
HAL Id: hal-00369338
https://hal.science/hal-00369338

Submitted on 19 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Logics of Aliasing
Marius Bozga, Radu Iosif, Yassine Lakhnech

To cite this version:
Marius Bozga, Radu Iosif, Yassine Lakhnech. On Logics of Aliasing. Static Analysis 11th International
Symposium, SAS 2004, Aug 2004, Verona, Italy. pp.344-360, �10.1007/b99688�. �hal-00369338�

https://hal.science/hal-00369338
https://hal.archives-ouvertes.fr

On Logics of Aliasing
Marius Bozga, Radu Iosif and Yassine LakhnechVERIMAG,2 Avenue de Vignate,38610 Gi�eres, Francefbozga, iosif, lakhnechg@imag.fr

Abstract. In this paper we investigate the existence of a deductive ver-i�cation method based on a logic that describes pointer aliasing. Themain idea of such a method is that the user has to annotate the programwith loop invariants, pre- and post-conditions. The annotations are thenautomatically checked for validity by propagating weakest preconditionsand verifying a number of induced implications. Such a method requiresan underlying logic which is decidable and has a sound and completeweakest precondition calculus. We start by presenting a powerful logic(wAL) which can describe the shapes of most recursively de�ned datastructures (lists, trees, etc.) has a complete weakest precondition calcu-lus but is undecidable. Next, we identify a decidable subset (pAL) forwhich we show closure under the weakest precondition operators. In thelatter logic one loses the ability of describing unbounded heap structures,yet bounded structures can be characterized up to isomorphism. For thislogic two sound and complete proof systems are given, one based on nat-ural deduction, and another based on the e�ective method of analytictableaux. The two logics presented in this paper can be seen as extremevalues in a framework which attempts to reconcile the naturally opositegoals of expressiveness and decidability.
1 IntroductionThe problem of pointer aliasing plays an important role in the �elds of staticanalysis and software model checking. In general, static analyses used in opti-mizing compilers check basic properties such as data sharing and circularitiesin the heap of a program, while model checking deals with the evolution ofheap structures, in both shape and contents, over time. An early result [21]shows that precise may-alias analysis in the presence of loops is undecidable. Asa consequence, the approach adopted by the static analysis community, is theabstraction-based shape analysis [23]. This method is e�ective in the presence ofloops, since the domain of the analysis is bounded, but often imprecise. In thispaper we present an orthogonal solution to the aliasing problem, in that preci-sion is the primary goal. To ensure termination, we use Floyd's method [10] ofannotating the program with pre-, post-conditions and loop invariants. The an-notations are subsequently veri�ed by a push-button procedure, that computesweakest preconditions expressed using an e�ectively decidable logic.

The key is to �nd a logic that can altogether (i) express aliasing and shapeproperties of the program heap, (ii) is e�ectively decidable, and moreover, (iii)has a sound and complete weakest precondition calculus with respect to theatomic statements. While the second and third requirements are clear, the �rstone is still ambiguous: what kind of speci�cations can we express in a decidableheap logic with weakest preconditions? The contribution of this paper is thede�nition of a formal framework in which we prove that such logics can befound. Our focus is on imperative programs with destructive updating, in whichheaps are viewed as shape graphs with labels only on edges i.e., we ignore fromthe start the internal states of the objects.As a starting point, we present a general logic Weak Alias Logic (wAL) thatis expressive enough to describe the recursive data structures of interest (lists,trees, dags etc.) as in�nite classes of �nite graphs. This logic has also a sound andcomplete weakest precondition calculus with respect to atomic statements suchas new object creation and assignment of pointers. The satis�ability problemof the wAL logic is found to be undecidable but recursively enumerable, whichmotivates further searches for semi-decision procedures and non-trivial decidablesubsets.In the rest of the paper, we de�ne a decidable subset of wAL, called Propo-sitional Alias Logic (pAL) for describing pointer aliasing that is, moreover, ableto characterize arbitrary �nite structures and �nite classes of structures. Thetradeo� in de�ning pAL is losing the ability to describe a number of interestingshape properties such as listness, (non)circularity, etc. For this logic, we givea proof-theoretic system based on natural deduction, and an e�ective tableaudecision method. Both systems are shown to be sound and complete. More-over, the satis�ability problem for pAL is shown to be NP-complete. The lastpoint concerns the de�nition, in pAL, of weakest preconditions for imperativeprograms with destructive updating. At this point, we use the wAL weakestprecondition calculus, previously developped in [2]. Our weakest preconditioncalculus for pAL is sound and complete, as a consequence of the soundness andcompletness of the de�nitions for wAL weakest preconditions.Related Work To describe properties of dynamic program stores, various for-malisms have been proposed in the literature e.g., Lr [1], BI (Bunched Impli-cations) [13], Separation Logic [22] and PAL (Pointer Assertion Language) [17].As a common point with our work, Lr [1] uses regular expressions to describereachability between two points in the heap and is shown to be decidable, yet theweakest precondition calculus is not developed. On the other hand, BI [13] andSeparation Logic [22] produce remarkably simple preconditions and have quiteclean proof-theoretic models [18]. Another feature of these formalisms is thatthey allow for compositional reasoning [19]. As a downside, the quanti�er frag-ment, essential to express weakest preconditions, is undecidable [5], while theground (propositional) fragment is decidable, a tableau procedure being pro-posed in [11]. In a later publication [6], a specialization of the ground fragmentof BI to tree models is used as a type system for a language, based on �-calculus,that handles trees. An e�ectively decidable formalism is PAL [17], an extension1

