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Storeless Semanti
s and Alias Logi
Marius Bozga, Radu Iosif and Yassine Lakhne
hVERIMAG2 Avenue de Vignate38610 Gieres, Fran
efMarius.Bozga, Radu.Iosif, Yassine.Lakhne
hg�imag.frAbstra
tPioneering work has been done by Jonkers [11℄ to de�ne a semanti
s of pointer manipulating programsthat is abstra
t in the sense of ignoring low-level aspe
ts su
h as dangling pointers and garbage obje
ts.We explore the prin
iples of su
h storeless semanti
s from a logi
al point of view, �rst de�ning a simplelogi
 to 
ompletely 
hara
terize heap stru
tures up to isomorphism. Se
ond, we extend this languageto a full-blown alias logi
 (AL) that allows to express regular properties of unbounded heap stru
tures.Along the development, we present an operational storeless semanti
s and give sound and 
omplete total
orre
tness axioms for deterministi
 programs in the form of Hoare triples, using AL.1 Introdu
tionThis paper provides a formalism for des
ribing properties of linked data stru
tures su
h as lists, treesand graphs. It also provides an asso
iated program logi
 for reasoning about programs that destru
tivelyupdate su
h data stru
tures. The introdu
ed logi
, whi
h is 
alled AL for Alias Logi
, allows to de-s
ribe aliases naturally. Moreover, the truth of formulae of this logi
 is insensitive to garbage 
olle
tion.Reynolds argues in [14℄ that program logi
s su
h as Hoare 
al
ulus based on low level view of storageare in
ompatible with garbage 
olle
tion. On the other hand, garbage 
olle
tion is an essential featureof runtime environments of languages as Lisp, ML and Java.We 
onsider a set of instru
tions for altering sta
ks and heaps and provide three di�erent semanti
sfor these instru
tions. We also study the relationships between these semanti
s (See Fig 1).We start from a low level 
on
rete semanti
s, denoted by [[�℄℄1 in Fig. 1, where the state of a program isdes
ribed by a sta
k and heap. We then show that this semanti
s is fully abstra
t in the sense that it doesnot distinguish between states that are equal up-to the identity of lo
ations. In other words, renamingof lo
ations indu
es an equivalen
e relation that is a bisimulation (Diagram (1) in Fig 1). Moreover, weprovide a logi
 
hara
terization of this equivalen
e relation.This semanti
s is, however, sensitive to garbage and dangling pointers from whi
h we would like toabstra
t. Therefore, we present a store-less semanti
s [[ � ℄℄3 where a heap is modeled as a stru
ture thatis a set of regular languages satisfying additional 
onditions. The idea behind this semanti
s is that ea
hheap element 
an be represented by a Rabin-S
ott automaton with a single a

epting state. Our store-less semanti
s is akin to Jonker's [11℄ and Deuts
h's [4℄ semanti
s. In 
ontrast to them, however, oursemanti
s operates on stru
tures representing equivalen
e 
lasses of heaps. The additional 
onditionsensures this property. Thus, the stru
tures we introdu
e 
an be seen as symboli
 representations ofequivalen
e 
lasses of states and the semanti
s operating on them as a symboli
 semanti
s. We showthat it is equivalent to the 
on
rete semanti
s modulo renaming of lo
ations (Diagram (2) in Fig. 1).The third semanti
s we introdu
e is an axiomati
 semanti
s, i.e., a Hoare logi
-like proof system. Themain feature of this proof system is that it allows to prove properties of programs that are insensitiveto garbage. Thus, our proof system is 
ompatible with garbage 
olle
tion. The problem of designingprogram logi
s enjoying this property has been studied by Hoare and Jifeng in [10℄. To obtain the desiredresult they expli
itly introdu
e in the assertion language an operator whi
h models garbage 
olle
tion, i.e.,transforms a state into a garbage free state. A drawba
k of this approa
h, as emphasized by Cal
agno,O'Hearn and Bornat in [2℄, is that one has to expli
itly 
arry around a state parameter. These authorspropose in [2℄ an alternative approa
h whi
h 
onsists in altering the semanti
s of the assertion language1



in su
h a way that the program logi
 be
omes 
ompatible with garbage 
olle
tion. This approa
h isbased on using a possible-world interpretation for existential quanti�
ation, where the 
urrent heap isthe world. A similar approa
h is followed in [3℄. Our approa
h is based on an assertion language thatallows to reason expli
itly about aliasing. It is 
alled Alias Logi
, AL for short. AL allows to des
ribe setsof symboli
 stru
tures as introdu
ed in the symboli
 garbage insensitive semanti
s. Interpreting the logi
on symboli
 stru
tures gives as the property that it is insensitive to garbage and allows for designinga weakest pre
ondition based program logi
 that enjoys the same property. We prove soundness and
ompleteness of our program logi
 (Diagram (3)) and show its appli
ability on a well known example.
State=� Diagram (3)Diagram (2)Diagram (1) gpreAL

ALS(�)
S(�)

