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On Logics of Aliasing

In this paper we investigate the existence of a deductive veri cation method based on a logic that describes pointer aliasing. The main idea of such a method is that the user has to annotate the program with loop invariants, pre-and post-conditions. The annotations are then automatically checked for validity by propagating weakest preconditions and verifying a number of induced implications. Such a method requires an underlying logic which is decidable and has a sound and complete weakest precondition calculus. We start by presenting a powerful logic (wAL) which can describe the shapes of most recursively de ned data structures (lists, trees, etc.) has a complete weakest precondition calculus but is undecidable. Next, we identify a decidable subset (pAL) for which we show closure under the weakest precondition operators. In the latter logic one loses the ability of describing unbounded heap structures, yet bounded structures can be characterized up to isomorphism. For this logic two sound and complete proof systems are given, one based on natural deduction, and another based on the e ective method of analytic tableaux. The two logics presented in this paper can be seen as extreme values in a framework which attempts to reconcile the naturally oposite goals of expressiveness and decidability.

Introduction

The problem of pointer aliasing plays an important role in the elds of static analysis and software model checking. In general, static analyses used in optimizing compilers check basic properties such as data sharing and circularities in the heap of a program, while model checking deals with the evolution of heap structures, in both shape and contents, over time. An early result 21] shows that precise may-alias analysis in the presence of loops is undecidable. As a consequence, the approach adopted by the static analysis community, is the abstraction-based shape analysis 23]. This method is e ective in the presence of loops, since the domain of the analysis is bounded, but often imprecise. In this paper we present an orthogonal solution to the aliasing problem, in that precision is the primary goal. To ensure termination, we use Floyd's method 10] of annotating the program with pre-, post-conditions and loop invariants. The annotations are subsequently veri ed by a push-button procedure, that computes weakest preconditions expressed using an e ectively decidable logic.

The key is to nd a logic that can altogether (i) express aliasing and shape properties of the program heap, (ii) is e ectively decidable, and moreover, (iii) has a sound and complete weakest precondition calculus with respect to the atomic statements. While the second and third requirements are clear, the rst one is still ambiguous: what kind of speci cations can we express in a decidable heap logic with weakest preconditions? The contribution of this paper is the de nition of a formal framework in which we prove that such logics can be found. Our focus is on imperative programs with destructive updating, in which heaps are viewed as shape graphs with labels only on edges i.e., we ignore from the start the internal states of the objects.

As a starting point, we present a general logic Weak Alias Logic (wAL) that is expressive enough to describe the recursive data structures of interest (lists, trees, dags etc.) as in nite classes of nite graphs. This logic has also a sound and complete weakest precondition calculus with respect to atomic statements such as new object creation and assignment of pointers. The satis ability problem of the wAL logic is found to be undecidable but recursively enumerable, which motivates further searches for semi-decision procedures and non-trivial decidable subsets.

In the rest of the paper, we de ne a decidable subset of wAL, called Propositional Alias Logic (pAL) for describing pointer aliasing that is, moreover, able to characterize arbitrary nite structures and nite classes of structures. The tradeo in de ning pAL is losing the ability to describe a number of interesting shape properties such as listness, (non)circularity, etc. For this logic, we give a proof-theoretic system based on natural deduction, and an e ective tableau decision method. Both systems are shown to be sound and complete. Moreover, the satis ability problem for pAL is shown to be NP-complete. The last point concerns the de nition, in pAL, of weakest preconditions for imperative programs with destructive updating. At this point, we use the wAL weakest precondition calculus, previously developped in 2]. Our weakest precondition calculus for pAL is sound and complete, as a consequence of the soundness and completness of the de nitions for wAL weakest preconditions. Related Work To describe properties of dynamic program stores, various formalisms have been proposed in the literature e.g., L r 1], BI (Bunched Implications) 13], Separation Logic 22] and PAL (Pointer Assertion Language) 17]. As a common point with our work, L r 1] uses regular expressions to describe reachability between two points in the heap and is shown to be decidable, yet the weakest precondition calculus is not developed. On the other hand, BI 13] and Separation Logic 22] produce remarkably simple preconditions and have quite clean proof-theoretic models 18]. Another feature of these formalisms is that they allow for compositional reasoning 19]. As a downside, the quanti er fragment, essential to express weakest preconditions, is undecidable 5], while the ground (propositional) fragment is decidable, a tableau procedure being proposed in 11]. In a later publication 6], a specialization of the ground fragment of BI to tree models is used as a type system for a language, based on -calculus, that handles trees. An e ectively decidable formalism is PAL 17], an extension of second-order monadic logic on trees that allows to describe a restricted class of graphs, known as \graph types" 16], as opposed to our approach that deals with unrestricted graphs. Programs that manipulate such graphs are restricted to updating only the underlying tree (backbone). The resulting actions can thus be described in monadic second-order logic, and the validity of Hoare triples expressed in PAL can be automatically decided 15].

