N

N
N

HAL

open science

On Logics of Aliasing

Marius Bozga, Radu losif, Yassine Lakhnech

» To cite this version:

Marius Bozga, Radu losif, Yassine Lakhnech. On Logics of Aliasing. Static Analysis 11th International

Symposium, SAS 2004, Aug 2004, Verona, Italy. pp.344-360, 10.1007/b99688 . hal-00369338

HAL Id: hal-00369338
https://hal.science/hal-00369338
Submitted on 19 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00369338
https://hal.archives-ouvertes.fr

On Logics of Aliasing

Marius Bozga, Radu losif and Yassine Lakhnech

VERIMAG,
2 Avenue de Vignate,
38610 Gieres, France
{bozga, iosif, lakhnech}@imag.fr

Abstract. In this paper we investigate the existence of a deductive ver-
ification method based on a logic that describes pointer aliasing. The
main idea of such a method is that the user has to annotate the program
with loop invariants, pre- and post-conditions. The annotations are then
automatically checked for validity by propagating weakest preconditions
and verifying a number of induced implications. Such a method requires
an underlying logic which is decidable and has a sound and complete
weakest precondition calculus. We start by presenting a powerful logic
(wAL) which can describe the shapes of most recursively defined data
structures (lists, trees, etc.) has a complete weakest precondition calcu-
lus but is undecidable. Next, we identify a decidable subset (pAL) for
which we show closure under the weakest precondition operators. In the
latter logic one loses the ability of describing unbounded heap structures,
yet bounded structures can be characterized up to isomorphism. For this
logic two sound and complete proof systems are given, one based on nat-
ural deduction, and another based on the effective method of analytic
tableaux. The two logics presented in this paper can be seen as extreme
values in a framework which attempts to reconcile the naturally oposite
goals of expressiveness and decidability.

1 Introduction

The problem of pointer aliasing plays an important role in the fields of static
analysis and software model checking. In general, static analyses used in opti-
mizing compilers check basic properties such as data sharing and circularities
in the heap of a program, while model checking deals with the evolution of
heap structures, in both shape and contents, over time. An early result [21]
shows that precise may-alias analysis in the presence of loops is undecidable. As
a consequence, the approach adopted by the static analysis community, is the
abstraction-based shape analysis [23]. This method is effective in the presence of
loops, since the domain of the analysis is bounded, but often imprecise. In this
paper we present an orthogonal solution to the aliasing problem, in that preci-
sion is the primary goal. To ensure termination, we use Floyd’s method [10] of
annotating the program with pre-, post-conditions and loop invariants. The an-
notations are subsequently verified by a push-button procedure, that computes
weakest preconditions expressed using an effectively decidable logic.

The key is to find a logic that can altogether (i) express aliasing and shape
properties of the program heap, (ii) is effectively decidable, and moreover, (iii)
has a sound and complete weakest precondition calculus with respect to the
atomic statements. While the second and third requirements are clear, the first
one is still ambiguous: what kind of specifications can we express in a decidable
heap logic with weakest preconditions? The contribution of this paper is the
definition of a formal framework in which we prove that such logics can be
found. Our focus is on imperative programs with destructive updating, in which
heaps are viewed as shape graphs with labels only on edges i.e., we ignore from
the start the internal states of the objects.

As a starting point, we present a general logic Weak Alias Logic (WAL) that
is expressive enough to describe the recursive data structures of interest (lists,
trees, dags etc.) as infinite classes of finite graphs. This logic has also a sound and
complete weakest precondition calculus with respect to atomic statements such
as new object creation and assignment of pointers. The satisfiability problem
of the wAL logic is found to be undecidable but recursively enumerable, which
motivates further searches for semi-decision procedures and non-trivial decidable
subsets.

In the rest of the paper, we define a decidable subset of wAL, called Propo-
sitional Alias Logic (pAL) for describing pointer aliasing that is, moreover, able
to characterize arbitrary finite structures and finite classes of structures. The
tradeoff in defining pAL is losing the ability to describe a number of interesting
shape properties such as listness, (non)circularity, etc. For this logic, we give
a proof-theoretic system based on natural deduction, and an effective tableau
decision method. Both systems are shown to be sound and complete. More-
over, the satisfiability problem for pAL is shown to be NP-complete. The last
point concerns the definition, in pAL, of weakest preconditions for imperative
programs with destructive updating. At this point, we use the wAL weakest
precondition calculus, previously developped in [2]. Our weakest precondition
calculus for pAL is sound and complete, as a consequence of the soundness and
completness of the definitions for wAL weakest preconditions.

Related Work To describe properties of dynamic program stores, various for-
malisms have been proposed in the literature e.g., L, [1], BI (Bunched Impli-
cations) [13], Separation Logic [22] and PAL (Pointer Assertion Language) [17].
As a common point with our work, L, [1] uses regular expressions to describe
reachability between two points in the heap and is shown to be decidable, yet the
weakest precondition calculus is not developed. On the other hand, BI [13] and
Separation Logic [22] produce remarkably simple preconditions and have quite
clean proof-theoretic models [18]. Another feature of these formalisms is that
they allow for compositional reasoning [19]. As a downside, the quantifier frag-
ment, essential to express weakest preconditions, is undecidable [5], while the
ground (propositional) fragment is decidable, a tableau procedure being pro-
posed in [11]. In a later publication [6], a specialization of the ground fragment
of BI to tree models is used as a type system for a language, based on A-calculus,
that handles trees. An effectively decidable formalism is PAL [17], an extension

of second-order monadic logic on trees that allows to describe a restricted class
of graphs, known as “graph types” [16], as opposed to our approach that deals
with unrestricted graphs. Programs that manipulate such graphs are restricted
to updating only the underlying tree (backbone). The resulting actions can thus
be described in monadic second-order logic, and the validity of Hoare triples
expressed in PAL can be automatically decided [15].