State=� [[:℄℄3[[:℄℄2State[[:℄℄1
State

Figure 1: Summary of the 
ontributions2 A Simple Heap Logi
This se
tion is dedi
ated to the de�nition of a simple logi
 for performing observations on the heap. Thislanguage is propositional logi
, where the atomi
 terms des
ribe pointer aliasing. We name this languageheap logi
 (HL). The abstra
t syntax of HL is given in Figure 2 (left), and its store-based denotationalsemanti
s, in Figure 2 (right). We denote by � the set of all pointer variables and by �+ the set of alla

ess paths i.e., non-empty sequen
es of pointer variables. Sin
e we are interested only in des
ribingshapes, we 
onsider that all variables in a program are pointers.For the semanti
s, we 
onsider a set Lo
 of memory lo
ations. This set is in�nite but 
ountable andwe represent it as fl0; l1; : : :g. As usual, a store is a partial mapping between variables and values. Sin
ein our 
ase all variables are pointers, all values are lo
ations. We express the fa
t that a mapping fis unde�ned in a point x by f(x) =?. For a given set A, the notation A? means A [ f?g; we alwaysassume ?=2 A. A heap is a partial mapping between lo
ations and stores. More pre
isely, given a heap hand a lo
ation l, the expression h(l) denotes a store or ? if l =?. For a variable x, the notation h(l; x)stands for h(l)(x). We may refer to the stores in the range of a heap as to obje
ts. We assume that heapfun
tions are stri
t i.e., h(?) = ?. The denotation of the terms and expressions of our language is givenwith respe
t to states. A state st is a pair store-heap (s; h), in whi
h the �rst 
omponent representsthe values of global variables i.e., variables that are not heap-allo
ated. Noti
e that in this setting thedenotation of a string in a state [[�℄℄s;h is a lo
ation, or ? if the a

ess path � is dangling in the state.Two paths are said to be aliased if and only if they lead to the same lo
ation. The propositional logi

onne
tives are de�ned as usual.To simplify reasoning about states, we 
onsider the fun
tion Rea
h, whi
h maps a state st and alo
ation l to the set of all a

ess paths rea
hing l in st. Also, the fun
tion Rea
hable gives, for a statethe set of rea
hable lo
ations within it.Rea
h : State� Lo
! P(�+)Rea
h(st; l) �= f� 2 �+ j [[�℄℄st = lg (1)Rea
hable : State! P(Lo
)Rea
hable(st) �= fl 2 Lo
 j 9� 2 �+ [[[�℄℄st = l℄g (2)Using these fun
tions, we 
an now de�ne the notions of total and garbage free states.2



u; v; x 2 ��; �; � 2 ��f := �3� j f1 _ f2 j :f
s 2 Store �= � 7! Lo
?h 2 Heap �= Lo
 7! Store?st 2 State �= Store�Heap[[�℄℄s;h �= 8<: s(v) if � � vh([[� ℄℄s;h; v) � � �v? otherwise[[�3� ℄℄st �= [[�℄℄st = [[� ℄℄stFigure 2: The Heap Logi
 HLDe�nition 1 A state s; h 2 Store�Heap is said to be:� �nite if and only if the domain of h is �nite.� total if and only if Rea
hable(s; h) � dom(h), and,� garbage free if and only if dom(h) � Rea
hable(s; h).Next, we de�ne garbage 
olle
tion on states as the fun
tion g
 whi
h restri
ts the domain of the heaph in a state (s; h) to the set of the rea
hable lo
ations. Formally:g
 : State! Stateg
(s; h) �= s; h #Rea
hable(s;h) (3)2.1 An Imperative Programming LanguageWe 
onsider a simple language of atomi
 statements and let programs be sequen
es of statements. Theabstra
t syntax of statements is shown in Figure 3. The �rst statement sets the left-hand side variableto null, whi
h may 
ause the deletion of non-rea
hable obje
ts by the garbage 
olle
tor. The se
ondstatement allo
ates a fresh 
ell for further uses. The third statement is the assignment operation betweenvariables. Stmn := � := nullj � := newj � := �0 where � 2 �+Figure 3: Syntax of StatementsThe operational semanti
s is given in Figure 4. For ea
h statement, we distinguish two 
ases, de-pending on the length of the left-hand side path �. If j�j = 1 (Figure 4, left), the statement 
hanges thevalue of a lo
al variable. Otherwise (Figure 4, right) the statement a�e
ts a heap-allo
ated variable.Note that, due to the la
k of an expli
it delete operation, all states generated by this semanti
sstarting with a total state are total. Moreover, they are also garbage free, sin
e the g
 fun
tion is invokedfor ea
h transition. Let ; � State � Stmn � State be the transition relation de�ned by the rulesin Figure 4, and ;� denote its transitive 
losure. For a sequen
e of statements ! 2 Stmn� we writest !;� st0 if st0 is obtained from st by applying the sequen
e of operations !.3 On Heap IsomorphismThe store-based model of 
omputation is redundant. Intuitively, two states that di�er only by a re-naming of lo
ations are equivalent with respe
t to formulas written in HL. Moreover, this equivalen
e3



s; h v:=null; g
(s[v 7! ?℄; h) (4)lnew 62 dom(h)hnew = h[lnew 7! �x:?℄s; h v:=new; g
(s[v 7! lnew℄; hnew) (5)[[�℄℄s;h = l l 6= ?s; h v:=�; g
(s[v 7! l℄; h) (6)
[[� ℄℄s;h = l; l 6= ?; s0 = h(l)[v 7! ?℄s; h �:v:=null; g
(s; h[l 7! s0℄) (7)[[� ℄℄s;h = l; l 6= ? lnew 62 dom(h)hnew = h[lnew 7! �x:?℄ s0 = h(l)[v 7! lnew℄s; h �:v:=new; g
(s; hnew [l 7! s0℄) (8)[[� ℄℄s;h = l l 6= ?[[�℄℄s;h = l0 l0 6= ? s0 = h(l)[v 7! l0℄s; h �:v:=�; g
(s; h[l 7! s0℄) (9)Figure 4: Operational Semanti
sis a bisimulation [12℄ i.e., it has been shown that the dire
t su