The decision procedures for both L r and PAL use Rabin's result on the monadic second order theory of n successors (SnS) 20]. The decision procedure for the satis ability of SnS is however non-elementary. We show that the decision problem for the pAL logic is NP-complete, thus drastically improving the complexity bounds. Also, to the best of our knowledge, no previously published work on the veri cation of heap properties has the ability to deal with unrestricted (destructively updated) data structures, developing a sound and complete weakest precondition calculus on top of a decidable logic for graphs.

Weak Alias Logic

In this section we introduce Weak Alias Logic (wAL), a logic that is expressive enough for de ning recursive data structures (lists, trees, etc) as in nite classes of nite graphs, as well as for de ning a weakest precondition calculus of imperative programming languages with destructive updating 2]. This section de nes the logic, and Section 5 brie y recalls the weakest precondition calculus that has been developed on top of it.

Before giving the syntax of wAL, let us introduce the notion of heap, which is central in de ning interpretations of wAL formulas. Intuitively, a heap is represented by a graph where the nodes model objects and the edges model pointers between objects. The heap edges are labeled with symbols from a given alphabet , which stands for the set of all program pointers, including all program variables and record elds (selectors). It is furthermore required that the graph be deterministic, as a program pointer can only point to one object at a time.

In this paper we adopt the storeless representation 2], 12], 14], 8] of a graph, in which each node is associated the language recognized by the automaton whose set of states is given by the set of graph nodes, the transition relation by the set of edges, the initial state is a designated entry point in the heap, and the unique nal state, the node itself. The interested reader is referred to 2] for a detailed discussion on the advantages of the storeless representation of heaps, such as compatibility with garbage collection and isomorphic transformations.

De nition 1 (Heap). A heap M P( + ) is either the empty set or a nite set fX 1 ; X 2 ; : : : ; X n g satisfying the following conditions, for all 1 i; j n: (C1) non-emptiness: X i 6 = ;, (C2) determinism: i 6 = j ) X i \ X j = ;, (C3) pre x closure and right regularity: 8x 2 X i 8y; z 2 + x = yz ) 9 1 k n y 2 X k ^Xk z X i ]]] One can also think of a heap element as the set of all incoming paths leading to it, paths that start with a program variable. The (C1),(C2) and (C3) restrictions must be imposed on the elements of a heap in order to maintain the correspondence (up to isomorphism) with the graph model 2]. An equivalent approach, taken in 14], 8], is to consider the languages in the heap as equivalence classes of a right-regular relation on . The set of all heaps over an alphabet is denoted in the following by H( ).

Figure 1 introduces the abstract syntax (upper part) and semantics (lower part) of the wAL logic. The terms of a wAL formula are regular expressions over the alphabet with free variables from a set V ar. We allow the classical composition operations on regular expressions, together with the left derivate, denoted by ?1 1 2 = f 2 j 1 \ 2 6 = ;g 1 . Formulas are built from the atomic propositions 1 = 2 (language equivalence) and hXi 1 (modality) connected with the classical rst-order operators ^, : and 9. A less usual requirement is imposed on the syntax of the existential quanti er: the quanti ed variable need to occur at least once within the angled brackets of a modality in the scope of the quanti er, which is formally captured by the 'hXi. Notice also that only free variables can occur inside the modality brackets. A formula ' is said to be closed if no variables occur free i.e., FV (') = ;, where FV is de ned recursively on the syntax, as usual. We de ne 8X : ' = :9X : :', ' 1 _' 2 = :(:' 1 ^:' 2 ), and ' 1 ! ' 2 = :' 1 _ ' 2 . The set of all wAL formulas over the alphabet is formally denoted by wAL ].