The decision procedures for both L, and PAL use Rabin’s result on the
monadic second order theory of n successors (SnS) [20]. The decision procedure
for the satisfiability of SnS is however non-elementary. We show that the decision
problem for the pAL logic is NP-complete, thus drastically improving the com-
plexity bounds. Also, to the best of our knowledge, no previously published work
on the verification of heap properties has the ability to deal with unrestricted (de-
structively updated) data structures, developing a sound and complete weakest
precondition calculus on top of a decidable logic for graphs.

2 Weak Alias Logic

In this section we introduce Weak Alias Logic (wAL), a logic that is expressive
enough for defining recursive data structures (lists, trees, etc) as infinite classes of
finite graphs, as well as for defining a weakest precondition calculus of imperative
programming languages with destructive updating [2]. This section defines the
logic, and Section 5 briefly recalls the weakest precondition calculus that has
been developed on top of it.

Before giving the syntax of wAL, let us introduce the notion of heap, which
is central in defining interpretations of wAL formulas. Intuitively, a heap is rep-
resented by a graph where the nodes model objects and the edges model pointers
between objects. The heap edges are labeled with symbols from a given alpha-
bet X, which stands for the set of all program pointers, including all program
variables and record fields (selectors). It is furthermore required that the graph
be deterministic, as a program pointer can only point to one object at a time.

In this paper we adopt the storeless representation [2], [12], [14], [8] of a graph,
in which each node is associated the language recognized by the automaton whose
set of states is given by the set of graph nodes, the transition relation by the
set of edges, the initial state is a designated entry point in the heap, and the
unique final state, the node itself. The interested reader is referred to [2] for a
detailed discussion on the advantages of the storeless representation of heaps,
such as compatibility with garbage collection and isomorphic transformations.

Definition 1 (Heap). A heap M C P(XT) is either the empty set or a finite
set {X1, Xo,...,X,} satisfying the following conditions, for all 1 < i,j < n:

(C1) non-emptiness: X; # 0,
(C2) determinism: i # j = X; N X; = 0,
(C3) prefix closure and right regularity:

Vee X, Vy,z€ Xtz =yz=>31<k<n[yecXpAXpz CX]]]

One can also think of a heap element as the set of all incoming paths lead-
ing to it, paths that start with a program variable. The (C1),(C2) and (C3)
restrictions must be imposed on the elements of a heap in order to maintain the
correspondence (up to isomorphism) with the graph model [2]. An equivalent
approach, taken in [14], [8], is to consider the languages in the heap as equiva-
lence classes of a right-regular relation on X* x X*. The set of all heaps over an
alphabet X' is denoted in the following by H(X).

Figure 1 introduces the abstract syntax (upper part) and semantics (lower
part) of the wAL logic. The terms of a wAL formula are regular expressions p
over the alphabet X with free variables from a set Var. We allow the classical
composition operations on regular expressions, together with the left derivate,
denoted by p; ' p2 = {o € X*| proNps # O}'. Formulas are built from the atomic
propositions p; = po (language equivalence) and (X)p; (modality) connected
with the classical first-order operators A, — and 3. A less usual requirement is
imposed on the syntax of the existential quantifier: the quantified variable need
to occur at least once within the angled brackets of a modality in the scope of
the quantifier, which is formally captured by the ¢(X). Notice also that only
free variables can occur inside the modality brackets. A formula ¢ is said to be
closed if no variables occur free i.e., FV(¢) = §), where F'V is defined recursively
on the syntax, as usual. We define VX . ¢ 2_3x. =, p1V Qg 2 =(=p1 A—pa),

and p1 — @2 2 —p1 V 2. The set of all wAL formulas over the alphabet X is
formally denoted by wAL[X].

pr=veEX | XEVar | X [pi-pa|p | prUpsl prNps|plpi'po
pu=pr=p2 [(X)p1 | o1 A2 | mp | 3X . p(X)
M H(X), v:Var - P(X")
[o],, plv(FV(p))/FV (p)]
o1 =p2] g, =1 = [p], = [p2],
[(X)pilp, =1 <= v(X) € Mand v(X)N [p1], # 0
BX @y, =1 <= pePE) . [elu, xopp =1

> m

Fig. 1. Weak Alias Logic

A wAL formula is interpreted with respect to a heap M and a valuation
v assigning free variables to languages. The only non-standard operator is the
modality (X)p;, where X is bound to denote a heap entity which intersects (the
interpretation of) p;. As a consequence of the syntactic restriction imposed on
the existential quantifier, all variables in a closed formula are bound to heap

! Intuitivelly, we need the left derivate to describe paths between two objects in the
heap. If X and Y are two objects in a heap, then X 'Y is the language of all paths
between X and Y.

entities?. A heap M is said to be a model for a closed wAL formula ¢ if and
only if [¢] vy \x._ = 1. In case where ¢ has at least one model, it is said to be
satisfiable.

At this point, the reader can notice an embedding of wAL into the Monadic
Second Order Logic on graphs. Indeed, a wAL formula is composed of equiva-
lences of regular expressions (p; = p2) related using first order connectives. Such
equivalences can be described by finite automata which, in turn, can be specified
in MSOL. However, we found using regular expressions, instead of MSOL, more
intuitive for the specification of heap properties, as it is shown in the following.