essors of two equivalent states are alsoequivalent [8℄. We formalize this notion as follows.De�nition 2 (Isomorphism) Two states are said to be isomorphi
, denoted by s; h � s0; h0, if andonly if there exists a bije
tion � : Lo
! Lo
 su
h that:� s0 = �v:�(s(v)), and� h0 = �l:�v:�(h(��1(l); v)).To establish whether two paths in the heap are aliased, we need to 
ompare their denotations (Figure2). The out
ome of this observation is however independent of the a
tual values of paths, and 
an beshown to be invariant under isomorphi
 transformations of states. Hen
e we 
an asso
iate ea
h lo
ationin the domain of the heap an invariant set of paths, whi
h is the set of all in
oming paths.The following theorem relates states isomorphism and the heap logi
 HL: two isomorphi
 states areindistinguishable by any HL formula, and vi
eversa, two states that are indistinguishable by HL areisomorphi
. Due to spa
e limitations, all proofs are deferred to [1℄.Theorem 1 Let st; st0 2 State denote any two total garbage free states, and f denote any HL formulaover the alphabet �. Then we have:st � st0 () 8f [[[f ℄℄st = [[f ℄℄st0 ℄This result shows that, despite its simpli
ity, the HL language is powerful enough to distinguishnon-isomorphi
 states. We also 
onje
ture a stronger result: for ea
h �nite total garbage free statest 2 State, there exists an HL formula fst that 
hara
terizes st up to isomorphism. Investigating thisissue into further detail is somehow outside the s
ope of this paper and is 
onsidered for an extendedversion.4 A Storeless ModelAs mentioned before, the level of detail in the store-based model for the heap is too high. This allows todistinguish between semanti
ally equivalent states. Moreover, this model retains information related togarbage and dangling pointers, from whi
h we would like to abstra
t. Hen
e, we introdu
e a symboli
representation, based on the theory of regular languages. In the new, storeless model, a heap is a
olle
tion of languages. The idea behind this representation is that ea
h obje
t is the language a

eptedby the heap graph, viewed as an automaton with that obje
t as a unique �nal state.De�nition 3 (Storeless stru
ture) A storeless stru
ture � 2 P(�+) is either the empty set or a setfS1; S2; : : : ; Sng satisfying the following 
onditions, for all 1 � i; j � n and for some 1 � k � n:(C1) non-emptiness: Si 6= ;,(C2) determinism: i 6= j ) Si \ Sj = ;,(C3) pre�x 
losure and right regularity: 8� 2 Si [9�; � 2 �+[� = ��℄) � 2 Sk ^ Sk� � Si℄.4



Let S(�) denote the set of all storeless stru
tures over the alphabet �. An alternative way of de�ninga storeless stru
ture is by 
onsidering an equivalen
e relation (alias) on the set of all heap paths. Thisis the approa
h taken by Jonkers [11℄ and Deuts
h [5℄. By requiring that the equivalen
e relation beright-regular, they obtain that ea
h language in the heap is re
ognizable by a �nite automaton. Instead,we 
hoose to represent equivalen
e 
lasses expli
itly and impose the right-regularity 
ondition as (C3).Noti
e that our stru
tures are deterministi
 (C2) sin
e a path is not allowed to belong to two di�erentsets. Moreover, we ex
lude empty sets (C1) from our representation; empty sets 
ould serve as an abstra
trepresentation of (all) garbage obje
ts whi
h we have 
hosen to ignore.By requiring that stru
tures are formed only with non-empty paths (� 2 P(�+)) we represent onlyrooted graphs i.e., graphs in whi
h there are no in
oming paths towards an initial node. This 
onstraintsuits our model of heap well sin
e all paths of lenght one denote store (lo
al) variables and we allow
y
les only in the heap.Let us point now the dis
ussion towards proving the soundness and 
ompletness of the three rules
hara
terizing the storeless semanti
s. We will do so by relating storeless stru
tures to the previousstore-based semanti
s.De�nition 4 (Corresponden
e) Let � 2 S(�) be a stru
ture and st = s; h 2 State be a state. Wesay that � and st 
orrespond, denoted �� st, if and only if there exists a bije
tion � : dom(h)! � su
hthat:1. for all u 2 �, s(u) = l if and only if u 2 �(l).2. for all l; l0 2 dom(h) and u 2 �, h(l; u) = l0 if and only if �(l)u � �(l0).In prin
iple, we 
annot represent a state with garbage or dangling pointers by a 
orresponding storelessstru
ture, without violating 
ondition (C3). The following lemma shows a method of transforming astore-based state into a storeless stru
ture. Moreover, it states that there is only one way to do so. Our
onstru
tion is in fa
t the equivalent of the left quotienting in automata theory [7℄.Lemma 1 Let st = s; h 2 State be a total garbage free state. Then the set fRea
h(st; l) j l 2 dom(h)gis a storeless stru
ture. Moreover, if � 2 S(�) is a storeless stru
ture su
h that st � �, then � =fRea
h(st; l) j l 2 dom(h)g.This result implies that a storeless stru
ture 
an be used as a 
anoni
al symboli
 representation ofisomorphi
 states. The following theorem is the �rst important result of this se
tion. It postulates the
orre
tness of 
onditions (C1), (C2) and (C3) by �nding, for ea
h store-based state a 
orrespondingstoreless stru
ture and vi
eversa, for ea
h storeless stru
ture a 
orresponding state.Theorem 2 For ea
h total garbage free state st 2 State there exists a unique stru
ture � 2 S(�) su
hthat st � �. Dually, for ea
h stru
ture � 2 S(�) there exists a garbage free total state st 2 State su
hthat st� �.This theorem expresses the fa
t that our de�nition of storeless stru
tures has the same expressivepower as the right-regular equivalen
es used by Jonkers [11℄ and Deuts
h [5℄ and the tra
e model des
ribedby Hoare and Jifeng [10℄: we are now 
apable to des
ribe rooted dire
ted labeled graphs. However, theexpli
it use of regular languages, enables us to give an operational semanti
s on storeless stru
tures thatis easier to understand and implement using �nite regular automata. This is the dis
ussion point of thenext subse
tion. Next, in Se
tion 5, we develop an alias logi
 that uses regular expressions too, andwhose de
ision pro
edure relies on 
he
king emptiness of �nite regular automata.4.1 Storeless Operational Semanti
sHaving de�ned storeless stru
tures as a symboli
 representation for states, we 
an now de�ne programa
tions as operations on regular languages. In order to simplify the presentation, we de�ne �rst threeprimitive transformations, and later, present the full semanti
s using 
ompositions of the primitive a
-tions. Informally, rem (10) des
ribes the e�e
t of removing an ar
 v from a graph node represented bythe language S. Noti
e that eliminating a single ar
 removes a possibly in�nite number of paths fromthe stru
ture, potentially introdu
ing garbage obje
ts. These obje
ts are automati
ally represented byan empty set, whi
h is �nally eliminated from the stru
ture. Next, new (11) is used to model obje
t
reation. From an origin node S we 
reate a new node represented by Sv and add it to the stru
ture.The most 
omplex operation is add (12) whi
h adds a (possibly new) ar
 between two nodes S and T .This 
omplexity is an inherent 
onsequen
e of the fa
t that 
y
les might be introdu
ed. Nevertheless, all5



