, June 1999.31. Rational. Rational Rose. http://www.rational.com/.32. Verilog. ObjectGEODE Reference Manual. http://www.verilogusa.com/.33. M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, SE-10(4),July 1984.34. S. Yovine. KRONOS: A Veri�cation Tool for Real-Time Systems. Software Tools forTechnology Transfer, 1(1+2):123{133, December 1997.