of second-order monadic logic on trees that allows to describe a restricted classof graphs, known as \graph types" [16], as opposed to our approach that dealswith unrestricted graphs. Programs that manipulate such graphs are restrictedto updating only the underlying tree (backbone). The resulting actions can thusbe described in monadic second-order logic, and the validity of Hoare triplesexpressed in PAL can be automatically decided [15].The decision procedures for both Lr and PAL use Rabin's result on themonadic second order theory of n successors (SnS) [20]. The decision procedurefor the satis�ability of SnS is however non-elementary. We show that the decisionproblem for the pAL logic is NP-complete, thus drastically improving the com-plexity bounds. Also, to the best of our knowledge, no previously published workon the veri�cation of heap properties has the ability to deal with unrestricted (de-structively updated) data structures, developing a sound and complete weakestprecondition calculus on top of a decidable logic for graphs.
2 Weak Alias LogicIn this section we introduce Weak Alias Logic (wAL), a logic that is expressiveenough for de�ning recursive data structures (lists, trees, etc) as in�nite classes of�nite graphs, as well as for de�ning a weakest precondition calculus of imperativeprogramming languages with destructive updating [2]. This section de�nes thelogic, and Section 5 brie
y recalls the weakest precondition calculus that hasbeen developed on top of it.Before giving the syntax of wAL, let us introduce the notion of heap, whichis central in de�ning interpretations of wAL formulas. Intuitively, a heap is rep-resented by a graph where the nodes model objects and the edges model pointersbetween objects. The heap edges are labeled with symbols from a given alpha-bet �, which stands for the set of all program pointers, including all programvariables and record �elds (selectors). It is furthermore required that the graphbe deterministic, as a program pointer can only point to one object at a time.In this paper we adopt the storeless representation [2], [12], [14], [8] of a graph,in which each node is associated the language recognized by the automaton whoseset of states is given by the set of graph nodes, the transition relation by theset of edges, the initial state is a designated entry point in the heap, and theunique �nal state, the node itself. The interested reader is referred to [2] for adetailed discussion on the advantages of the storeless representation of heaps,such as compatibility with garbage collection and isomorphic transformations.De�nition 1 (Heap). A heap M� P(�+) is either the empty set or a �niteset fX1; X2; : : : ; Xng satisfying the following conditions, for all 1 � i; j � n:(C1) non-emptiness: Xi 6= ;,(C2) determinism: i 6= j) Xi \Xj = ;,(C3) pre�x closure and right regularity:8x 2 Xi [8y; z 2 �+[x = yz) 9 1 � k � n [y 2 Xk ^Xkz � Xi]]]

2

One can also think of a heap element as the set of all incoming paths lead-ing to it, paths that start with a program variable. The (C1),(C2) and (C3)restrictions must be imposed on the elements of a heap in order to maintain thecorrespondence (up to isomorphism) with the graph model [2]. An equivalentapproach, taken in [14], [8], is to consider the languages in the heap as equiva-lence classes of a right-regular relation on �����. The set of all heaps over analphabet � is denoted in the following by H(�).Figure 1 introduces the abstract syntax (upper part) and semantics (lowerpart) of the wAL logic. The terms of a wAL formula are regular expressions �over the alphabet � with free variables from a set V ar. We allow the classicalcomposition operations on regular expressions, together with the left derivate,denoted by ��11 �2 �= f� 2 �� j �1�\�2 6= ;g1. Formulas are built from the atomicpropositions �1 = �2 (language equivalence) and hXi�1 (modality) connectedwith the classical �rst-order operators ^, : and 9. A less usual requirement isimposed on the syntax of the existential quanti�er: the quanti�ed variable needto occur at least once within the angled brackets of a modality in the scope ofthe quanti�er, which is formally captured by the 'hXi. Notice also that onlyfree variables can occur inside the modality brackets. A formula ' is said to beclosed if no variables occur free i.e., FV (') = ;, where FV is de�ned recursivelyon the syntax, as usual. We de�ne 8X : ' �= :9X : :', '1_'2 �= :(:'1^:'2),and '1 ! '2 �= :'1 _ '2. The set of all wAL formulas over the alphabet � isformally denoted by wAL[�].
� ::= v 2 � j X 2 V ar j � j �1 � �2 j �� j �1 [�2j �1 \ �2 j �� j ��11 �2' ::= �1 = �2 j hXi�1 j '1 ^ '2 j :' j 9X : 'hXiM 2 H(�); � : V ar ! P(��)[[�]]� �= �[�(FV (�))=FV (�)][[�1 = �2]]M;� = 1 () [[�1]]� = [[�2]]�[[hXi�1]]M;� = 1 () �(X) 2 M and �(X) \ [[�1]]� 6= ;[[9X [']]]M;� = 1 () 9 � 2 P(��) : [[']]M; [X!�]� = 1Fig. 1. Weak Alias LogicA wAL formula is interpreted with respect to a heap M and a valuation� assigning free variables to languages. The only non-standard operator is themodality hXi�1, where X is bound to denote a heap entity which intersects (theinterpretation of) �1. As a consequence of the syntactic restriction imposed onthe existential quanti�er, all variables in a closed formula are bound to heap1 Intuitivelly, we need the left derivate to describe paths between two objects in theheap. If X and Y are two objects in a heap, then X�1Y is the language of all pathsbetween X and Y . 3

