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Abstract

Pioneering work has been done by Jonkers [11] to define a semantics of pointer manipulating programs
that is abstract in the sense of ignoring low-level aspects such as dangling pointers and garbage objects.
We explore the principles of such storeless semantics from a logical point of view, first defining a simple
logic to completely characterize heap structures up to isomorphism. Second, we extend this language
to a full-blown alias logic (AL) that allows to express regular properties of unbounded heap structures.
Along the development, we present an operational storeless semantics and give sound and complete total
correctness axioms for deterministic programs in the form of Hoare triples, using AL.

1 Introduction

This paper provides a formalism for describing properties of linked data structures such as lists, trees
and graphs. It also provides an associated program logic for reasoning about programs that destructively
update such data structures. The introduced logic, which is called AL for Alias Logic, allows to de-
scribe aliases naturally. Moreover, the truth of formulae of this logic is insensitive to garbage collection.
Reynolds argues in [14] that program logics such as Hoare calculus based on low level view of storage
are incompatible with garbage collection. On the other hand, garbage collection is an essential feature
of runtime environments of languages as Lisp, ML and Java.

We consider a set of instructions for altering stacks and heaps and provide three different semantics
for these instructions. We also study the relationships between these semantics (See Fig 1).

We start from a low level concrete semantics, denoted by [-], in Fig. 1, where the state of a program is
described by a stack and heap. We then show that this semantics is fully abstract in the sense that it does
not distinguish between states that are equal up-to the identity of locations. In other words, renaming
of locations induces an equivalence relation that is a bisimulation (Diagram (1) in Fig 1). Moreover, we
provide a logic characterization of this equivalence relation.

This semantics is, however, sensitive to garbage and dangling pointers from which we would like to
abstract. Therefore, we present a store-less semantics [ - ], where a heap is modeled as a structure that
is a set of regular languages satisfying additional conditions. The idea behind this semantics is that each
heap element can be represented by a Rabin-Scott automaton with a single accepting state. Our store-
less semantics is akin to Jonker’s [11] and Deutsch’s [4] semantics. In contrast to them, however, our
semantics operates on structures representing equivalence classes of heaps. The additional conditions
ensures this property. Thus, the structures we introduce can be seen as symbolic representations of
equivalence classes of states and the semantics operating on them as a symbolic semantics. We show
that it is equivalent to the concrete semantics modulo renaming of locations (Diagram (2) in Fig. 1).

The third semantics we introduce is an axiomatic semantics, i.e., a Hoare logic-like proof system. The
main feature of this proof system is that it allows to prove properties of programs that are insensitive
to garbage. Thus, our proof system is compatible with garbage collection. The problem of designing
program logics enjoying this property has been studied by Hoare and Jifeng in [10]. To obtain the desired
result they explicitly introduce in the assertion language an operator which models garbage collection, i.e.,
transforms a state into a garbage free state. A drawback of this approach, as emphasized by Calcagno,
O’Hearn and Bornat in [2], is that one has to explicitly carry around a state parameter. These authors
propose in [2] an alternative approach which consists in altering the semantics of the assertion language



in such a way that the program logic becomes compatible with garbage collection. This approach is
based on using a possible-world interpretation for existential quantification, where the current heap is
the world. A similar approach is followed in [3]. Our approach is based on an assertion language that
allows to reason explicitly about aliasing. It is called Alias Logic, AL for short. AL allows to describe sets
of symbolic structures as introduced in the symbolic garbage insensitive semantics. Interpreting the logic
on symbolic structures gives as the property that it is insensitive to garbage and allows for designing
a weakest precondition based program logic that enjoys the same property. We prove soundness and
completeness of our program logic (Diagram (3)) and show its applicability on a well known example.

State <+—> State/r <+—=S§(X) <+—= AL

L1, L1, [1s pre

State <=—= State/r, <+—=§(¥) <+—= AL

Diagram (1) Diagram (2) Diagram (3)

Figure 1: Summary of the contributions

2 A Simple Heap Logic

This section is dedicated to the definition of a simple logic for performing observations on the heap. This
language is propositional logic, where the atomic terms describe pointer aliasing. We name this language
heap logic (HL). The abstract syntax of HL is given in Figure 2 (left), and its store-based denotational
semantics, in Figure 2 (right). We denote by £ the set of all pointer variables and by £T the set of all
access paths i.e., non-empty sequences of pointer variables. Since we are interested only in describing
shapes, we consider that all variables in a program are pointers.