Path properties

reach(X,Y) (Y)xx+

next(X,Y) MXZAVY . YHXE Y =Y

reach(X,Y)AVZ . =Z =Y A (X = Z V reach(X, Z))A

lmear(X, Y) reach(Z, Y) —37 . =Z'=ZA TL@It(Z, Z’)

cycle(X,Y) reach(X,Y) A reach(Y, X)
share(X,Y) 37 . reach(X,Z) N reach(Y, Z)
Recursive data structures
nclist(head) VX . (X)head — Y . (Y)Xnext™ Alinear(X,Y) A —cycle(Y,Y)

VX,Y3Z . ((X)head = —(Y) X prev)A

dlist(head, next, prev) (Z)Xnext = X # Z NX) Zprev)

tree(root) VX .(X)root — VY, Z . (reach(X,Y) A reach(X, Z)) — —share(Y, Z))

dag(root) X . (X)root = VY, Z . reach(X,Y) A reach(X,Z) — —cycle(Y, Z)

Fig. 2. Expressing properties of heaps

The properties in Figure 2 describe various paths in the structure. We con-
sider the predicate reach(X,Y) stating that node Y is reachable from node X
by some non-empty path. A node Y is said to be nezt to a node X if Y is the
only neighbor of X. A path from X to Y is linear if there is no branching i.e.,
if all the nodes on the path have only one successor. The existence of a cycle
containing both X and Y is given by the cycle(X,Y) predicate.

The wAL logic can also describe the shapes of most typical recursive data
structures used in programming languages with dynamic memory allocation:
lists, trees, dags, etc. For instance, non-cyclic simply-linked lists pointed to by the
head variable and using the next field as forward selector, are being described by
the nclist predicate. Doubly-linked lists pointed to by the head variable and using
the next and prev field pointers as forward and backward selectors, respectively,
can be captured by the dlist predicate. Some data structures, such as trees,
require the absence of sharing. A sharing predicate expressing that X and Y
belong to two structures that share some node can be given by share(X,Y). A
tree structure pointed to by a variable root is described by the tree formula. A

2 This syntactic restriction on the quantification domain was mainly suggested by
the fact that, allowing quantification over P(X*) makes the logic undecidable even
when modalities are not used at all in formulas. A formal proof will be included in
an extended version of this paper.

dag structure in which every node is reachable from a root variable is given by
the dag formula.

2.1 Undecidability of wAL

The result of this section comes with no surprise, in the light of similar undecid-
ability results for logics able to express graph properties such as e.g, the logic of
Bunched Implications (BI) [5], and Monadic Second-Order Logic of graphs [7].
Given along the same lines as the undecidability proof for BI [5], our proof for
wAL relies on a classical result in finite model theory [9], namely that the first
order logic interpreted over finite structures is undecidable.

Given a vocabulary V of relation symbols, let FO[V] be the set of first-order
formulas with symbols from V. For each relation symbol R € V, let #(R) denote
its arity i.e., its number of arguments. Let ¥V = {Ry,..., R, } for the rest of this
section. We interpret first-order formulas over structures A = (A4, R{‘, e ,R;f),
where A is the universe and R;‘l - A#(Ri), 1 < i < n are the interpretations of
the relation symbols from V over A. A structure is said to be finite if and only
if its universe is finite. Given a valuation v : FV(¢) — A of the free variables in
a formula ¢ € FO[V], we denote by [¢] 4 , the interpretation of ¢ in A. We say
that A is a model of a closed first-order formula ¢ if and only if [elanx. =1
It is known that the problem of finding a finite model for a closed FO[V] formula
is undecidable [9]:

Theorem 1 (Trahtenbrot’s Theorem). Let V be a vocabulary with at least

one symbol of arity two or more. Then the set Sat[V] = {p € FOV] | FV(p) =
0, ¢ has a finite model } is not decidable.

Given an arbitrary first order formula, we shall translate it into a wAL for-
mula such that satisfiability is strongly preserved by the translation. Considering
that V = {R1,...,R,}, we define Xy = {ai1,... ,a;ur,), B | 1 <i<njuU{~}.
That is, for each relation symbol of arity k we consider k different a-symbols
and a (-symbol in Yy. The translation is given by the recursive function © :
FO[V] —» wAL[Xy], defined as:

O(RK(X1, -, Xp(r,)) & 3X - (X) 27 A AL (Xi) X ans
OX=Y)2X=Y O(g1 A p2) = O(p1) A O ()

O(~p) = -6(p) O(3X . p) 23X . (X)Z" A O(y)

Note that the translation of a closed first-order formula respects the syntactic
constraints of wAL, that each quantified variable must occur inside the brackets
of a modality, and that only a variable can occur on this position. Moreover, a
closed first-order formula translates into a closed wAL formula. Now it remains
to be shown that the translation strongly preserves satisfiability. We remind that
satisfiability for wAL is implicitly defined on finite models (Definition 1). Due
to space constraints, all proofs are deferred to [3].

Lemma 1. A closed first-order formula ¢ is finitely satisfiable if and only if
O(y) is satisfiable.

Considering for the moment that the alphabet 3 is sufficiently large to code
the vocabulary V of a given first order logic, Theorem 1 and Lemma 1 lead
immediately to the following result.

Theorem 2. For a sufficiently large alphabet X, the set Sat[X] 2 {¢ € wAL[X] |
FV(p) =0, ¢ has a model } is not recursive.