entities2. A heap M is said to be a model for a closed wAL formula ' if andonly if [[']]M;�X:? = 1. In case where ' has at least one model, it is said to besatis�able.At this point, the reader can notice an embedding of wAL into the MonadicSecond Order Logic on graphs. Indeed, a wAL formula is composed of equiva-lences of regular expressions (�1 = �2) related using �rst order connectives. Suchequivalences can be described by �nite automata which, in turn, can be speci�edin MSOL. However, we found using regular expressions, instead of MSOL, moreintuitive for the speci�cation of heap properties, as it is shown in the following.Path propertiesreach(X; Y) hY iX�+next(X;Y) hY iX� ^ 8Y 0 : hY 0iX� ! Y = Y 0linear(X;Y) reach(X; Y) ^ 8Z : :Z = Y ^ �X = Z _ reach(X;Z)�^reach(Z; Y)! 9Z 0 : :Z 0 = Z ^ next(Z; Z 0)cycle(X;Y) reach(X; Y) ^ reach(Y;X)share(X; Y) 9Z : reach(X;Z) ^ reach(Y; Z)Recursive data structuresnclist(head) 8X : hXihead! 9Y : hY iXnext� ^ linear(X;Y) ^ :cycle(Y; Y)dlist(head; next; prev) 8X;Y 9Z : (hXihead) :hY iXprev)^(hZiXnext) X 6= Z ^ hXiZprev)tree(root) 8X:hXiroot! 8Y;Z : (reach(X; Y) ^ reach(X;Z))! :share(Y; Z))dag(root) 9X : hXiroot! 8Y;Z : reach(X; Y) ^ reach(X;Z)! :cycle(Y; Z)Fig. 2. Expressing properties of heapsThe properties in Figure 2 describe various paths in the structure. We con-sider the predicate reach(X;Y) stating that node Y is reachable from node Xby some non-empty path. A node Y is said to be next to a node X if Y is theonly neighbor of X. A path from X to Y is linear if there is no branching i.e.,if all the nodes on the path have only one successor. The existence of a cyclecontaining both X and Y is given by the cycle(X;Y) predicate.The wAL logic can also describe the shapes of most typical recursive datastructures used in programming languages with dynamic memory allocation:lists, trees, dags, etc. For instance, non-cyclic simply-linked lists pointed to by thehead variable and using the next �eld as forward selector, are being described bythe nclist predicate. Doubly-linked lists pointed to by the head variable and usingthe next and prev �eld pointers as forward and backward selectors, respectively,can be captured by the dlist predicate. Some data structures, such as trees,require the absence of sharing. A sharing predicate expressing that X and Ybelong to two structures that share some node can be given by share(X;Y). Atree structure pointed to by a variable root is described by the tree formula. A2 This syntactic restriction on the quanti�cation domain was mainly suggested bythe fact that, allowing quanti�cation over P(��) makes the logic undecidable evenwhen modalities are not used at all in formulas. A formal proof will be included inan extended version of this paper. 4

dag structure in which every node is reachable from a root variable is given bythe dag formula.2.1 Undecidability of wALThe result of this section comes with no surprise, in the light of similar undecid-ability results for logics able to express graph properties such as e.g, the logic ofBunched Implications (BI) [5], and Monadic Second-Order Logic of graphs [7].Given along the same lines as the undecidability proof for BI [5], our proof forwAL relies on a classical result in �nite model theory [9], namely that the �rstorder logic interpreted over �nite structures is undecidable.Given a vocabulary V of relation symbols, let FO[V] be the set of �rst-orderformulas with symbols from V . For each relation symbol R 2 V , let #(R) denoteits arity i.e., its number of arguments. Let V = fR1; : : : ; Rng for the rest of thissection. We interpret �rst-order formulas over structures A = hA;RA1 ; : : : ; RAn i,where A is the universe and RAi � A#(Ri), 1 � i � n are the interpretations ofthe relation symbols from V over A. A structure is said to be �nite if and onlyif its universe is �nite. Given a valuation v : FV (')! A of the free variables ina formula ' 2 FO[V], we denote by [[']]A;v the interpretation of ' in A. We saythat A is a model of a closed �rst-order formula ' if and only if [[']]A;�X:? = 1.It is known that the problem of �nding a �nite model for a closed FO[V] formulais undecidable [9]:Theorem 1 (Trahtenbrot's Theorem). Let V be a vocabulary with at leastone symbol of arity two or more. Then the set Sat[V] �= f' 2 FO[V] j FV (') =;; ' has a �nite model g is not decidable.Given an arbitrary �rst order formula, we shall translate it into a wAL for-mula such that satis�ability is strongly preserved by the translation. Consideringthat V = fR1; : : : ; Rng, we de�ne �V = f�i1; : : : ; �i#(Ri); �i j 1 � i � ng[f
g.That is, for each relation symbol of arity k we consider k di�erent �-symbolsand a �-symbol in �V . The translation is given by the recursive function � :FO[V]! wAL[�V], de�ned as:�(Rk(X1; : : : ;X#(Rk))) �= 9X : hXi�� ^V#(Rk)i=1 hXiiX�ki�(X = Y) �= X = Y �('1 ^ '2) �= �('1) ^�('2)�(:') �= :�(') �(9X : ') �= 9X : hXi�� ^�(')Note that the translation of a closed �rst-order formula respects the syntacticconstraints of wAL, that each quanti�ed variable must occur inside the bracketsof a modality, and that only a variable can occur on this position. Moreover, aclosed �rst-order formula translates into a closed wAL formula. Now it remainsto be shown that the translation strongly preserves satis�ability. We remind thatsatis�ability for wAL is implicitly de�ned on �nite models (De�nition 1). Dueto space constraints, all proofs are deferred to [3].Lemma 1. A closed �rst-order formula ' is �nitely satis�able if and only if�(') is satis�able. 5