For the semantics, we consider a set Loc of memory locations. This set is infinite but countable and
we represent it as {lo,l1,...}. As usual, a store is a partial mapping between variables and values. Since
in our case all variables are pointers, all values are locations. We express the fact that a mapping f
is undefined in a point z by f(z) =L. For a given set A, the notation A, means AU {L}; we always
assume L ¢ A. A heap is a partial mapping between locations and stores. More precisely, given a heap h
and a location [, the expression h(l) denotes a store or L if [ =1. For a variable z, the notation h(l,z)
stands for h(l)(z). We may refer to the stores in the range of a heap as to objects. We assume that heap
functions are strict i.e., h(L) = L. The denotation of the terms and expressions of our language is given
with respect to states. A state st is a pair store-heap (s, h), in which the first component represents
the values of global variables i.e., variables that are not heap-allocated. Notice that in this setting the
denotation of a string in a state [o], , is a location, or L if the access path o is dangling in the state.
Two paths are said to be aliased if and only if they lead to the same location. The propositional logic
connectives are defined as usual.

To simplify reasoning about states, we consider the function Reach, which maps a state st and a
location [ to the set of all access paths reaching [ in st. Also, the function Reachable gives, for a state
the set of reachable locations within it.

Reach : State x Loc — P(X7)
Reach(st,l) = {oext|[o], =10} (1)
Reachable :  State — P(Loc)
Reachable(st) = {l € Loc | 3o € =t [[o],, = 1]} (2)

Using these functions, we can now define the notions of total and garbage free states.
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Figure 2: The Heap Logic HL

Definition 1 A state s, h € Store x Heap is said to be:
e finite if and only if the domain of h is finite.
e total if and only if Reachable(s,h) C dom(h), and,
e garbage free if and only if dom(h) C Reachable(s,h).

Next, we define garbage collection on states as the function gc which restricts the domain of the heap
h in a state (s, h) to the set of the reachable locations. Formally:

gc :  State — State
A
gC(S,h) = Szh iReachable(s,h) (3)

2.1 An Imperative Programming Language

We consider a simple language of atomic statements and let programs be sequences of statements. The
abstract syntax of statements is shown in Figure 3. The first statement sets the left-hand side variable
to null, which may cause the deletion of non-reachable objects by the garbage collector. The second
statement allocates a fresh cell for further uses. The third statement is the assignment operation between
variables.

ull

Stmn = n
new
o

o
| o:
g:=a

where 0 € &

Figure 3: Syntax of Statements

The operational semantics is given in Figure 4. For each statement, we distinguish two cases, de-
pending on the length of the left-hand side path o. If |o| = 1 (Figure 4, left), the statement changes the
value of a local variable. Otherwise (Figure 4, right) the statement affects a heap-allocated variable.

Note that, due to the lack of an explicit delete operation, all states generated by this semantics
starting with a total state are total. Moreover, they are also garbage free, since the gc function is invoked
for each transition. Let ~» C State x Stmn x State be the transition relation defined by the rules
in Figure 4, and ~" denote its transitive closure. For a sequence of statements w € Stmn™ we write

st ~»* st’ if st’ is obtained from st by applying the sequence of operations w.

3 On Heap Isomorphism

The store-based model of computation is redundant. Intuitively, two states that differ only by a re-
naming of locations are equivalent with respect to formulas written in HL. Moreover, this equivalence
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Figure 4: Operational Semantics

is a bisimulation [12] i.e., it has been shown that the direct successors of two equivalent states are also
equivalent [8]. We formalize this notion as follows.

Definition 2 (Isomorphism) Two states are said to be isomorphic, denoted by s,h =~ s',h', if and
only if there exists a bijection 7 : Loc — Loc such that:

o s' = dv.m(s(v)), and
o b =M v.x(h(z(1),v)).

To establish whether two paths in the heap are aliased, we need to compare their denotations (Figure
2). The outcome of this observation is however independent of the actual values of paths, and can be
shown to be invariant under isomorphic transformations of states. Hence we can associate each location
in the domain of the heap an invariant set of paths, which is the set of all incoming paths.