::= v 2 j X 2 V ar j j 1 2 j j 1 2 j 1 \ 2 j j ?1 1 2 ' ::= 1 = 2 j hX i 1 j ' 1 ^'2 j :' j 9X : 'hXi 

] ] = (FV ( ))=FV ( )] 1 = 2 ] ] M; = 1 ( ) 1 ] ] = 2 ] ] hX i 1 ] ] M; = 1 ( ) (X) 2 M and (X) \ 1 ] ] 6 = ; 9X ']] ] M; = 1 ( ) 9 2 P ( ) : '] ] M; X! ] = 1

Fig. 1. Weak Alias Logic

A wAL formula is interpreted with respect to a heap M and a valuation assigning free variables to languages. The only non-standard operator is the modality hXi 1 , where X is bound to denote a heap entity which intersects (the interpretation of) 1 . As a consequence of the syntactic restriction imposed on the existential quanti er, all variables in a closed formula are bound to heap entities 2 . A heap M is said to be a model for a closed wAL formula ' if and only if '] ] M; X:? = 1. In case where ' has at least one model, it is said to be satis able.

At this point, the reader can notice an embedding of wAL into the Monadic Second Order Logic on graphs. Indeed, a wAL formula is composed of equivalences of regular expressions ( 1 = 2 ) related using rst order connectives. Such equivalences can be described by nite automata which, in turn, can be speci ed in MSOL. However, we found using regular expressions, instead of MSOL, more intuitive for the speci cation of heap properties, as it is shown in the following.

Path properties reach(X; Y

) hY iX + next(X; Y ) hY iX ^8Y 0 : hY 0 iX ! Y = Y 0 linear(X; Y ) reach(X; Y ) ^8Z : :Z = Y ^?X = Z _ reach(X; Z) reach(Z; Y ) ! 9Z 0 : :Z 0 = Z ^next(Z; Z 0 ) cycle(X; Y ) reach(X; Y ) ^reach(Y ; X) share(X; Y ) 9Z : reach(X; Z) ^reach(Y ; Z) Recursive data structures nclist(head) 8X : hX ihead ! 9Y : hY iX next ^linear(X; Y ) ^:cycle(Y ; Y ) dlist(head; next; prev) 8X; Y 9Z : (hXihead ) :hY iX prev)( hZ iX next ) X 6 = Z ^hX iZ prev) tree(root) 8X:hX iroot ! 8Y ; Z : (reach(X; Y ) ^reach(X; Z)) ! :share(Y ; Z)) dag(root) 9X : hX iroot ! 8Y ; Z : reach(X; Y ) ^reach(X; Z) ! :cycle(Y ; Z) Fig. 2

. Expressing properties of heaps

The properties in Figure 2 describe various paths in the structure. We consider the predicate reach(X; Y ) stating that node Y is reachable from node X by some non-empty path. A node Y is said to be next to a node X if Y is the only neighbor of X. A path from X to Y is linear if there is no branching i.e., if all the nodes on the path have only one successor. The existence of a cycle containing both X and Y is given by the cycle(X; Y ) predicate.

The wAL logic can also describe the shapes of most typical recursive data structures used in programming languages with dynamic memory allocation: lists, trees, dags, etc. For instance, non-cyclic simply-linked lists pointed to by the head variable and using the next eld as forward selector, are being described by the nclist predicate. Doubly-linked lists pointed to by the head variable and using the next and prev eld pointers as forward and backward selectors, respectively, can be captured by the dlist predicate. Some data structures, such as trees, require the absence of sharing. A sharing predicate expressing that X and Y belong to two structures that share some node can be given by share(X; Y ). A tree structure pointed to by a variable root is described by the tree formula. A dag structure in which every node is reachable from a root variable is given by the dag formula.