Considering for the moment that the alphabet � is su�ciently large to codethe vocabulary V of a given �rst order logic, Theorem 1 and Lemma 1 leadimmediately to the following result.Theorem 2. For a su�ciently large alphabet �, the set Sat[�] �= f' 2 wAL[�] jFV (') = ;; ' has a model g is not recursive.Since Theorem 1 holds for vocabularies containing at least one relation sym-bol of arity two, by the de�nition of �V it follows that Theorem 2 holds forgeneric heaps over alphabets of size at least four. Here, a more re�ned heapmodel could provide us with more intuition in identifying classes of heaps overwhich the satis�ability problem becomes decidable. For instance, considering� = � [
, � \
 = ;, jj
jj = 1 and all heaps of the formM� P(� �
�) i.e.,heaps consisting only of (possibly circular) singly linked lists. In this simple case,we propose to revisit the decidability of the satis�ability problem for wAL.In order to show that the satis�ability problem for wAL is recursively enu-merable, let us �rst consider the model checking problem. The model checkingproblem asks whether a given heapM is a model for a formula . This problemis decidable, by the fact that any heap model is �nite. The interested readeris referred to [4] for an algorithm. But the set H(�) of all heaps over a �nitealphabet is enumerable. Hence, if a given formula is satis�able, an algorithmthat enumerates all modelsM1;M2; : : : , testing whether eachMi is a model of , will eventually stop.Lemma 2. For every �nite �, the set Sat[�] is recursively enumerable.An interesting open problem is then how to �nd useful semi-decision proce-dures for wAL.
3 Propositional Alias LogicThe negative result from the previous section motivates the search for decidablesubsets of wAL that are able to express meaningful properties of heaps. Onebasic property encountered in many applications is data sharing. In this sectionwe de�ne a simpler logic based directly on the notion of aliasing of �nite heapaccess paths (Propositional Alias Logic, or pAL for short). The rest of thispaper is concerned with the study of pAL from three perspectives: proof theory,automated reasoning and program logic. The ability of pAL to express otherheap properties besides aliasing, is also investigated.Figure 3 de�nes the abstract syntax (upper part) and the semantics (lowerpart) of pAL. The terms are �nite words over an alphabet �, with w�11 w2 beingthe su�x of w2 that, concatenated with w1, yields w2, if such su�x exists, or theempty word �, otherwise. The atomic propositions are the pre�x test (w1 � w2)and the alias proposition (w13w2). Formulas are built from atomic propositionsconnected with the propositional operators ^ and :. In the syntax de�nition, ?6

w := v 2 � j w1 � w2 j w�11 w2' := w1 � w2 j w13w2 j '1 ^ '2 j :' j ?[[w13w2]]M = 1 () 9X 2 M : w1; w2 2 XFig. 3. Propositional Alias Logic
denotes the false literal3. The set of all pAL formulas over the alphabet � isformally denoted by pAL[�].The semantics of pAL is de�ned with respect to a heap M. An alias propo-sition w13w2 is true if and only if there exists an element of M such that bothterms w1; w2 belong to it. Note that, since M � P(�+), if either one of theterms is �, the alias proposition is false. The intended meaning of w3w for somew 2 �+, is to say that w is a well-de�ned path in the heap. The following seman-tic equivalence is a trivial check: w13w2 () 9X : hXiw1 ^ hXiw2. The pre�xrelation w1 � w2 can be encoded in wAL as w�11 w2 6= ;�, where � �= ;� is a pos-sible de�nition of the empty word in wAL. These considerations justify the factthat pAL is a subset of wAL. The embedding is proper (pAL[�] � wAL[�]),since e.g. reachability and linearity are not expressible in pAL.
3.1 Natural Deduction SystemThis section introduces a natural deduction system [25] for pAL that proves tobe a useful tool in reasoning about aliases. Although later in this paper we adoptthe automated reasoning view, as opposed to the proof theoretic, a number ofresults from this sections are used in the rest of the paper. The system (Figure4) is that of propositional calculus �a la Gentzen (rules ^E, ^I, :E, :I, ?E, ?I)to which we add three rules concerning only alias propositions (sufE, sufI andsym). For these rules we take � � pAL[�], x; y; z 2 �+ and t 2 ��.

xt3yx3x (sufE) x3y yt3zxt3z (sufI) x3yy3x (sym)' ^ ' (^E) ' ' ^ (^I) ?' (?E) ' :'? (?I)�;:' ` ?� ` ' (:E) �; ' ` ?� ` :' (:I)
Fig. 4. Natural Deduction System for pAL3 False could have been de�ned as '^:' for an arbitrary formula '. However an ex-plicit de�nition is preferred for the purposes of the proof theoretic system of Section3.1. 7