The following theorem relates states isomorphism and the heap logic HL: two isomorphic states are
indistinguishable by any HL formula, and viceversa, two states that are indistinguishable by HL are
isomorphic. Due to space limitations, all proofs are deferred to [1].

Theorem 1 Let st,st’ € State denote any two total garbage free states, and f denote any HL formula
over the alphabet X. Then we have:

st~ st <= Vf [[fl,, = [f].,]

This result shows that, despite its simplicity, the HL language is powerful enough to distinguish
non-isomorphic states. We also conjecture a stronger result: for each finite total garbage free state
st € State, there exists an HL formula f*' that characterizes st up to isomorphism. Investigating this
issue into further detail is somehow outside the scope of this paper and is considered for an extended
version.

4 A Storeless Model

As mentioned before, the level of detail in the store-based model for the heap is too high. This allows to
distinguish between semantically equivalent states. Moreover, this model retains information related to
garbage and dangling pointers, from which we would like to abstract. Hence, we introduce a symbolic
representation, based on the theory of regular languages. In the new, storeless model, a heap is a
collection of languages. The idea behind this representation is that each object is the language accepted
by the heap graph, viewed as an automaton with that object as a unique final state.

Definition 3 (Storeless structure) A storeless structure T € P(SV) is either the empty set or a set
{51, S,...,8,} satisfying the following conditions, for all 1 <i,j < n and for some 1 < k < n:

(C1) non-emptiness: S; # 0,
(C2) determinism: i #j = S;iNS; =10,
(C3) prefiz closure and right regularity: Yo € S; [37,0 € ST [0 =76] = 7 € Si, A Sk C Si].

(7)



Let S(X) denote the set of all storeless structures over the alphabet ¥. An alternative way of defining
a storeless structure is by considering an equivalence relation (alias) on the set of all heap paths. This
is the approach taken by Jonkers [11] and Deutsch [5]. By requiring that the equivalence relation be
right-regular, they obtain that each language in the heap is recognizable by a finite automaton. Instead,
we choose to represent equivalence classes explicitly and impose the right-regularity condition as (C3).
Notice that our structures are deterministic (C2) since a path is not allowed to belong to two different
sets. Moreover, we exclude empty sets (C1) from our representation; empty sets could serve as an abstract
representation of (all) garbage objects which we have chosen to ignore.

By requiring that structures are formed only with non-empty paths (T' € P(Z7)) we represent only
rooted graphs i.e., graphs in which there are no incoming paths towards an initial node. This constraint
suits our model of heap well since all paths of lenght one denote store (local) variables and we allow
cycles only in the heap.

Let us point now the discussion towards proving the soundness and completness of the three rules
characterizing the storeless semantics. We will do so by relating storeless structures to the previous
store-based semantics.

Definition 4 (Correspondence) Let I' € §(X) be a structure and st = s, h € State be a state. We
say that T’ and st correspond, denoted I' = st, if and only if there exists a bijection m : dom(h) — ' such
that:

1. for allu € , s(u) =1 if and only if u € w(l).
2. for all 1,1I' € dom(h) and v € &, h(l,u) = 1" if and only if 7()u C w(l').

In principle, we cannot represent a state with garbage or dangling pointers by a corresponding storeless
structure, without violating condition (C3). The following lemma shows a method of transforming a
store-based state into a storeless structure. Moreover, it states that there is only one way to do so. Our
construction is in fact the equivalent of the left quotienting in automata theory [7].

Lemma 1 Let st = s,h € State be a total garbage free state. Then the set {Reach(st,l) | I € dom(h)
1s a storeless structure. Moreover, if I € S(X) is a storeless structure such that st = T, then T
{Reach(st,l) | I € dom(h)}.

This result implies that a storeless structure can be used as a canonical symbolic representation of
isomorphic states. The following theorem is the first important result of this section. It postulates the
correctness of conditions (C1), (C2) and (C3) by finding, for each store-based state a corresponding
storeless structure and viceversa, for each storeless structure a corresponding state.

Theorem 2 For each total garbage free state st € State there erists a unique structure I' € S(X) such
that st = T'. Dually, for each structure T € S(X) there erists a garbage free total state st € State such
that st = T.