the transformations o

uring in add are easily implemented via automata. Interestingly, our semanti
sfor add mat
hes exa
tly Hoare and Jifeng's semanti
s for pointer swing [10℄. The rest of this se
tion is
on
erned with proving the 
orre
tness of the storeless operational semanti
s.rem : P(��)� �! P(��)! P(��)rem(S; v) �= ��:fX n Sv�� j X 2 �g n f;g (10)new : P(��)� �! P(��)! P(��)new(S; v) �= ��:� [ fSvg (11)add : P(��)� ��P(��)! P(��)! P(��)add(S; v; T ) �= ��:f�S;v;T (X) j X 2 �g (12)where �S;v;T (X) �= X [ Sv((T�1S)v)�(T�1X)Noti
e �rst that the primitive operations 
an be applied to any languages S; T � ��, any symbolv 2 � and any set of languages � 2 P(��). The following three lemmas are then the �rst steps in our
orre
tness proof. Assuming that we start with a storeless stru
ture � 2 S(�), and two languages inS; T 2 ��, we postulate ne
essary and suÆ
ient 
onditions for the result of the three operations to be avalid storeless stru
ture. In parti
ular, there are no side 
onditions for rem.Lemma 2 Let � 2 S(�) be a storeless stru
ture and S 2 �� be a set. Then, for all symbols v 2 � wehave rem(S; v;�) 2 S(�).The new operation yields a 
orre
t result if and only if there are no 
ommon paths between the newnode and some existing node or the new node already existed in the stru
ture, in whi
h 
ase nothing is
hanged. Noti
e that, if this 
ondition is violated the result will ne
essarily be non-deterministi
, hen
eviolate the (C2) 
ondition.Lemma 3 Let � 2 S(�) be a storeless stru
ture and S 2 �� be a set. Then, for all symbols v 2 � wehave new(S; v;�) 2 S(�) if and only if for all T 2 �, either Sv \ T = ; or T = Sv.Before proving soundness with respe
t to the store-based model, we give a �xpoint formulation forthe �S;v;T fun
tion, used in the de�nition of add (12); while the ready-made formula (12) is easy toimplement, the �xpoint formulation will be of more use in reasoning about the 
orre
ntess of add. Toimprove readability, we skip the supers
ripts of �. Given three languages S, T and X, we de�ne thefollowing fun
tion: �X(x) �= X [ Sv(T�1x) (13)Now let us show that �(X) = �x �X . Denote Y �= T�1�(X). We have:Y = T�1(X [ Sv(T�1�(X)))= T�1X [ T�1(Sv(T�1�(X)))= T�1X [ (T�1S)vYWe have used that T�1(Sv) = (T�1S)v, whi
h is easily 
he
ked. Also � 62 (T�1S)v, and, by Arden'slemma, we obtain that Y = ((T�1S)v)�(T�1X) is the unique solution to the above equation. Sin
e�(X) = X [ SvY , we have the result. It is easy to 
he
k that the �X fun
tion is aÆne i.e., for anyY 2 P(P(��)) we have �X(SY) = S �X(Y). Hen
e �(X) = Si�0 �iX(;).The add operation yields a 
orre
t result if and only if the newly added ar
 from S to T does notalready exist between S and a node di�erent than T . If this 
ondition would be violated the resultingstru
ture would be non-deterministi
.Lemma 4 Let � 2 S(�) be a storeless stru
ture and S 2 ��, T 2 � be two sets. Then, for all symbolsv 2 � we have add(S; v; T;�) 2 S(�) if and only if for all T 0 2 �, either Sv \ T 0 = ; or T 0 = T .Figure 5 presents the operational semanti
s of the three statements de�ned by the syntax in Figure3. As in the de�nition of the store-based semanti
s, we treat separately the 
ase where the left-handside of the assignment is a lo
al variable v or a path �:v of length two or more. In the �rst 
ase, the6