The natural deduction system presented in Figure 4 exhibits a number ofinteresting properties: it is sound, complete and, all proofs of alias propositionscan be given in a normal form. To formalize these notions, we need furthernotation. If p is an alias proposition, we say that � `PA p if and only if thereexists a derivation of p with premises in � that uses only the (sufI), (sufE) and(sym) rules. Otherwise, if is any formula, we say that � ` if and only if thereexists a derivation of with premises in � . By Th(�) we denote the theory of �i.e., the set of all formulas that can be deduced from it i.e., Th(�) �= f' j � ` 'g.Given a �nite set of alias propositions, there exists a heap that is a modelfor the entire set.Lemma 3. Let � be a set of formulas containing a �nite number of alias propo-sitions, �� � �+ � �+ be a relation on �nite sequences, de�ned as x �� yif and only if � `PA x3y, and H� be the set fx j x �� xg. Then �� is atotal equivalence relation on H� , and the quotient H� =�� is a heap. Moreover,jjH� =�� jj � k � jj� jj, where k 2 N is a constant.Note that, for arbitrary sets of formulas, the existence of a model occurs asa consequence of the downward closure property4.
3.2 Expressiveness of pALIn this section we investigate the expressiveness of the pAL language. We showthat any �nite heap structure over a �nite alphabet can be uniquely characterizedby a pAL formula. As a consequence, any �nite class of heap structures can bede�ned in pAL5. This extends our previous result in [2], that pAL has the powerto distinguish between any two non-isomorphic heap con�gurations6. However,the far more interesting question, of whether and how could pAL be extendedto describe recursive data structures and still preserve decidability, is subject toongoing and future work.For the rest of this section, let M = fX1; : : : ; Xng be a given heap. Weshall de�ne a formula �M such that [[�M]]M = 1 and, for any other heap M0such that [[�M]]M0 = 1, we have M = M0. For a �nite word w 2 �+, wedenote by Pref(w) the set of all its pre�xes, including w. For a set X 2 M,a word w 2 X is elementary if and only if it has at most two pre�xes in Xand at most one pre�x in any other set Y 2 M, Y 6= X. Formally, we haveElemM(X) �= fw 2 X j jjPref(w) \Xjj � 2 and 8Y 6= X : jjPref(w) \ Y jj � 1g.An important property of the sets of elementary words is �niteness. This resultsas a consequence of the fact that bothM and � are �nite, since the length of anyw 2 ElemM(X) is jwj � jjMjj + 1, thus jjElemM(X)jj � jj�jjjjMjj+1. A dangling4 De�nition 2 in Section 4.5 Even if a pAL formula, e.g x3y, is in general satis�ed by an in�nite number ofheaps.6 There we proved ony that two structures are isomorphic if and only if they aremodels of the same pAL formulas. 8

word is a minimal unde�ned path in M. Formally, we de�ne DangM(X) =fwa j w 2 ElemM(X); a 2 �; wa 62 SMg. Since ElemM and � are �nite, sois DangM(X). With this notation, we de�ne:�M �= [X2Mfw3w0 j w;w0 2 ElemM(X)g [(1)[X;Y 2M;X 6=Y f:(w3w0) j w 2 ElemM(X); w0 2 ElemM(Y)g [(2)[X2Mf:(w3w) j w 2 DangM(X)g [f:(a3a) j a 2 � n[Mg (3)
This set is constructed as follows: the �rst component (1) describes each objectas a set of alias propositions composed of elementary sequences, the secondcomponent (2) distinguishes between objects using negated alias propositionsand the third and fourth components (3) describe the dangling sequences. Noticethat �M is not minimal, since for instance in (2) it is su�cient to choose only onew 2 ElemM(X) and one w0 2 ElemM(Y). However, it is �nite, according to ourprevious considerations. Intuitively, �M contains all the necessary informationto characterizeM, thus we shall take �M �= V�M. To show thatM is a modelof �M is a trivial but tedious check. That it is indeed the only model, will beshown in the rest of this section.Lemma 4. Let M be a heap with X 2 M, and �M be the characteristic setde�ned in the previous. Then the following hold:1. for each w 2 X there exists w0 2 ElemM(X) such that �M ` w3w0.2. for all w 62 SM we have �M ` :(w3w).3. for any x; y 2 �+ we have [[x3y]]M = 1) �M ` x3y and [[x3y]]M = 0)�M ` :(x3y).Notice that, from the third point of Lemma 4, and since �M is satis�able,hence consistent, we obtain that [[']]M = 1 if and only if �M ` '. Thus, the setof formulas that are satis�ed by M is �nitely axiomatisable since Th(�M) =f' j [[']]M = 1g, and �M is �nite by de�nition.Theorem 3. Let M be a heap and �M be the formula V�M. If [[�M]]M0 = 1,then M =M0.Example Given � = fa; b; cg, the heap M = fab�g composed of one elementpointed to by a with a b self loop is characterized by the formula a3ab^:c3c^:ac3ac.
4 Tableau Decision Procedure for pALA proof that uses natural deduction is mainly based on manually adding as-sumptions in order to reach contradictions (and deleting them afterwards). This9

makes, in general, natural deduction unsuitable for automated reasoning andmotivates our preference for the method of analytic tableaux [24], an elegant ande�cient proof procedure for propositional logic, which we subsequently extendto pAL. Traditionally, a tableau for a propositional formula ' is a tree having 'as the root node and subformulas of ' or negations of subformulas of ' as nodes.A tableau branch is said to be closed if it contains a formula together with itsnegation, and open otherwise. A tableau is said to be closed if and only if allits branches are closed. To check whether a formula ' is a tautology one buildsthe tableau for :', and infers that ' is a tautology if and only if the tableaueventually closes. In case at least one branch remains open, a counterexamplefor ' can be extracted.
:(xt3z) : : : yt3z:(x3y) (T1) xt3yx3x (T2) x3yy3x (T3) :(x3y):(y3x) (T4)

'1 ^ '2'1;'2 (T5) :('1 ^ '2):'1 j :'2 (T6) ::'' (T7) ' : : ::'? (T8)
Fig. 5. Tableau Expansion Rules