This theorem expresses the fact that our definition of storeless structures has the same expressive
power as the right-regular equivalences used by Jonkers [11] and Deutsch [5] and the trace model described
by Hoare and Jifeng [10]: we are now capable to describe rooted directed labeled graphs. However, the
explicit use of regular languages, enables us to give an operational semantics on storeless structures that
is easier to understand and implement using finite regular automata. This is the discussion point of the
next subsection. Next, in Section 5, we develop an alias logic that uses regular expressions too, and
whose decision procedure relies on checking emptiness of finite regular automata.

4.1 Storeless Operational Semantics

Having defined storeless structures as a symbolic representation for states, we can now define program
actions as operations on regular languages. In order to simplify the presentation, we define first three
primitive transformations, and later, present the full semantics using compositions of the primitive ac-
tions. Informally, rem (10) describes the effect of removing an arc v from a graph node represented by
the language S. Notice that eliminating a single arc removes a possibly infinite number of paths from
the structure, potentially introducing garbage objects. These objects are automatically represented by
an empty set, which is finally eliminated from the structure. Next, new (11) is used to model object
creation. From an origin node S we create a new node represented by Sv and add it to the structure.
The most complex operation is add (12) which adds a (possibly new) arc between two nodes S and T.
This complexity is an inherent consequence of the fact that cycles might be introduced. Nevertheless, all



the transformations occuring in add are easily implemented via automata. Interestingly, our semantics
for add matches exactly Hoare and Jifeng’s semantics for pointer swing [10]. The rest of this section is
concerned with proving the correctness of the storeless operational semantics.

rem : PE)xITL-=3PE)—=PE
rem(S,v) 2 AL{X\SvS' | X eT}\ {0} (10)
new : PE)xIT—=PE)—=PE)
new(S,v) 2 AI.TU{Sv} (11)
add : PE)xTLxP(E) = PE) = PE)
add(S,v,T) 2 AL.{HS"T(X) | X €T} (12)

A

where x5V (X) X USv((T™'S)v) (T™'X)

Notice first that the primitive operations can be applied to any languages S, 7 C ¥, any symbol
v € ¥ and any set of languages I' € P(X*). The following three lemmas are then the first steps in our
correctness proof. Assuming that we start with a storeless structure I' € §(X), and two languages in
S, T € T'., we postulate necessary and sufficient conditions for the result of the three operations to be a
valid storeless structure. In particular, there are no side conditions for rem.

Lemma 2 Let I' € S(X) be a storeless structure and S € Te be a set. Then, for all symbols v € ¥ we
have rem(S,v,T) € S().

The new operation yields a correct result if and only if there are no common paths between the new
node and some existing node or the new node already existed in the structure, in which case nothing is
changed. Notice that, if this condition is violated the result will necessarily be non-deterministic, hence
violate the (C2) condition.

Lemma 3 Let I' € S(X) be a storeless structure and S € T'c be a set. Then, for all symbols v € ¥ we
have new(S,v,T) € S(X) if and only if for all T € T, either SvNT =0 or T = Sv.

Before proving soundness with respect to the store-based model, we give a fixpoint formulation for
the x> function, used in the definition of add (12); while the ready-made formula (12) is easy to
implement, the fixpoint formulation will be of more use in reasoning about the correcntess of add. To
improve readability, we skip the superscripts of x. Given three languages S, T and X, we define the
following function:

€x(z) 2 X USu(T 'x) (13)
Now let us show that x(X) = fix {x. Denote Y’ 2 T~ 'x(X). We have:

Y = T HXUSuT 'x(X)))
= TIXUT Y(Su(T 'x(X)))
— TXUT S

We have used that T7'(Sv) = (T~'S)v, which is easily checked. Also ¢ g (T~*S)v, and, by Arden’s
lemma, we obtain that ¥ = ((T'S)v)*(T 'X) is the unique solution to the above equation. Since
x(X) = X U SvY, we have the result. It is easy to check that the £x function is affine i.e., for any
Y e P(P(S)) we have £x(JY) = Ux (). Hence x(X) = U &k (0).

The add operation yields a correct result if and only if the newly added arc from S to T' does not
already exist between S and a node different than 7. If this condition would be violated the resulting
structure would be non-deterministic.