Since Theorem 1 holds for vocabularies containing at least one relation sym-
bol of arity two, by the definition of Xy it follows that Theorem 2 holds for
generic heaps over alphabets of size at least four. Here, a more refined heap
model could provide us with more intuition in identifying classes of heaps over
which the satisfiability problem becomes decidable. For instance, considering
Y=0I0uUR, 1IN =0,|2]=1and all heaps of the form M C P(II x £2*) i.e.,
heaps consisting only of (possibly circular) singly linked lists. In this simple case,
we propose to revisit the decidability of the satisfiability problem for wA[L.

In order to show that the satisfiability problem for wAL is recursively enu-
merable, let us first consider the model checking problem. The model checking
problem asks whether a given heap M is a model for a formula . This problem
is decidable, by the fact that any heap model is finite. The interested reader
is referred to [4] for an algorithm. But the set H(X) of all heaps over a finite
alphabet is enumerable. Hence, if a given formula 1 is satisfiable, an algorithm
that enumerates all models M1, Mo, ..., testing whether each M is a model of
1, will eventually stop.

Lemma 2. For every finite X, the set Sat|X] is recursively enumerable.

An interesting open problem is then how to find useful semi-decision proce-
dures for wAL.

3 Propositional Alias Logic

The negative result from the previous section motivates the search for decidable
subsets of wAL that are able to express meaningful properties of heaps. One
basic property encountered in many applications is data sharing. In this section
we define a simpler logic based directly on the notion of aliasing of finite heap
access paths (Propositional Alias Logic, or pAL for short). The rest of this
paper is concerned with the study of pAL from three perspectives: proof theory,
automated reasoning and program logic. The ability of pAL to express other
heap properties besides aliasing, is also investigated.

Figure 3 defines the abstract syntax (upper part) and the semantics (lower
part) of pAL. The terms are finite words over an alphabet X, with wflwg being
the suffix of wy that, concatenated with wq, yields ws, if such suffix exists, or the
empty word €, otherwise. The atomic propositions are the prefiz test (wy < ws)
and the alias proposition (w1 Owsy). Formulas are built from atomic propositions
connected with the propositional operators A and —. In the syntax definition, L

w:=v€2\w1'w2\wflw2

o =wi <ws | wiQws | p1 A2 | ~¢ | L

[[UHO’U)Q]]M =1 < IX M . W1, W2 e X

Fig. 3. Propositional Alias Logic

denotes the false literal®. The set of all pAL formulas over the alphabet X is
formally denoted by pAL[X].

The semantics of pAL is defined with respect to a heap M. An alias propo-
sition wqOwsg is true if and only if there exists an element of M such that both
terms wy,wy belong to it. Note that, since M C P(X7T), if either one of the
terms is ¢, the alias proposition is false. The intended meaning of ww for some
w € X7, is to say that w is a well-defined path in the heap. The following seman-
tic equivalence is a trivial check: w1 Qws <= 3IX . (X)ws A (X)ws. The prefix

relation w; < wsq can be encoded in wAL as wflwg # (*, where € 4 (¢* is a pos-
sible definition of the empty word in wAL. These considerations justify the fact
that pAL is a subset of wAL. The embedding is proper (pAL[YX] C wAL[X]),
since e.g. reachability and linearity are not expressible in pAL.

3.1 Natural Deduction System

This section introduces a natural deduction system [25] for pAL that proves to
be a useful tool in reasoning about aliases. Although later in this paper we adopt
the automated reasoning view, as opposed to the proof theoretic, a number of
results from this sections are used in the rest of the paper. The system (Figure
4) is that of propositional calculus & la Gentzen (rules AE, Al, —E, =1, LE, 11)
to which we add three rules concerning only alias propositions (sufE, sufl and
sym). For these rules we take I' C pAL[Y], z,y,2 € Xt and t € X*.

rtdy zQy ytOz Oy
oz (sufE) T (sufT) oz (sym)
CAY ¢ Yo L ¢ P g
% F(/\E)'_J_—SO/\w() SO(UIE) }—J_L (L1)
» P) P
o (°E) Trog (D
12 2

Fig. 4. Natural Deduction System for pAL

3 False could have been defined as ¢ A = for an arbitrary formula . However an ex-
plicit definition is preferred for the purposes of the proof theoretic system of Section
3.1.

The natural deduction system presented in Figure 4 exhibits a number of
interesting properties: it is sound, complete and, all proofs of alias propositions
can be given in a normal form. To formalize these notions, we need further
notation. If p is an alias proposition, we say that I' -p4 p if and only if there
exists a derivation of p with premises in I" that uses only the (sufl), (sufE) and
(sym) rules. Otherwise, if ¢ is any formula, we say that I' F ¢ if and only if there
exists a derivation of ¢ with premises in I'. By Th(I") we denote the theory of I"

i.e., the set of all formulas that can be deduced from it i.e., Th(I") = {o| T'F ¢}
Given a finite set of alias propositions, there exists a heap that is a model
for the entire set.

Lemma 3. Let I' be a set of formulas containing a finite number of alias propo-
sitions, ~p C X7 x X7T be a relation on finite sequences, defined as x ~r y
if and only if ' Fpa Oy, and Hr be the set {x | © ~r x}. Then ~r is a
total equivalence relation on Hr, and the quotient Hr /~ . is a heap. Moreover,
|Hp jnp | < k- |1, where k € N is a constant.

Note that, for arbitrary sets of formulas, the existence of a model occurs as
a consequence of the downward closure property*.