Figure 5 shows the tableau expansion rules for pAL. We consider thatx; y; z 2 �+ and t 2 �� that is, we can apply the rules also for an emptysu�x (t = �). The tableau is constructed top-down. A rule whose hypothesisare of the form ' : : : (namely T1 and T8) can be applied at a node, as soon asboth ' and are on the path from the root to the current node, order indepen-dent. Rule (T5) expands by putting both '1 and '2 on the same branch of thetableau, while rule (T6) creates two new branches, one containing '1 and theother one containing '2. All other rules expand by appending their conclusion tothe current branch. We use rule (T8) to close a branch, since ? does not expandany further. Each rule can only be applied provided that its conclusion does notalready appear on the current branch, otherwise the procedure runs the risk oflooping forever (for instance, applying one of rules T3;4), without introducingany new formulas7.Example Figure 6 presents a sample run of the tableau procedure whose goalis to prove that, for some given k 2 N , �k �= a3ab ! a3abk is a tautology.First, we eliminate the implication: �k = :(a3ab ^ :(a3abk)) and start thetableau procedure with :�k as the root node. To the right of each node occursthe number of the node(s) used in the hypothesis, followed by the name of therule applied in order to obtain that node. In this example, the tableau closesafter k + 6 steps. Branching lacks in this tableau because the rule (T6) is neverapplied. 27 The de�nition of a �ner notion of redundancy is planned in the full version.10

[1] ::(a3ab ^ :(a3abk))[2] a3ab ^ :(a3abk)) (1; T7)[3] a3ab (2; T5)[4] :(a3abk)) (2; T5)[5] ab3a (3; T3)[6] :(abk3a) (4; T4)
[7] :(abk�13a) (5; 6; T1)...[k+5] :(ab3a) (5; k + 4; T1)[k+6] ? (5; k + 5; T8)

Fig. 6. Tableau Example
The tableau expansion rules can be easily understood with the natural de-duction rules in mind. For instance, rule (T1) can be derived using (sufI), (?I)and (:I). Rules (T2) and (T3) are (sufE) and (sufI), respectively, while (T4)is easily derived using (sym) and (:I). The rest of the rules correspond to thepurely propositional part of the natural deduction system and are an easy check.This (and the fact that the natural system is sound and complete) ensures thatthe tableau rules are sound i.e., if a tableau started with :' closes, then ' is atautology. The dual implication, if ' is a tautology then every tableau startedwith :' will eventually close, will be dealt with in the following.Note that the rules in Figure 5 do not cover the entire pAL syntax fromFigure 3: the atomic propositions of the form x � y are not considered. Thereason is that such propositions trivially evaluate to either true or false andcould be eliminated from a formula a priori. For completeness, rules for thepre�x test are given in [3].The rest of this section is concerned with proving that the tableau methodis both complete and e�ective. To handle the tableau rules in an uniform way,we use the uni�ed notation of [24]: let an �-rule be one of the rules (T1:::5) and�-rule be the rule (T6). We denote the premises of a R-rule by R1 : : : Rn and itsconclusions by eR1; : : : eRm, where R = �; �.De�nition 2. A set of formulas � is said to be downward closed if and only ifit respects the following conditions:{ for no x; y 2 �+, we have x3y;:(x3y) 2 � ,{ for any �-rule, if �1; : : : ; �n 2 � , then e�1; : : : ; e�m 2 � ,{ for any �-rule, if �1; : : : ; �n 2 � , then either e�1 2 S or : : : or e�m 2 � .A tableau branch is said to be complete if no more rules can be applied toexpand it. A tableau is said to be complete if and only if each of its branchesis complete. It is manifest that an open complete tableau branch is a down-ward closed set. The following technical lemma is key to showing satis�abilityof downward closed sets. We recall here the de�nition of the �� relation fromLemma 3. The following theorem is the main result of this section.Lemma 5. For any downward closed set of formulas � , :(x3y) 2 � impliesx 6�� y. 11

Theorem 4. Any downward closed set of formulas containing a �nite numberof alias propositions is satis�able.The proof of the above theorem uses the model construction technique fromLemma 3. The same method can be moreover used to derive a counterexampleof a non-valid formula, starting from an open tableau branch. Before statingour completeness result for the tableau method, let us show that the method ise�ective. That is, each tableau procedure started with a �nite formula as theroot node, using the rules from Figure 5, eventually terminates.Lemma 6. The tableau of a �nite formula is �nite.Besides showing termination of the tableau procedure, the above lemma,together with Theorem 4 ensure that the tableau approach is complete.Corollary 1. If a formula ' is a tautology then every complete tableau startingwith :' eventually closes.In the light of the decidability result concerning pAL, we are next investigatingthe time complexity of the above satis�ability problem, and �nd that it is NP-complete. The proof uses Lemma 3 to show that satis�ability is in NP, and areduction from the satis�ability problem for a set of boolean clauses with threeliterals (3-SAT) to show NP-hardness.Theorem 5. The satis�ability problem for pAL is NP-complete.
5 An E�ective Program LogicIn this section we demonstrate the possibility of using pAL as a weakest pre-condition calculus for imperative programs with destructive updating. Otherwisestated, we show that pAL is closed under applications of the weakest precondi-tions predicate transformers. Intuitivelly, this is a consequence of the fact thatpAL formulas refer to �nite portions of the heap, and also that straight-linestatements a�ect bounded regions of the heap. Our proof of closure is construc-tive i.e., we de�ne weakest preconditions in terms as predicate transformersdirectly on pAL. This is achieved by means of the sound and complete programlogic de�ned on top of wAL [2]. Moreover, soundness and completness of thepAL weakest precondition axioms are consequences of soundness and complet-ness in the case of wAL.We consider a simple imperative language consisting of the following threeatomics statements. Note that the statements of most object-oriented languagescan be precompiled in this form, possibly by introducing fresh temporary vari-ables: Stmnt := uv = null j uv = new j uv = w (where uv 6� w)Here v; w 2 � denote pointer variables, and u 2 �� is a (possibly empty)dereferencing path. The �rst statement resets the v �eld of the object pointed12