Lemma 4 Let I € §(X) be a storeless structure and S € T, T € T be two sets. Then, for all symbols
v € X we have add(S,v,T,T) € S(X) if and only if for all T' € T, either SvNT =0 or T' =T.

Figure 5 presents the operational semantics of the three statements defined by the syntax in Figure
3. As in the definition of the store-based semantics, we treat separately the case where the left-hand
side of the assignment is a local variable v or a path 7.v of length two or more. In the first case, the
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Figure 5: Storeless Operational Semantics

first argument of rem, new and add is e. Otherwise, we need to identify a node S in the source structure
to which the v variable belongs. In order to keep the semantics small, we do not treat null pointer
dereferencing errors.

To use the primitive operations previously defined, we need to make sure that the side conditions
stated in Lemma 3 and 4 are actually met. This is accomplished using rem before new or add to first
clear the “inconsistent” paths from the structure. In the case of pointer assignment (rules (16) and
(19)), removing first some paths from the structure leads to a well known problem: if the left-hand
side path is a prefix of the right-hand side and there are no other incoming paths to the right-hand
side node, then this node will be eliminated before the assignment takes place. A solution proposed
in the literature [11, 10] uses fresh paths that are explicitly added to the right-hand side node and
removed after the assignment. To simplify the semantics, we precompile our program introducing a
fresh temporary variable whenever 7.v is a prefix of # i.e., transforming the statement 7.v := 6 into
Ufresh ‘= 0; T.U 1= Uresn. Notice that the prefix condition is just a syntax check easily performed during
program parsing. Let < C S§(X) x Stmn x S(X) be the relation defined by the rules in Figure 5. As in

w

the case of store-based semantics, we write I' —* I"’ for its transitive closure.

Theorem 3 Let m € Stmn be a statement, st € State be a total garbage free state and T € S(X) be a
structure such that st = T. If st <> st' for some st' € State then there exists T' € S(3) such that T <5 T’
and st' = T'. Dually, if T S for some T" € S(X), then there exists st' € State such that st > st and
st =T,

This proves soundness of the storeless semantics with respect to the classical store-based model.

5 Alias Logic

In this section we describe the full-blown alias logic AL which embeds our initial heap logic HL and
which is next developped into a program logic. Having only about aliases is not expressive enough for
a precondition calculus. Therefore AL has a modality operator which allows to specify into which node
in the graph paths may flow. Since nodes are given as recognizable languages, the decision of modalities
boils down to deciding language emptiness of product automata.

Let Var denote a set of free variables, Reg(Var,X) denote the set of all regular expressions over
3 containing variables from Var, and Term(Var,X) denote the set of all terms built out of regular
expressions, equality operator and a modality operator together with the classic connectives of first-
order logic. Figure 6 gives the syntax (left) and the semantics (right) of AL.

In the following, we will refer to the (p1)p> terms as to modalities. To ease notation, we introduce

some syntactic shortcuts: pi \ p2 2 p1 N pa2, O 2 p\ p (for some p C X%), p1 C po 2 p1Np2 =0, and
p1 oo 2 U{p | p1-pNp2 # 0}. Using disjunction, negation and existential quantification, we can define the
rest of logical connectives as true 2 ¢V -, false 2 —true, p1 A2 2 =(=p1 V), p1 = @ 2 —p1 Vo,
and VX [p] 2 =3X [¢].

Given a term, the free function returns the set of free variables occuring within its regular expressions.
This function is usually defined by induction on the structure of terms i.e., free(eyp) 2 free(p) for each
unary term and free(p1 e p2) 2 free(p1) U free(p2) for each binary term. Existential quantification
eliminates free variables i.e., free(3X [¢]) 2 free(p) \ {X}. A structure T' is said to be a model for a
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Figure 6: The Alias Logic AL

term ¢, denoted T' |= ¢ if and only if [¢]L | . is true. We define pure assertions to be formulas not
containing modalities. Notice that the semantics of a pure assertion is given independently of a heap
structure i.e., if ¢ is pure then either VI € S(X) [T = ¢l or VI € S(T) [T ¥~ ¢].