� v:=null,! rem(�; v;�) (14)� v:=new,! (new(�; v) Æ rem(�; v))(�) (15)9S 2 � [� 2 S℄� v:=�,! (add(�; v; S) Æ rem(�; v))(�) (16)
9S 2 � [� 2 S℄� �:v:=null,! rem(S; v;�) (17)9S 2 � [� 2 S℄� �:v:=new,! (new(S; v) Æ rem(S; v))(�) (18)9S; T 2 � [� 2 S ^ � 2 T ℄� �:v:=�,! (add(S; v; T ) Æ rem(S; v))(�) (19)Figure 5: Storeless Operational Semanti
s�rst argument of rem, new and add is �. Otherwise, we need to identify a node S in the sour
e stru
tureto whi
h the v variable belongs. In order to keep the semanti
s small, we do not treat null pointerdereferen
ing errors.To use the primitive operations previously de�ned, we need to make sure that the side 
onditionsstated in Lemma 3 and 4 are a
tually met. This is a

omplished using rem before new or add to �rst
lear the \in
onsistent" paths from the stru
ture. In the 
ase of pointer assignment (rules (16) and(19)), removing �rst some paths from the stru
ture leads to a well known problem: if the left-handside path is a pre�x of the right-hand side and there are no other in
oming paths to the right-handside node, then this node will be eliminated before the assignment takes pla
e. A solution proposedin the literature [11, 10℄ uses fresh paths that are expli
itly added to the right-hand side node andremoved after the assignment. To simplify the semanti
s, we pre
ompile our program introdu
ing afresh temporary variable whenever �:v is a pre�x of � i.e., transforming the statement �:v := � intovfresh := �; �:v := vfresh. Noti
e that the pre�x 
ondition is just a syntax 
he
k easily performed duringprogram parsing. Let ,! � S(�)� Stmn� S(�) be the relation de�ned by the rules in Figure 5. As inthe 
ase of store-based semanti
s, we write � !,!� �0 for its transitive 
losure.Theorem 3 Let m 2 Stmn be a statement, st 2 State be a total garbage free state and � 2 S(�) be astru
ture su
h that st� �. If st m; st0 for some st0 2 State then there exists �0 2 S(�) su
h that � m,! �0and st0 � �0. Dually, if � m,! �0 for some �0 2 S(�), then there exists st0 2 State su
h that st m; st0 andst0 � �0.This proves soundness of the storeless semanti
s with respe
t to the 
lassi
al store-based model.5 Alias Logi
In this se
tion we des
ribe the full-blown alias logi
 AL whi
h embeds our initial heap logi
 HL andwhi
h is next developped into a program logi
. Having only about aliases is not expressive enough fora pre
ondition 
al
ulus. Therefore AL has a modality operator whi
h allows to spe
ify into whi
h nodein the graph paths may 
ow. Sin
e nodes are given as re
ognizable languages, the de
ision of modalitiesboils down to de
iding language emptiness of produ
t automata.Let V ar denote a set of free variables, Reg(V ar;�) denote the set of all regular expressions over� 
ontaining variables from V ar, and Term(V ar;�) denote the set of all terms built out of regularexpressions, equality operator and a modality operator together with the 
lassi
 
onne
tives of �rst-order logi
. Figure 6 gives the syntax (left) and the semanti
s (right) of AL.In the following, we will refer to the h�1i�2 terms as to modalities. To ease notation, we introdu
esome synta
ti
 short
uts: �1 n �2 �= �1 \ ��2, ; �= � n � (for some � � ��), �1 � �2 �= �1 \ ��2 = ;, and��11 �2 �= [f� j �1 ��\�2 6= ;g. Using disjun
tion, negation and existential quanti�
ation, we 
an de�ne therest of logi
al 
onne
tives as true �= '_:', false �= :true, '1^'2 �= :(:'1_'2), '1 ) '2 �= :'1_'2,and 8X ['℄ �= :9X [:'℄.Given a term, the free fun
tion returns the set of free variables o

uring within its regular expressions.This fun
tion is usually de�ned by indu
tion on the stru
ture of terms i.e., free(�') �= free(') for ea
hunary term and free('1 � '2) �= free('1) [ free('2) for ea
h binary term. Existential quanti�
ationeliminates free variables i.e., free(9X ['℄) �= free(') n fXg. A stru
ture � is said to be a model for a7