3.2 Expressiveness of pAL

In this section we investigate the expressiveness of the pAL language. We show
that any finite heap structure over a finite alphabet can be uniquely characterized
by a pAL formula. As a consequence, any finite class of heap structures can be
defined in pALS. This extends our previous result in [2], that pAL has the power
to distinguish between any two non-isomorphic heap configurations®. However,
the far more interesting question, of whether and how could pAL be extended
to describe recursive data structures and still preserve decidability, is subject to
ongoing and future work.

For the rest of this section, let M = {Xj,...,X,} be a given heap. We
shall define a formula ¢a¢ such that [pa] , = 1 and, for any other heap M’
such that [¢a],, = 1, we have M = M'’. For a finite word w € X7, we
denote by Pref(w) the set of all its prefixes, including w. For a set X € M,
a word w € X is elementary if and only if it has at most two prefixes in X
and at most one prefix in any other set Y € M, Y # X. Formally, we have
Elemm(X) 2 {w € X | |Pref(w) N X[< 2and VY # X . |Pref(w) NY| < 1}.
An important property of the sets of elementary words is finiteness. This results
as a consequence of the fact that both M and X' are finite, since the length of any
w € Elemp(X) is Jw] < |M]| + 1, thus |Elema(X)| < [ZMIFL A dangling

4 Definition 2 in Section 4.

® Even if a pAL formula, e.g £Oy, is in general satisfied by an infinite number of
heaps.

6 There we proved ony that two structures are isomorphic if and only if they are
models of the same pAL formulas.

word is a minimal undefined path in M. Formally, we define Dangym(X) =
{wa | w € Elemm(X), a € X, wa ¢ |JM}. Since Elemyq and X are finite, so
is Dangaq(X). With this notation, we define:

Iy 2 U {wow' | w,w' € Elempm(X)} U (1)
XeM
U {=(wow') | w € Elemm(X),w" € Elemm(Y)} U (2)
XY EM,XAY

U {=(wOw) | w e Dangpm(X)} U{=(aCa) | a€ Z‘\UM} (3)
XeM

This set is constructed as follows: the first component (1) describes each object
as a set of alias propositions composed of elementary sequences, the second
component (2) distinguishes between objects using negated alias propositions
and the third and fourth components (3) describe the dangling sequences. Notice
that I’y is not minimal, since for instance in (2) it is sufficient to choose only one
w € Elema(X) and one w’ € Elema(Y). However, it is finite, according to our
previous considerations. Intuitively, I'y; contains all the necessary information
to characterize M, thus we shall take ¢ 2 A I'r. To show that M is a model

of ¢4 is a trivial but tedious check. That it is indeed the only model, will be
shown in the rest of this section.

Lemma 4. Let M be a heap with X € M, and I'ng be the characteristic set
defined in the previous. Then the following hold:

1. for each w € X there exists wo € Elema(X) such that Iy = wwy.

2. for allw ¢ |JM we have I'ng F —(wlw).

3. for any z,y € X we have [xOy] \ =1 = Ty F 2Oy and [zOy] \, =0 =
Iy = (20y).

Notice that, from the third point of Lemma 4, and since Iy, is satisfiable,
hence consistent, we obtain that [¢] ,, = 1 if and only if I'rg - ¢. Thus, the set
of formulas that are satisfied by M is finitely axiomatisable since Th(I'n) =
{o | [l pg = 1}, and I’y is finite by definition.

Theorem 3. Let M be a heap and ¢rq be the formula N\ I'ng. If [om] e = 1,
then M = M'.

Example Given ¥ = {a,b,c}, the heap M = {ab*} composed of one element
pointed to by a with a b self loop is characterized by the formula aab A —cOe A
—aclac.

4 Tableau Decision Procedure for pAL

A proof that uses natural deduction is mainly based on manually adding as-
sumptions in order to reach contradictions (and deleting them afterwards). This

makes, in general, natural deduction unsuitable for automated reasoning and
motivates our preference for the method of analytic tableaux [24], an elegant and
efficient proof procedure for propositional logic, which we subsequently extend
to pAL. Traditionally, a tableau for a propositional formula ¢ is a tree having ¢
as the root node and subformulas of ¢ or negations of subformulas of ¢ as nodes.
A tableau branch is said to be closed if it contains a formula together with its
negation, and open otherwise. A tableau is said to be closed if and only if all
its branches are closed. To check whether a formula ¢ is a tautology one builds
the tableau for =g, and infers that ¢ is a tautology if and only if the tableau
eventually closes. In case at least one branch remains open, a counterexample
for ¢ can be extracted.

—(ztOz) .. ytdz 2ty

rd
wow) Gor) gor) Som (MY
(61 A) . -
f;]f\gf (T5) oo ™ 22w £F (my

Fig. 5. Tableau Expansion Rules

Figure 5 shows the tableau expansion rules for pAL. We consider that
z,y,2 € X7 and t € X* that is, we can apply the rules also for an empty
suffix (¢t = €). The tableau is constructed top-down. A rule whose hypothesis
are of the form ¢...% (namely Ty and Tg) can be applied at a node, as soon as
both ¢ and v are on the path from the root to the current node, order indepen-
dent. Rule (T5) expands by putting both ¢; and ¢y on the same branch of the
tableau, while rule (7g) creates two new branches, one containing ¢; and the
other one containing . All other rules expand by appending their conclusion to
the current branch. We use rule (T3) to close a branch, since L does not expand
any further. Each rule can only be applied provided that its conclusion does not
already appear on the current branch, otherwise the procedure runs the risk of
looping forever (for instance, applying one of rules 73 4), without introducing
any new formulas’.