We can now introduce further handy notation: p;<{p2 2 3x [(X)p1 A (X)p2] to express the may-

aliasing between two regular paths p; and p», and in(X) 2 (X)X* to express the presence of node X
in the storeless structure. The fact that a node Y is reachable from another node X can be defined as
reach(X,Y) 2 in(X)Ain(Y)A XZ*NY # (. The fact that X and Y belong to a cycle is expressed as
cycle(X,Y) 2 reach(X,Y) A reach(Y, X).

It is worthwhile pointing out that, by defining the <& predicate, we have embedded the HL logic into
AL. Hence AL can be used to describe sets of store-based states as well as sets of storeless configurations,
according to Theorem 3. Next, we present examples of AL formulas that describe common place heap
structures. The next subsection will discuss the use of AL to define the semantics of programs, in Hoare
style.

Ezamples To show the use of AL as a language for describing the shape of pointer structures, we consider
the following predicates:

nelist(h,n) 2 3X (X)W AVX,Y [XUY Chan* AXOY = X = V]
nshared(hi, ha,n) 2 —(h1.n*Ohy.n™)
tree(root) 2 3x [(X)root] A\VX,Y [root. X<rootY = X =Y
dag(root) 2 Ix [(X)root AVY, Z [reach(X,Y) A reach(X,Z) = —cycle(Y, Z)]

The nclist predicate is true in all states in which there exists a possibly empty non-circular list pointed to
by the variable h. The non-circularity requirement is captured by the fact that if two paths are aliased,
then they must be the equal. The nshared predicate is true when there is no sharing between a list
starting with h; and a list starting with h», if they both use the same selector n. A tree structure is
described by the lack of sharing within all the nodes reachable from the node pointed to by the root
variable. To describe a dag we only require that there are no cycles between the nodes reachable from
the top node.

AL has obvious limitations due to the expressive power of regular expressions. For instance, it would
be impossible to specify a doubly-linked list or a balanced tree, since both are counting properties. To
cope with these problems, extensions of AL towards context free and tree languages are considered as
future work.

5.1 Axiomatic Semantics

Having introduced a logic to represent sets of storeless configurations, we tackle now the problem of
using this logic to compute weakest preconditions. We define hereby sound and complete inference rules



to characterize the execution of the three statements we have considered throughout the paper. In this
setting we deal with total correctness i.e., our assertions distinguish statements that go “wrong” from
the ones that execute correctly.

Definition 5 (Weakest Precondition) Given an AL term ¢ and a sequence of statements w € Stmn*,
define wp(w, @) C S(X) to be the least set such that if T € wp(w, @) then there evists T' € S(X) such that

F=*T and T’ | ¢.

We recall a number of classical results [6] on weakest preconditions seen as predicate transformers i.e.,
the set wp(w, ) being characterized by a first-order predicate pre(w, ). For any transition relation over
a sequence of statements w, pre distributes over conjunction and universal quantification i.e., pre(w, p1 A
p2) = pre(w, 1) Apre(w, p2) and pre(w, VX [¢]) = VX [pre(w, ¢)]. For total transition relations we have
pre(w, ¢) = —pre(w, —). If, moreover, the transition relation is total and deterministic, we have that
pre is its own dual i.e., pre(w, p) & —pre(w, —p). In the latter case pre distributes over disjunction and
existential quantification too.

These properties of pre for total deterministic programs allow us to define general inference rules for
the precondition inductively on the structure of the postcondition. Therefore, we can first give sound and
complete characterizations of wp for the primitive storeless operations rem (10) and add (12) in cases
where the postconditions are modalities only. Then we can generalize to arbitrary postconditions using
the distributivity of pre operators over first-order connectives in case of deterministic programs. Next,
we will generalize the axioms to describe pre for all statements in Figure 3. In conclusion, we discuss the
treatment of non-deterministic programs in AL.

Remove The following rule defines the weakest precondition of a modality formula with respect to a
removal operation.

{3IX [X \ SvE" =T A (X)o \ SvE']} rem(S,v) {(T)o} (20)

We show now that the remove rule is sound and complete, by proving the following lemma. Although
rem is a primitive transformation and not a statement, we still denote by wp(rem(S,v), ) the largest
set of structures I' € §(X) which, under the transformation rem(S,v), lead to a structure satisfying ¢.
According to Lemma 2, we need to assume that S € T', as a side condition, otherwise the structure
obtained from I" by applying rem(S,v) might not be consistent with Definition 3.