u 2 �X 2 V ar� 2 Reg(V ar;�)' 2 Term(V ar;�)� ::= u j � j X j �1 � �2 j ��j �1 [ �2 j �1 \ �2 j ��' ::= �1 = �2 j h�1i�2j '1 _ '2 j :' j 9X ['℄
� 2 S(�)free : Reg(V ar;�) [ Term(V ar;�)! P(V ar)� : V ar! ��[[�℄℄� �= �[ ~X=�( ~X)℄ where ~X = free(�)[[�1 = �2℄℄� �= [[�1℄℄� = [[�2℄℄�[[h�1i�2℄℄�;� �= [[�1℄℄� 2 � ^ [[�1℄℄� \ [[�2℄℄� 6= ;[[9X ['℄℄℄� �= 9� 2 �� [['℄℄[X!�℄�Figure 6: The Alias Logi
 ALterm ', denoted � j= ' if and only if [['℄℄�;�X:� is true. We de�ne pure assertions to be formulas not
ontaining modalities. Noti
e that the semanti
s of a pure assertion is given independently of a heapstru
ture i.e., if ' is pure then either 8 � 2 S(�) [� j= '℄ or 8 � 2 S(�) [� 6j= '℄.We 
an now introdu
e further handy notation: �13�2 �= 9X [hXi�1 ^ hXi�2℄ to express the may-aliasing between two regular paths �1 and �2, and in(X) �= hXi�� to express the presen
e of node Xin the storeless stru
ture. The fa
t that a node Y is rea
hable from another node X 
an be de�ned asrea
h(X;Y ) �= in(X) ^ in(Y ) ^X�� \ Y 6= ;. The fa
t that X and Y belong to a 
y
le is expressed as
y
le(X;Y ) �= rea
h(X;Y ) ^ rea
h(Y;X).It is worthwhile pointing out that, by de�ning the 3 predi
ate, we have embedded the HL logi
 intoAL. Hen
e AL 
an be used to des
ribe sets of store-based states as well as sets of storeless 
on�gurations,a

ording to Theorem 3. Next, we present examples of AL formulas that des
ribe 
ommon pla
e heapstru
tures. The next subse
tion will dis
uss the use of AL to de�ne the semanti
s of programs, in Hoarestyle.Examples To show the use of AL as a language for des
ribing the shape of pointer stru
tures, we 
onsiderthe following predi
ates:n
list(h; n) �= 9X [hXih℄ ^ 8X;Y [X [ Y � h:n� ^X3Y ) X = Y ℄nshared(h1; h2; n) �= :(h1:n�3h2:n�)tree(root) �= 9X [hXiroot℄ ^ 8X;Y [root:X3root:Y ) X = Y ℄dag(root) �= 9X [hXiroot ^ 8Y; Z [rea
h(X;Y ) ^ rea
h(X;Z)) :
y
le(Y; Z)℄The n
list predi
ate is true in all states in whi
h there exists a possibly empty non-
ir
ular list pointed toby the variable h. The non-
ir
ularity requirement is 
aptured by the fa
t that if two paths are aliased,then they must be the equal. The nshared predi
ate is true when there is no sharing between a liststarting with h1 and a list starting with h2, if they both use the same sele
tor n. A tree stru
ture isdes
ribed by the la
k of sharing within all the nodes rea
hable from the node pointed to by the rootvariable. To des
ribe a dag we only require that there are no 
y
les between the nodes rea
hable fromthe top node.AL has obvious limitations due to the expressive power of regular expressions. For instan
e, it wouldbe impossible to spe
ify a doubly-linked list or a balan
ed tree, sin
e both are 
ounting properties. To
ope with these problems, extensions of AL towards 
ontext free and tree languages are 
onsidered asfuture work.5.1 Axiomati
 Semanti
sHaving introdu
ed a logi
 to represent sets of storeless 
on�gurations, we ta
kle now the problem ofusing this logi
 to 
ompute weakest pre
onditions. We de�ne hereby sound and 
omplete inferen
e rules8



to 
hara
terize the exe
ution of the three statements we have 
onsidered throughout the paper. In thissetting we deal with total 
orre
tness i.e., our assertions distinguish statements that go \wrong" fromthe ones that exe
ute 
orre
tly.De�nition 5 (Weakest Pre
ondition) Given an AL term ' and a sequen
e of statements ! 2 Stmn�,de�ne wp(!;') � S(�) to be the least set su
h that if � 2 wp(!;') then there exists �0 2 S(�) su
h that� !,!� �0 and �0 j= '.We re
all a number of 
lassi
al results [6℄ on weakest pre
onditions seen as predi
ate transformers i.e.,the set wp(!; ') being 
hara
terized by a �rst-order predi
ategpre(!; '). For any transition relation overa sequen
e of statements !,gpre distributes over 
onjun
tion and universal quanti�
ation i.e.,gpre(!;'1^'2) =gpre(!;'1)^gpre(!;'2) andgpre(!; 8X ['℄) = 8X [gpre(!;')℄. For total transition relations we havegpre(!;') ) :gpre(!;:'). If, moreover, the transition relation is total and deterministi
, we have thatgpre is its own dual i.e.,gpre(!;'), :gpre(!;:'). In the latter 
asegpre distributes over disjun
tion andexistential quanti�
ation too.These properties ofgpre for total deterministi
 programs allow us to de�ne general inferen
e rules forthe pre
ondition indu
tively on the stru
ture of the post
ondition. Therefore, we 
an �rst give sound and
omplete 
hara
terizations of wp for the primitive storeless operations rem (10) and add (12) in 
aseswhere the post
onditions are modalities only. Then we 
an generalize to arbitrary post
onditions usingthe distributivity ofgpre operators over �rst-order 
onne
tives in 
ase of deterministi
 programs. Next,we will generalize the axioms to des
ribegpre for all statements in Figure 3. In 
on
lusion, we dis
uss thetreatment of non-deterministi
 programs in AL.Remove The following rule de�nes the weakest pre
ondition of a modality formula with respe
t to aremoval operation. f9X [X n Sv�� = T ^ hXi� n Sv��℄g rem(S;v) fhT i�g (20)We show now that the remove rule is sound and 
omplete, by proving the following lemma. Althoughrem is a primitive transformation and not a statement, we still denote by wp(rem(S; v); ') the largestset of stru
tures � 2 S(�) whi
h, under the transformation rem(S; v), lead to a stru
ture satisfying '.A