Example Figure 6 presents a sample run of the tableau procedure whose goal

is to prove that, for some given k € N, ¢ 2 4oab — a%abF is a tautology.
First, we eliminate the implication: ¢ = —(a®ab A =(aab)) and start the
tableau procedure with —¢;, as the root node. To the right of each node occurs
the number of the node(s) used in the hypothesis, followed by the name of the
rule applied in order to obtain that node. In this example, the tableau closes
after k + 6 steps. Branching lacks in this tableau because the rule (Tg) is never
applied. O

" The definition of a finer notion of redundancy is planned in the full version.

10

1] == (a®ab A =(a®ab®)) 7] —(ab* " oa) (5,6,T})

(1]

[2] aCabA—(aCab®)) (1,T7)

[3] alab (2,T5)

[4] =(a®ab™)) (2,T5)

[5] ab%a (3,Ts) [k+5] —(ab%a) (5,k +4,Th)
(6] —(ab*0a) (4,Ty) [k+6] 1 (5,k +5,Ts)

Fig. 6. Tableau Example

The tableau expansion rules can be easily understood with the natural de-
duction rules in mind. For instance, rule (T7) can be derived using (sufl), (LI)
and (—I). Rules (72) and (73) are (sufE) and (sufl), respectively, while (7y)
is easily derived using (sym) and (=T). The rest of the rules correspond to the
purely propositional part of the natural deduction system and are an easy check.
This (and the fact that the natural system is sound and complete) ensures that
the tableau rules are sound i.e., if a tableau started with —¢ closes, then ¢ is a
tautology. The dual implication, if ¢ is a tautology then every tableau started
with =@ will eventually close, will be dealt with in the following.

Note that the rules in Figure 5 do not cover the entire pAL syntax from
Figure 3: the atomic propositions of the form z < y are not considered. The
reason is that such propositions trivially evaluate to either true or false and
could be eliminated from a formula a priori. For completeness, rules for the
prefix test are given in [3].

The rest of this section is concerned with proving that the tableau method
is both complete and effective. To handle the tableau rules in an uniform way,
we use the unified notation of [24]: let an a-rule be one of the rules (77 5) and
B-rule be the rule (Tg). We denote the premises of a R-rule by Ry ... R, and its
conclusions by El, .. .Em, where R = a, (.

Definition 2. A set of formulas I' is said to be downward closed if and only if
it respects the following conditions:

— for no z,y € X, we have 20y, ~(xOy) € I,
— for any a-rule, if ay,... 0, € T, then ay,... .0y €T, _
— for any B-rule, if B1,...,0, € I', then either By € S or ... or B, € I'.

A tableau branch is said to be complete if no more rules can be applied to
expand it. A tableau is said to be complete if and only if each of its branches
is complete. It is manifest that an open complete tableau branch is a down-
ward closed set. The following technical lemma is key to showing satisfiability
of downward closed sets. We recall here the definition of the ~ relation from
Lemma 3. The following theorem is the main result of this section.

Lemma 5. For any downward closed set of formulas I', =(xOy) € T' implies
T #ry.

11

Theorem 4. Any downward closed set of formulas containing a finite number
of alias propositions is satisfiable.

The proof of the above theorem uses the model construction technique from
Lemma 3. The same method can be moreover used to derive a counterexample
of a non-valid formula, starting from an open tableau branch. Before stating
our completeness result for the tableau method, let us show that the method is
effective. That is, each tableau procedure started with a finite formula as the
root node, using the rules from Figure 5, eventually terminates.

Lemma 6. The tableau of a finite formula is finite.

Besides showing termination of the tableau procedure, the above lemma,
together with Theorem 4 ensure that the tableau approach is complete.

Corollary 1. If a formula ¢ is a tautology then every complete tableau starting
with =@ eventually closes.

In the light of the decidability result concerning pAL, we are next investigating
the time complexity of the above satisfiability problem, and find that it is NP-
complete. The proof uses Lemma 3 to show that satisfiability is in NP, and a
reduction from the satisfiability problem for a set of boolean clauses with three
literals (3-SAT) to show NP-hardness.

Theorem 5. The satisfiability problem for pAL is NP-complete.

5 An Effective Program Logic

In this section we demonstrate the possibility of using pAL as a weakest pre-
condition calculus for imperative programs with destructive updating. Otherwise
stated, we show that pAL is closed under applications of the weakest precondi-
tions predicate transformers. Intuitivelly, this is a consequence of the fact that
PAL formulas refer to finite portions of the heap, and also that straight-line
statements affect bounded regions of the heap. Our proof of closure is construc-
tive i.e., we define weakest preconditions in terms as predicate transformers
directly on pAL. This is achieved by means of the sound and complete program
logic defined on top of wAL [2]. Moreover, soundness and completness of the
PAL weakest precondition axioms are consequences of soundness and complet-
ness in the case of wAL.

We consider a simple imperative language consisting of the following three
atomics statements. Note that the statements of most object-oriented languages
can be precompiled in this form, possibly by introducing fresh temporary vari-
ables:

Stmnt := uv = null | uv = new | v = w (where uv £ w)
Here v,w € X denote pointer variables, and v € X* is a (possibly empty)

dereferencing path. The first statement resets the v field of the object pointed

12

to by u, if u # €, or the v top-level variable, otherwise. This may cause the
builtin garbage collector recall all non-reachable objects. The second statement
allocates a fresh object for further uses, and the third statement assigns its left-
hand side the object pointed to by the right-hand side variable. The syntactic
constraint that comes with the last statement is due to the following technical
problem. The semantics of the assignment is given as the composition of two
primitive operations: first one removes the v arc from the node pointed to by wu,
and then it assigns it to w. If uv < w and there are no other paths to the cell
pointed to by w, the garbage collection caused by the first operation removes
the unreachable cell before the assignment is finished. The requirement uv € w
is however sufficient to ensure that, in practice, this situation never occurs.