Lemma 5 Given I''T' € S(X) two structures such that T' |= (T)o, and S € T a set, then T' €
wp(rem(S,v), (T)o) if and only if ' = 3X [X \ Sv&" =T A (X)o \ SvE"].

New This rule defines the weakest precondition of a modality with respect to the new object creation
operation.

{(T=SvAanNSv#£0)V{(T)s} new(S,v) {(T)o} (21)

It can be shown that the rule above is sound and complete with respect to the storeless operational
semantics. Using the same abuse of notation, we denote by wp(new(S,v), ¢) the largest set of structures
I' € §(2) which, under the transformation new(S,v), lead to a structure satisfying ¢. We need to
also assume the necessary and sufficient condition from Lemma 3 in order to ensure that the result of
new(S,v) is a consistent storeless structure.

Lemma 6 Given I',T' € S(X) two structures such that T' = (T)o, and S € T a set such that for all
Y €T, either SunY =0 orY = Sv, then T’ € wp(new(S,v),(T)o) if and only if T = (T = SvAocNSv #
0)v{(T)o.

Add The last rule defines the weakest precondition for modalities under the edge add operation. The
complexity of the precondition formula occurs as an inherent consequence of add’s rather complex storeless
operational semantics (12).

(3X () =UA \/ ¢i(X)]} add(S,v,T) {({U)o} (22)

i=1,2
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The soundness and completness proof is done in a similar way, with wp(add(S,v,T),¢) denoting
the weakest precondition with respect to add and the side condition from Lemma 4, added to ensure
consistency of the result.

Lemma 7 Given I,V € §() two structures such that T |= (U)o, and S,T € T two sets such that, for
allY €T, either SuNY =0 or Y =T, then T € wp(add(S,v,T),{U)a) if and only if T | IX [x(X) =
UAViz 2 $i(X)].

It is to be noticed that, in the above claims, we have implicitly used the fact that all primitive
operations on the storeless heap are total functions i.e., I always exists. This observation leads to
the fact that the transition relation < defined by the rules in Figure 5 is both total and deterministic.
According to the previous discussion, the weakest precondition predicate transformer pre distributes over
all first order logical connectives. Under this assumption, we can express the precondition of an arbitrary
AL formula ¢ recursively on the structure of ¢. Let op be a primitive operation i.e., one of rem, new
and add provided with some sound parameters S, v and T, then we denote by pre(op,¢) the formula
obtained by recursively applying rules (20), (21) and (22) to ¢. Notice that, if ¢ is a pure assertion, we
have pre(op, ¢) = p. With these considerations, Figure 7 shows the weakest preconditions for the three
types of statements considered in this paper. In order to deal with total correctness, for statements that
use dereferencing, we must add conditions to match the preconditions of the operational semantic rules
in Figure 5. Differently stated, this ensures that all transitions can actually execute. For a sequence of
statements w € Stmn” let, pre(w, ) be the precondition formula defined by the rules in Figure 7 using
the classical composition rule {pre(n, pre(m, ¢))} m;n {¢}.

{pre(rem(e,v), )} {25 [(S)T A pre(rem(S, v), p)]}
v = null (23) 7.0 = null (26)
{e} {v}
{pre(rem(e,v), pre(new(e,v), ¢))} {3S [(S)T A pre(rem(e,v), pre(new(e,v), ¢))]}
v = new (24) TV 1= new (27)
{e} {v}
{35 [(S)0 A pre(rem(e,v), pre(add(e, v, S), p))]} {35, T [(S)T A(T)0 A pre(rem(S,v), pre(add(S,v,T), ¢))}]
v:i=10 (25) TU =10 (28)
{} {e}

Figure 7: Weakest Preconditons for Statements

Theorem 4 Given T',T' € §(T) two structures, w € Stmn™ a statement and p an AL formula such that
I = ¢, then T € wp(w, ) if and only if T |= pre(w, ¢).