ording to Lemma 2, we need to assume that S 2 �, as a side 
ondition, otherwise the stru
tureobtained from � by applying rem(S; v) might not be 
onsistent with De�nition 3.Lemma 5 Given �;�0 2 S(�) two stru
tures su
h that �0 j= hT i�, and S 2 � a set, then � 2wp(rem(S; v); hT i�) if and only if � j= 9X [X n Sv�� = T ^ hXi� n Sv��℄.New This rule de�nes the weakest pre
ondition of a modality with respe
t to the new obje
t 
reationoperation. f(T = Sv ^ � \ Sv 6= ;) _ hT i�g new(S;v) fhT i�g (21)It 
an be shown that the rule above is sound and 
omplete with respe
t to the storeless operationalsemanti
s. Using the same abuse of notation, we denote by wp(new(S; v); ') the largest set of stru
tures� 2 S(�) whi
h, under the transformation new(S; v), lead to a stru
ture satisfying '. We need toalso assume the ne
essary and suÆ
ient 
ondition from Lemma 3 in order to ensure that the result ofnew(S; v) is a 
onsistent storeless stru
ture.Lemma 6 Given �;�0 2 S(�) two stru
tures su
h that �0 j= hT i�, and S 2 � a set su
h that for allY 2 �, either Sv\Y = ; or Y = Sv, then � 2 wp(new(S; v); hT i�) if and only if � j= (T = Sv^�\Sv 6=;) _ hT i�.Add The last rule de�nes the weakest pre
ondition for modalities under the edge add operation. The
omplexity of the pre
ondition formula o

urs as an inherent 
onsequen
e of add's rather 
omplex storelessoperational semanti
s (12).f9X [�(X) = U ^ _i=1;2 i(X)℄g add(S;v;T) fhUi�g (22)
9



where  1(X) �= Sv((T�1S)v)�(T�1X) \ � = ; ^ hXi� 2(X) �= Sv((T�1S)v)�(T�1X) \ � 6= ; ^ hXi��The soundness and 
ompletness proof is done in a similar way, with wp(add(S; v; T ); ') denotingthe weakest pre
ondition with respe
t to add and the side 
ondition from Lemma 4, added to ensure
onsisten
y of the result.Lemma 7 Given �;�0 2 S(�) two stru
tures su
h that �0 j= hUi�, and S; T 2 � two sets su
h that, forall Y 2 �, either Sv \ Y = ; or Y = T , then � 2 wp(add(S; v; T ); hUi�) if and only if � j= 9X [�(X) =U ^Wi=1;2  i(X)℄.It is to be noti
ed that, in the above 
laims, we have impli
itly used the fa
t that all primitiveoperations on the storeless heap are total fun
tions i.e., �0 always exists. This observation leads tothe fa
t that the transition relation ,! de�ned by the rules in Figure 5 is both total and deterministi
.A

ording to the previous dis
ussion, the weakest pre
ondition predi
ate transformergpre distributes overall �rst order logi
al 
onne
tives. Under this assumption, we 
an express the pre
ondition of an arbitraryAL formula ' re
ursively on the stru
ture of '. Let op be a primitive operation i.e., one of rem, newand add provided with some sound parameters S, v and T , then we denote by gpre(op; ') the formulaobtained by re
ursively applying rules (20), (21) and (22) to '. Noti
e that, if ' is a pure assertion, wehavegpre(op; ') = '. With these 
onsiderations, Figure 7 shows the weakest pre
onditions for the threetypes of statements 
onsidered in this paper. In order to deal with total 
orre
tness, for statements thatuse dereferen
ing, we must add 
onditions to mat
h the pre
onditions of the operational semanti
 rulesin Figure 5. Di�erently stated, this ensures that all transitions 
an a
tually exe
ute. For a sequen
e ofstatements ! 2 Stmn� let,gpre(!;') be the pre
ondition formula de�ned by the rules in Figure 7 usingthe 
lassi
al 
omposition rule fgpre(n;gpre(m;'))g m;n f'g.fgpre(rem(�; v); ')gv := null (23)f'gfgpre(rem(�; v);gpre(new(�; v); '))gv := new (24)f'gf9S [hSi� ^gpre(rem(�; v);gpre(add(�; v; S); '))℄gv := � (25)f'g
f9S [hSi� ^gpre(rem(S; v); ')℄g�:v := null (26)f'gf9S [hSi� ^gpre(rem(�; v);gpre(new(�; v); '))℄g�:v := new (27)f'gf9S; T [hSi� ^ hT i� ^gpre(rem(S; v);gpre(add(S; v; T ); '))g℄�:v := � (28)f'gFigure 7: Weakest Pre
onditons for StatementsTheorem 4 Given �;�0 2 S(�) two stru
tures, ! 2 Stmn� a statement and ' an AL formula su
h that�0 j= ', then � 2 wp(!;') if and only if � j=gpre(!; ').In 
on
lusion, we brie
y dis
uss the use of AL to des
ribe the semanti
s of non-deterministi
 programs.In pra
ti
e, non-determinism 
an be the result of parallel 
omposition i.e., one 
an immagine a parallelversion of the language in Figure 3, or abstra
tion i.e., non-deterministi
 