to by u, if u 6= �, or the v top-level variable, otherwise. This may cause thebuiltin garbage collector recall all non-reachable objects. The second statementallocates a fresh object for further uses, and the third statement assigns its left-hand side the object pointed to by the right-hand side variable. The syntacticconstraint that comes with the last statement is due to the following technicalproblem. The semantics of the assignment is given as the composition of twoprimitive operations: �rst one removes the v arc from the node pointed to by u,and then it assigns it to w. If uv � w and there are no other paths to the cellpointed to by w, the garbage collection caused by the �rst operation removesthe unreachable cell before the assignment is �nished. The requirement uv 6� wis however su�cient to ensure that, in practice, this situation never occurs.The axiomatic semantics of this language has been introduced in [2], by de�n-ing a weakest precondition operatorgpre on wAL formulas, and is brie
y recalledhere. For any transition relation over a sequence of statements ! 2 Stmnt+,gpredistributes over conjunction and universal quanti�cation i.e.,gpre(!; '1 ^'2) =gpre(!; '1) ^gpre(!; '2) and gpre(!; 8X : ') = 8X :gpre(!; '). For total tran-sition relations we have gpre(!; ')) :gpre(!;:'). If, moreover, the transi-tion relation is total and deterministic, we have that gpre is its own dual i.e.,gpre(!; ') , :gpre(!;:'). In the latter case, gpre distributes over disjunctionand existential quanti�cation too. These properties of gpre for total, determin-istic programs allow us to de�ne general inference rules for the preconditioninductively on the structure of the postcondition. In particular, it is su�cient tode�ne preconditions only for modalities, the rest of the atomic propositions inwAL being pure i.e., having model-independent denotations. Figure 7 (upperpart) gives the precondition of primitive storeless operations add, rem and newfor arbitrary modalities. This is generalized to the statements de�ned in theprevious (lower part).
f9X:X n Sv�� = T ^ hXi(� n Sv��)g rem(S,v) fhT i�gf9X:�v(S; T;X) = U ^Wi=1;2 �;�i (X;X)g add(S,v,T) fhUi�gwhere �v(S; T;X) �= X [Sv((T�1S)v)�(T�1X) x;y1 (X;Y) �= Sv((T�1S)v)�(T�1X) \ x = ; ^ hY iy x;y2 (X;Y) �= Sv((T�1S)v)�(T�1X) \ x 6= ; ^ hY i��f(T = Sv ^ � \ Sv 6= ;) _ hT i�g new(S,v) fhT i�gf9S:hSiu ^gpre(rem(S; v); ')g uv = null f'gf9S:hSiu ^gpre(rem(S; v);gpre(new(S; v); '))g uv = new f'gf9S9T:hSiu ^ hT iw ^gpre(rem(S; v);gpre(add(S; v; T); '))g uv = w f'gFig. 7. wAL Weakest Preconditions

13

For the rest of this section, let �; �; �; u; v; w denote constant words, andx; y; z denote variables ranging over words. We introduce the following notation:9x � � : '(x) �= W�2Pref(�) '(�). Since � is a �nite word, so is the formulaon the right. Figure 8 introduces a number of syntactic shorthands, providingcontext-dependent translations from wAL to pAL for them. That is, we donot translate the shorthands individually, but rather in an existentially closedcontext.
De�nition wAL pAL�� : � 2 Sv�� 9S : hSiu ^ ��9S : hSiu ^ :�� 9x � � : x3u ^ xv � �u3u ^ :(9x � � : x3u ^ xv � �)

�� : � 2 Sv(T�1X) 9S9T9X : hSiu ^ hT iw^hXi� ^ ��
9S9T9X : hSiu ^ hT iw^hXi� ^ :��

9x � � : x3u ^ xv � �^w((xv)�1�)3�u3u ^ w3w ^ �3�^:(9x � � : x3u ^ xv � �^w((xv)�1�)3�)

� : � 2 Sv(T�1S)v�� 9S9T : hSiu ^ hT iw ^
�

9S9T : hSiu ^ hT iw ^ :
�
9x � � 9y � (xv)�1� : x3u^xv � � ^ wy3u ^ yv � (xv)�1�u3u ^ w3w^:(9x � � 9y � (xv)�1� : x3u^xv � � ^ wy3u ^ yv � (xv)�1�)Fig. 8. wAL to pAL translation shorthands

We assert that all translations de�ned in Figure 8 preserve logical equivalence.To convince ourselves of this fact, let us perform the step-by-step derivation forthe positive form of ��. The rest of the formulas are translated along the samelines. 9S : hSiu ^ �� � 9S : hSiu ^ � 2 Sv�� ()9S : 9x � � : hSiu ^ hSix ^ xv � � () 9x � � : x3u ^ xv � �The goal of this section is to prove that the logic pAL is expressive enoughto characterize the destructive updating program statements considered in theprevious. The following theorem captures the result.Theorem 6. For any sequence of statements ! 2 Stmnt� and any formula' 2 pAL[�], we havegpre(!; ') 2 pAL[�].The proof proceeds by deriving the weakest precondition for an arbitraryalias proposition �3� (equivalently written in wAL using the embedding rule)i.e., applying the rules in Figure 7. The result is then translated back from wALto pAL using the shorthands from Figure 8. Then we can extend the result14