Undecidability of wAL

The result of this section comes with no surprise, in the light of similar undecidability results for logics able to express graph properties such as e.g, the logic of Bunched Implications (BI) 5], and Monadic Second-Order Logic of graphs 7]. Given along the same lines as the undecidability proof for BI 5], our proof for wAL relies on a classical result in nite model theory 9], namely that the rst order logic interpreted over nite structures is undecidable.

Given a vocabulary V of relation symbols, let FO V] be the set of rst-order formulas with symbols from V. For each relation symbol R 2 V, let #(R) denote its arity i.e., its number of arguments. Let V = fR 1 ; : : : ; R n g for the rest of this section. We interpret rst-order formulas over structures A = hA; R A 1 ; : : : ; R A n i, where A is the universe and R A i A #(R i ) , 1 i n are the interpretations of the relation symbols from V over A. A structure is said to be nite if and only if its universe is nite. Given a valuation v : FV (') ! A of the free variables in a formula ' 2 FO V], we denote by '] ] A;v the interpretation of ' in A. We say that A is a model of a closed rst-order formula ' if and only if '] ] A; X:? = 1. It is known that the problem of nding a nite model for a closed FO V] formula is undecidable 9]: Theorem 1 (Trahtenbrot's Theorem). Let V be a vocabulary with at least one symbol of arity two or more. Then the set Sat V] = f' 2 FO V] j FV (') = ;; ' has a nite model g is not decidable.

Given an arbitrary rst order formula, we shall translate it into a wAL formula such that satis ability is strongly preserved by the translation. Considering that V = fR 1 ; : : : ; R n g, we de ne V = f i1 ; : : : ; i#(R i ) ; i j 1 i ng f g.

That is, for each relation symbol of arity k we consider k di erent -symbols and a -symbol in V . The translation is given by the recursive function :

FO V] ! wAL V ], de ned as:

(R k (X 1 ; : : :

; X #(R k ) )) = 9X : hX i ^V#(R k ) i=1 hX i iX ki (X = Y ) = X = Y (' 1 ^'2 ) = (' 1 ) ^ (' 2 ) (:') = : (') (9X : ') = 9X : hX i ^ (')
Note that the translation of a closed rst-order formula respects the syntactic constraints of wAL, that each quanti ed variable must occur inside the brackets of a modality, and that only a variable can occur on this position. Moreover, a closed rst-order formula translates into a closed wAL formula. Now it remains to be shown that the translation strongly preserves satis ability. We remind that satis ability for wAL is implicitly de ned on nite models (De nition 1). Due to space constraints, all proofs are deferred to 3]. Lemma 1. A closed rst-order formula ' is nitely satis able if and only if (') is satis able.

Considering for the moment that the alphabet is su ciently large to code the vocabulary V of a given rst order logic, Theorem 1 and Lemma 1 lead immediately to the following result.

Theorem 2. For a su ciently large alphabet , the set Sat ] = f' 2 wAL ] j FV (') = ;; ' has a model g is not recursive.

Since Theorem 1 holds for vocabularies containing at least one relation symbol of arity two, by the de nition of V it follows that Theorem 2 holds for generic heaps over alphabets of size at least four. Here, a more re ned heap model could provide us with more intuition in identifying classes of heaps over which the satis ability problem becomes decidable. For instance, considering = , \ = ;, j j j j = 1 and all heaps of the form M P(

) i.e., heaps consisting only of (possibly circular) singly linked lists. In this simple case, we propose to revisit the decidability of the satis ability problem for wAL.

In order to show that the satis ability problem for wAL is recursively enu- that enumerates all models M 1 ; M 2 ; : : : , testing whether each M i is a model of , will eventually stop.

Lemma 2. For every nite , the set Sat ] is recursively enumerable.

An interesting open problem is then how to nd useful semi-decision procedures for wAL.