In conclusion, we briefly discuss the use of AL to describe the semantics of non-deterministic programs.
In practice, non-determinism can be the result of parallel composition i.e., one can immagine a parallel
version of the language in Figure 3, or abstraction i.e., non-deterministic choices can be introduced by loss
of precision. In terms of weakest preconditions, non-determinism means that the implication pre(w, ¢) <
—pre(w, ) does not hold any longer. Consequently we also lose the fact that pre(w, 1 V ¢2) =
pre(w, p1) V pre(w, p2) and the same for existential quantifier. However, pre(w, o1 V ¢2) < pre(w, p1) V
pre(w, p2) still holds, and similar for the existential quantifier. This results in a loss of completness of
weakest preconditions. Notice that, if we still replace pre(w, g1V ¢2) by pre(w, 1) Vpre(w, p2) we obtain
a stronger precondition i.e., a sound but incomplete rule. In practice this might be useful still, since any
result that we can infer is correct.

However, the reasoning we applied to disjunction and existential quantification cannot be applied to
negation, since replacing pre(w, —¢) by —pre(w, ) results in weakening the precondition. Instead, we
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write the postcondition in positive normal form (with only atomic terms in the scope of a negation) and
give a set of sound axioms for the negated modalities. This construction is further developped in the
Appendix. It is easy to verify that using positive normal forms with sound axioms for negation, ensures
soundness of the precondition axioms.

5.2 An Example

We assessed our calculus on a classical example in the literature [14]: the in-place list reversal program
from Figure 8.

The goal is to prove that nclist(i,n) A nclist(j, n) A nshared(i, j) is an invariant of the while loop.
Since we deal with total correctness, we shall assume a side condition of the form 3I [(I)7] throughout
the computation. In other words, we assume that the ¢-list has at least one element, which allows us to
iterate at least once.

j := null;

while i # null do
k :=in;
in:=j;
j=1i
i:=k;

od

Figure 8: List Reversal Program

Below we give the bottom-up derivation for the loop body. For presentation purposes we have skipped
the simplifications applied to each step. We use the consequence rule i.e., if P = @ and {Q} C {R} then
{P} C{R}.

{nclist(i) A nclist(j) A nshared(s, j)}
=
{nclist(i) A nclist(j) A nshared(i,j) AVI, J [(I)i A{J)j = J ' Inn" = 0]}
k:=1in
{nclist(k) A nclist(j) A nshared(k,7) AVI, J [(I)i A (J)j = J'INn* =]}
n =3
{nclist(k) A nclist(i) A nshared(k,i)}
Ji=1
{nclist(k) A nclist(j) A nshared(k, j)}
i:=k
{nclist(i) A nclist(j) A nshared(i, j)}
The first two steps can be resumed by substitution, since we are assigning between local variables.
In the third step we obtain an extra precondition saying that there should be no n-paths between the
node containing j and the node containing ¢, or else the assignment ¢.n := j would generate a cycle,

invalidating nclist(i). This precondition is however implied by nshared(i,j) and disapears when we
apply the consequence rule after the last step.

6 Conclusions and Future Work

This paper presents an assertion language and an associated program logic to reason about linked data
structures. The presented program logic is shown to be sound and complete for program instructions
that destructively update such data structures. The program logic is based on a storeless semantics that
is shown to be equivalent to a low level store-based semantics.
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The expressive power as well as the decidability of the assertion language AL or of some relevant
fragments need to be studied. An other promising direction is the development of an abstraction inter-
pretation based approach using AL asertions as abtract domain in the spirit of shape analysis [13].
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APPENDIX
The following axioms express sound preconditions for the negated modalities. This is useful for developing
a sound (but not complete) semantics of non-deterministic programs. Notice first that (U)o = —in(U)V
oNV =10. Since c NU = P is a pure assertion, it is sufficient to define preconditions only for —in(U).
Note that the axioms below can be easily shown to be also complete.
Negate Remove Intuitively, a set U will not belong to a structure after a remove has been performed iff
by performing the remove operation from an existing set we will not obtain U.

{VX [in(X) = X\ SvT" # U]} rem(S,v) {-in(U)}

Negate New A set U will not belong to a structure after a new operation has been performed iff it does
not belong to the structure before and it is not equal to the set that will be added by new.

{=in(U) AU # Sv} new(S,v) {-in(U)}

Negate Add A set U will not belong to a structure after an add operation has been performed iff the
pre-image of its transformation does not belong to the original structure.

(VX [in(X) = x(X) # U]} add(S, v, T) {=in(U)}

By adding the 0 NU = ) disjunct to the above preconditions, we will obtain the weakest precondition of
(U)o
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