The axiomatic semantics of this language has been introduced in [2], by defin-
ing a weakest precondition operator pre on wAL formulas, and is briefly recalled
here. For any transition relation over a sequence of statements w € Stmnt™, pre
distributes over conjunction and universal quantification i.e., pre(w, p1 A pg) =
pre(w, 1) A pre(w, p2) and pre(w,VX . ¢) = VX . pre(w,¢). For total tran-
sition relations we have pre(w,p) = -pre(w,—y). If, moreover, the transi-
tion relation is total and deterministic, we have that pre is its own dual i.e.,
pre(w,) < —pre(w,). In the latter case, pre distributes over disjunction
and existential quantification too. These properties of pre for total, determin-
istic programs allow us to define general inference rules for the precondition
inductively on the structure of the postcondition. In particular, it is sufficient to
define preconditions only for modalities, the rest of the atomic propositions in
wAL being pure i.e., having model-independent denotations. Figure 7 (upper
part) gives the precondition of primitive storeless operations add, rem and new
for arbitrary modalities. This is generalized to the statements defined in the
previous (lower part).

{3IX. X\ SvX* =T A(X)(c\ SvXZ™)} rem(S,v) {(T)o}
{3X XS, T, X) =U AV, , %77 (X, X)} add(S,v,T) {(U)o}
where x"(S,T,X) £ X U Sv((T~1S)v)" (T~ X)
(X, Y) 2 Su((T7'S)o) (TT'X)Na =0 A (Y)y
PIY(X,Y) 2 So((T18)) (T X) Nz £ 0 A (YY)D
{(T=SvAonNSv#£0)V (T)o} new(S,v) {(T)o}

{35.(S)u A pre(rem(S,v),¢)} uv = null {p}
{3S.(S)u A pre(rem(S,v), pre(new(S,v),¢))} uv = new {p}
{383T.(S)u A (TYw A pre(rem(S,v), pre(add(S,v,T),¢))} uv = w {¢}

Fig. 7. wAL Weakest Preconditions

13

For the rest of this section, let o,7,0,u,v, w denote constant words, and
x,y, z denote variables ranging over words. We introduce the following notation:

Jr < o . o(x) = Vi epref(o) ©(T). Since o is a finite word, so is the formula
on the right. Figure 8 introduces a number of syntactic shorthands, providing
context-dependent translations from wAL to pAL for them. That is, we do
not translate the shorthands individually, but rather in an existentially closed
context.

Definition wAL PAL
. S . (Shu A a, Jr<o.zCuMhzv<o
a0 €Svx 35S . (S)u A —a, uQuA=(Fz <o .z0uNzv<0)
383T3X . (S)u A (T)wA dz <o .zOuAMhzv < oA
(X)0 A Bo w((zv) a)0h

) 1
Bo : o€ Su(T 'X) uOu A wOw A OO

3S3T3AX . (S)u A (T)wA =z <o.z0uhzv < oA
(X)0 N =05 w((zv) o))

3z <o Jy < (zv) o . 2OuA

3SIT . (SHu A (THwAvs | 2v < o AwySuAyv < (2v) o
. —1 *

Yo i 0 €Su(T™ S udu A wSwA

3S3T . (SYu AMTYw A=y, | =(Fz < o Fy < (zv)to . xOuUA

zv < o AwyQu A yv < (zv) o)

Fig. 8. wAL to pAL translation shorthands

We assert that all translations defined in Figure 8 preserve logical equivalence.
To convince ourselves of this fact, let us perform the step-by-step derivation for
the positive form of a,. The rest of the formulas are translated along the same
lines.
S . (SYuha, =35 . (SYuho € SvE* —
3S . Fz <o . (SHun(Slzhzw <o <= Tz <o.zluhzv<o0o

The goal of this section is to prove that the logic pAL is expressive enough
to characterize the destructive updating program statements considered in the
previous. The following theorem captures the result.

Theorem 6. For any sequence of statements w € Stmnt* and any formula
¢ € pAL[Y], we have pre(w, ¢) € pAL[X].

The proof proceeds by deriving the weakest precondition for an arbitrary
alias proposition o7 (equivalently written in wAL using the embedding rule)
i.e., applying the rules in Figure 7. The result is then translated back from wAL
to pAL using the shorthands from Figure 8. Then we can extend the result

14

to arbitrary post-conditions using the distributivity properties for pre, and to
arbitrary sequences of statements by induction on the length of the sequence.
It is important to notice that the translations from pAL to wAL and back
are logical equivalences. Since the pre operators defined on wAL formulas are
sound and complete, according to the development in [2], we can infer the exis-
tence of a sound and complete weakest precondition calculus also for pAL.

6 Conclusions and Future Work

This paper concerns a deductive verification method for aliasing properties in
imperative programming languages with destructive updating. Starting from
previous work on storeless semantics and alias logic with a weakest precondi-
tion calculus wAL, we show that the satisfiability problem is undecidable but
recursively enumerable. Next, we focus on a decidable subset pAL that allows
to express sound and complete weakest preconditions. The kind of properties
expressible in this logic are related to pointer aliasing, but also arbitrary finite
heaps can be defined. We give two sound and complete proof systems for pAL,
one based on natural deduction, and another based on analytic tableaux. The
satisfiability problem for pAL is shown to be NP-complete. A tool based on the
PAL framework is planned in the near future.