to arbitrary post-conditions using the distributivity properties for gpre, and toarbitrary sequences of statements by induction on the length of the sequence.It is important to notice that the translations from pAL to wAL and backare logical equivalences. Since the gpre operators de�ned on wAL formulas aresound and complete, according to the development in [2], we can infer the exis-tence of a sound and complete weakest precondition calculus also for pAL.
6 Conclusions and Future WorkThis paper concerns a deductive veri�cation method for aliasing properties inimperative programming languages with destructive updating. Starting fromprevious work on storeless semantics and alias logic with a weakest precondi-tion calculus wAL, we show that the satis�ability problem is undecidable butrecursively enumerable. Next, we focus on a decidable subset pAL that allowsto express sound and complete weakest preconditions. The kind of propertiesexpressible in this logic are related to pointer aliasing, but also arbitrary �niteheaps can be de�ned. We give two sound and complete proof systems for pAL,one based on natural deduction, and another based on analytic tableaux. Thesatis�ability problem for pAL is shown to be NP-complete. A tool based on thepAL framework is planned in the near future.The main question related to the existence of a decidable program logic thatcan express non-trivial shape properties of heap is not fully answered. Althoughundecidable, the wAL logic o�ers a reach framework in which one can de�nedecidable fragments having complete weakest precondition calculi. One such ex-ample is pAL. A still open question is the existence of a fragment of wAL thatencompasses pAL, in which one can express properties such as reachability, cir-cularity, etc. One such extension, called kAL, is currently under investigation.This logic is obtained from pAL, by considering words (over the heap alphabet)with integer counters (parameters indicating the repetition of a �nite subword)and �rst order quanti�cation over the counters. In this way we can express for in-stance the existence of an unbounded next-path between two pointers head andtail: 9k : head:fnextgk3tail, a property that is not expressible in pAL. We planan extensive study of this logic, in order to cover both aspects of satis�abilityand expressiveness.
References1. Benedikt, M., Reps, T., and Sagiv, M.: A decidable logic for describing linked datastructures. European Symposium on Programming, (1999) LNCS, Vol. 1576, 2{19.2. M. Bozga, R. Iosif and Y. Lakhnech: Storeless Semantics and Alias Logic. Proc.ACM SIGPLAN 2003 Workshop on Partial Evaluation and Semantics Based ProgramManipulation, 55 { 65.3. M. Bozga, R. Iosif and Y. Lakhnech: On Logics of Aliasing. Technical Report TR-2004-4, VERIMAG http://www-verimag.imag.fr/~iosif/TR-2004-4.ps4. M. Bozga, R. Iosif: On Model Checking Generic Topologies. Technical Report TR-2004-10, VERIMAG http://www-verimag.imag.fr/~iosif/TR-2004-10.ps15

5. C. Calcagno, H. Yang and P.W. O'Hearn: Computability and Complexity Resultsfor a Spatial Assertion Language for Data Structures. In Foundations of SoftwareTechnology and Theoretical Computer Science, LNCS, Volume 2245 (2001), 108{1196. C. Calcagno, L. Cardelli, and A. Gordon: Deciding Validity in a Spatial Logic ofTrees. In ACM Workshop on Types in Language Design and Implementation (2003)62{737. B. Courcelle: The expression of graph properties and graph transformations inmonadic second-order logic, Chapter 5 of the "Handbook of graph grammars andcomputing by graph transformations, Vol. 1 : Foundations" (1997) 313{4008. A. Deutsch: A storeless model of aliasing and its abstractions using �nite repre-sentations of right-regular equivalence relations. In Proceedings of the IEEE 1992Conference on Computer Languages (1992) 2{139. H.D Ebbinghaus and J. Flum: Finite Model Theory. Springer-Verlag (1999)10. R.W. Floyd: Assigning meaning to programs, Proc. Symposium on Applied Math-ematics, American Mathematical Society, 1967, Vol. 1, 19{32.11. D. Galmiche and D. Mery: Semantic Labelled Tableaux for propositional BI (with-out bottom). Journal of Logic and Computation, vol. 13, n. 5 (2003)12. C.A.R Hoare and He Jifeng: A Trace Model for Pointers and Objects. In Proc.ECOOP'99, LNCS, Vol. 1628 (1999) 1{1813. S. Ishtiaq and P. O'Hearn: BI as an Assertion Language for Mutable Data Struc-tures. Proc. of 28th ACM-SIGPLAN Symposium on Principles of Programming Lan-guages (2001)14. H. B. M. Jonkers. Abstract Storage Structures. Algorithmic Languages, North-Holland (1981) 321{34315. N. Klarlund and M. I. Schwartzbach: Graphs and Decidable Transductions Basedon Edge Constraints, In Proc. 19th Colloquium on Trees and Algebra in Program-ming, LNCS, Volume 787 (1994) 187{20116. N. Klarlund and M. I. Schwartzbach: Graph Types. In Proc. 20th Annual Sympo-sium on Principles of Programming Languages (1993) 196{20517. A. Moeller and M. I. Schwartzbach: The Pointer Assertion Logic Engine. In Proc.ACM SIGPLAN Conference on Programming Languages Design and Implementa-tion, (2001).18. P.W. O'Hearn and D.J. Pym: The Logic of Bunched Implications. Bulletin ofSymbolic Logic, 5(2) (1999) 215{24419. P.W. O'Hearn, J.C. Reynolds and H. Yang: Local reasoning about programs thatalter data structures. Computer Science Logic, LNCS, Volume 2142 (2001) 1{1920. M. O. Rabin: Decidability of second order theories and automata on in�nite trees,Trans. Amer. Math. Soc. vol 141 (1969)21. G. Ramalingam: The Undecidability of Aliasing. ACM Transactions on Program-ming Languages and Systems, Vol 16, No 5 (1994) 1467{1471.22. John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures.Proc 17th IEEE Symposium on Logic in Computer Science (2002)23. M. Sagiv, M., T. Reps and R. Wilhelm: Parametric Shape Analysis via 3-ValuedLogic. ACM Transactions on Programming Languages and Systems, Vol 24, No 3(2002), 217{29824. R. M. Smullyan: First-Order Logic. Dover Publications (1993)25. D. van Dalen: Logic and Structure. Springer-Verlag (1997)
16