hoi
es 
an be introdu
ed by lossof pre
ision. In terms of weakest pre
onditions, non-determinism means that the impli
ationgpre(!;')(:gpre(!;:') does not hold any longer. Consequently we also lose the fa
t that gpre(!;'1 _ '2) )gpre(!;'1) _gpre(!;'2) and the same for existential quanti�er. However,gpre(!;'1 _ '2)(gpre(!; '1) _gpre(!;'2) still holds, and similar for the existential quanti�er. This results in a loss of 
ompletness ofweakest pre
onditions. Noti
e that, if we still repla
egpre(!; '1_'2) bygpre(!;'1)_gpre(!; '2) we obtaina stronger pre
ondition i.e., a sound but in
omplete rule. In pra
ti
e this might be useful still, sin
e anyresult that we 
an infer is 
orre
t.However, the reasoning we applied to disjun
tion and existential quanti�
ation 
annot be applied tonegation, sin
e repla
ing gpre(!;:') by :gpre(!;') results in weakening the pre
ondition. Instead, we10



write the post
ondition in positive normal form (with only atomi
 terms in the s
ope of a negation) andgive a set of sound axioms for the negated modalities. This 
onstru
tion is further developped in theAppendix. It is easy to verify that using positive normal forms with sound axioms for negation, ensuressoundness of the pre
ondition axioms.5.2 An ExampleWe assessed our 
al
ulus on a 
lassi
al example in the literature [14℄: the in-pla
e list reversal programfrom Figure 8.The goal is to prove that n
list(i; n) ^ n
list(j; n) ^ nshared(i; j) is an invariant of the while loop.Sin
e we deal with total 
orre
tness, we shall assume a side 
ondition of the form 9I [hIii℄ throughoutthe 
omputation. In other words, we assume that the i-list has at least one element, whi
h allows us toiterate at least on
e. j := null;while i 6= null dok := i.n;i.n := j;j := i;i := k;odFigure 8: List Reversal ProgramBelow we give the bottom-up derivation for the loop body. For presentation purposes we have skippedthe simpli�
ations applied to ea
h step. We use the 
onsequen
e rule i.e., if P ) Q and fQg C fRg thenfPg C fRg. fn
list(i) ^ n
list(j) ^ nshared(i; j)g)fn
list(i) ^ n
list(j) ^ nshared(i; j) ^ 8I; J [hIii ^ hJij ) J�1I \ n� = ;℄gk := i:nfn
list(k) ^ n
list(j) ^ nshared(k; j) ^ 8I; J [hIii ^ hJij ) J�1I \ n� = ;℄gi:n := jfn
list(k) ^ n
list(i) ^ nshared(k; i)gj := ifn
list(k) ^ n
list(j) ^ nshared(k; j)gi := kfn
list(i) ^ n
list(j) ^ nshared(i; j)gThe �rst two steps 
an be resumed by substitution, sin
e we are assigning between lo
al variables.In the third step we obtain an extra pre
ondition saying that there should be no n-paths between thenode 
ontaining j and the node 
ontaining i, or else the assignment i:n := j would generate a 
y
le,invalidating n
list(i). This pre
ondition is however implied by nshared(i; j) and disapears when weapply the 
onsequen
e rule after the last step.6 Con
lusions and Future WorkThis paper presents an assertion language and an asso
iated program logi
 to reason about linked datastru
tures. The presented program logi
 is shown to be sound and 
omplete for program instru
tionsthat destru
tively update su
h data stru
tures. The program logi
 is based on a storeless semanti
s thatis shown to be equivalent to a low level store-based semanti
s.11
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e (2002)APPENDIXThe following axioms express sound pre
onditions for the negated modalities. This is useful for developinga sound (but not 
omplete) semanti
s of non-deterministi
 programs. Noti
e �rst that :hUi� = :in(U)_� \ V = ;. Sin
e � \ U = ; is a pure assertion, it is suÆ
ient to de�ne pre
onditions only for :in(U).Note that the axioms below 
an be easily shown to be also 
omplete.Negate Remove Intuitively, a set U will not belong to a stru
ture after a remove has been performed i�by performing the remove operation from an existing set we will not obtain U .f8X [in(X)) X n Sv�� 6= U ℄g rem(S;v) f:in(U)gNegate New A set U will not belong to a stru
ture after a new operation has been performed i� it doesnot belong to the stru
ture before and it is not equal to the set that will be added by new.f:in(U) ^ U 6= Svg new(S;v) f:in(U)gNegate Add A set U will not belong to a stru
ture after an add operation has been performed i� thepre-image of its transformation does not belong to the original stru
ture.f8X [in(X) ) �(X) 6= U ℄g add(S;v;T) f:in(U)gBy adding the � \U = ; disjun
t to the above pre
onditions, we will obtain the weakest pre
ondition of:hUi�. 12