The main question related to the existence of a decidable program logic that
can express non-trivial shape properties of heap is not fully answered. Although
undecidable, the wAL logic offers a reach framework in which one can define
decidable fragments having complete weakest precondition calculi. One such ex-
ample is pAL. A still open question is the existence of a fragment of wAL that
encompasses pAL, in which one can express properties such as reachability, cir-
cularity, etc. One such extension, called kAL, is currently under investigation.
This logic is obtained from pAL, by considering words (over the heap alphabet)
with integer counters (parameters indicating the repetition of a finite subword)
and first order quantification over the counters. In this way we can express for in-
stance the existence of an unbounded next-path between two pointers head and
tail: 3k . head.{next}*<tail, a property that is not expressible in pAL. We plan
an extensive study of this logic, in order to cover both aspects of satisfiability
and expressiveness.

References

1. Benedikt, M., Reps, T., and Sagiv, M.: A decidable logic for describing linked data
structures. European Symposium on Programming, (1999) LNCS, Vol. 1576, 2-19.
2. M. Bozga, R. losif and Y. Lakhnech: Storeless Semantics and Alias Logic. Proc.
ACM SIGPLAN 2003 Workshop on Partial Evaluation and Semantics Based Program
Manipulation, 55 65.

3. M. Bozga, R. Iosif and Y. Lakhnech: On Logics of Aliasing. Technical Report TR-
2004-4, VERIMAG http://www-verimag.imag.fr/ iosif/TR-2004-4.ps

4. M. Bozga, R. Iosif: On Model Checking Generic Topologies. Technical Report TR-
2004-10, VERIMAG http://www-verimag.imag.fr/ iosif/TR-2004-10.ps

15

5. C. Calcagno, H. Yang and P.W. O’Hearn: Computability and Complexity Results
for a Spatial Assertion Language for Data Structures. In Foundations of Software
Technology and Theoretical Computer Science, LNCS, Volume 2245 (2001), 108-119

6. C. Calcagno, L. Cardelli, and A. Gordon: Deciding Validity in a Spatial Logic of
Trees. In ACM Workshop on Types in Language Design and Implementation (2003)
62-73

7. B. Courcelle: The expression of graph properties and graph transformations in
monadic second-order logic, Chapter 5 of the "Handbook of graph grammars and
computing by graph transformations, Vol. 1 : Foundations” (1997) 313-400

8. A. Deutsch: A storeless model of aliasing and its abstractions using finite repre-
sentations of right-regular equivalence relations. In Proceedings of the IEEE 1992
Conference on Computer Languages (1992) 2-13

9. H.D Ebbinghaus and J. Flum: Finite Model Theory. Springer-Verlag (1999)

10. R.W. Floyd: Assigning meaning to programs, Proc. Symposium on Applied Math-
ematics, American Mathematical Society, 1967, Vol. 1, 19-32.

11. D. Galmiche and D. Mery: Semantic Labelled Tableaux for propositional BI (with-
out bottom). Journal of Logic and Computation, vol. 13, n. 5 (2003)

12. C.A.R Hoare and He Jifeng: A Trace Model for Pointers and Objects. In Proc.
ECOOP’99, LNCS, Vol. 1628 (1999) 1-18

13. S. Ishtiaq and P. O’Hearn: BI as an Assertion Language for Mutable Data Struc-
tures. Proc. of 28th ACM-SIGPLAN Symposium on Principles of Programming Lan-
guages (2001)

14. H. B. M. Jonkers. Abstract Storage Structures. Algorithmic Languages, North-
Holland (1981) 321-343

15. N. Klarlund and M. I. Schwartzbach: Graphs and Decidable Transductions Based
on Edge Constraints, In Proc. 19th Colloquium on Trees and Algebra in Program-
ming, LNCS, Volume 787 (1994) 187-201

16. N. Klarlund and M. I. Schwartzbach: Graph Types. In Proc. 20th Annual Sympo-
sium on Principles of Programming Languages (1993) 196 205

17. A. Moeller and M. I. Schwartzbach: The Pointer Assertion Logic Engine. In Proc.
ACM SIGPLAN Conference on Programming Languages Design and Implementa-
tion, (2001).

18. P.W. O’Hearn and D.J. Pym: The Logic of Bunched Implications. Bulletin of
Symbolic Logic, 5(2) (1999) 215244

19. P.W. O’Hearn, J.C. Reynolds and H. Yang: Local reasoning about programs that
alter data structures. Computer Science Logic, LNCS, Volume 2142 (2001) 1-19

20. M. O. Rabin: Decidability of second order theories and automata on infinite trees,
Trans. Amer. Math. Soc. vol 141 (1969)

21. G. Ramalingam: The Undecidability of Aliasing. ACM Transactions on Program-
ming Languages and Systems, Vol 16, No 5 (1994) 1467-1471.

22. John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures.
Proc 17th IEEE Symposium on Logic in Computer Science (2002)

23. M. Sagiv, M., T. Reps and R. Wilhelm: Parametric Shape Analysis via 3-Valued
Logic. ACM Transactions on Programming Languages and Systems, Vol 24, No 3
(2002), 217-298

24. R. M. Smullyan: First-Order Logic. Dover Publications (1993)

25. D. van Dalen: Logic and Structure. Springer-Verlag (1997)

16