Propositional Alias Logic

The negative result from the previous section motivates the search for decidable subsets of wAL that are able to express meaningful properties of heaps. One basic property encountered in many applications is data sharing. In this section we de ne a simpler logic based directly on the notion of aliasing of nite heap access paths (Propositional Alias Logic, or pAL for short). The rest of this paper is concerned with the study of pAL from three perspectives: proof theory, automated reasoning and program logic. The ability of pAL to express other heap properties besides aliasing, is also investigated. Figure 3 de nes the abstract syntax (upper part) and the semantics (lower part) of pAL. The terms are nite words over an alphabet , with w ?1 1 w 2 being the su x of w 2 that, concatenated with w 1 , yields w 2 , if such su x exists, or the empty word , otherwise. The atomic propositions are the pre x test (w 1 w 2 ) and the alias proposition (w 1 3w 2 ). Formulas are built from atomic propositions connected with the propositional operators ^and :. In the syntax de nition, ?

w := v 2 j w 1 w 2 j w ? 1 1 w 2 ' := w 1 w 2 j w 1 3w 2 j ' 1 ^'2 j :' j ? w 1 3w 2 ] ] M = 1 ( ) 9X 2 M : w 1 ; w 2 2 X Fig. 3. Propositional Alias Logic denotes the false literal 3 . The set of all pAL formulas over the alphabet is formally denoted by pAL ].

The semantics of pAL is de ned with respect to a heap M. An alias proposition w 1 3w 2 is true if and only if there exists an element of M such that both terms w 1 ; w 2 belong to it. Note that, since M P( + ), if either one of the terms is , the alias proposition is false. The intended meaning of w3w for some w 2 + , is to say that w is a well-de ned path in the heap. The following semantic equivalence is a trivial check: w 1 3w 2 () 9X : hXiw 1 ^hXiw 2 . The pre x relation w 1 w 2 can be encoded in wAL as w ? 1 1 w 2 6 = ; , where = ; is a possible de nition of the empty word in wAL. These considerations justify the fact that pAL is a subset of wAL. The embedding is proper (pAL ] wAL ]), since e.g. reachability and linearity are not expressible in pAL.

Natural Deduction System

This section introduces a natural deduction system 25] for pAL that proves to be a useful tool in reasoning about aliases. Although later in this paper we adopt the automated reasoning view, as opposed to the proof theoretic, a number of results from this sections are used in the rest of the paper. The system (Figure 4) is that of propositional calculus a la Gentzen (rules ^E, ^I, :E, :I, ?E, ?I) to which we add three rules concerning only alias propositions (sufE, sufI and sym). For these rules we take ? pAL ], x; y; z 2 + and t 2 . xt3y x3x (sufE) x3y yt3z xt3z (sufI) x3y y3x (sym) ' ^ ' (^E) ' ' ^ (^I) ? ' (?E) ' :' ? (?I)

?; :' `? ? `' (:E) ?; ' `? ? `:' (:I) Fig. 4. Natural Deduction System for pAL 3 False could have been de ned as ' ^:' for an arbitrary formula '. However an explicit de nition is preferred for the purposes of the proof theoretic system of Section 3.1.

The natural deduction system presented in Figure 4 exhibits a number of interesting properties: it is sound, complete and, all proofs of alias propositions can be given in a normal form. To formalize these notions, we need further notation. If p is an alias proposition, we say that ? `PA p if and only if there exists a derivation of p with premises in ? that uses only the (sufI), (sufE) and (sym) rules. Otherwise, if is any formula, we say that ? ` if and only if there exists a derivation of with premises in ?. By Th(?) we denote the theory of ?

i.e., the set of all formulas that can be deduced from it i.e., Th(?) = f' j ? `'g.

Given a nite set of alias propositions, there exists a heap that is a model for the entire set. Lemma 3. Let ? be a set of formulas containing a nite number of alias propositions, ? + + be a relation on nite sequences, de ned as x ? y if and only if ? `PA x3y, and H ? be the set fx j x ? xg. Then ? is a total equivalence relation on H ? , and the quotient H ? = ? is a heap. Moreover, j jH ? = ? j j k j j?j j, where k 2 N is a constant.

Note that, for arbitrary sets of formulas, the existence of a model occurs as a consequence of the downward closure property4 .

Expressiveness of pAL

In this section we investigate the expressiveness of the pAL language. We show that any nite heap structure over a nite alphabet can be uniquely characterized by a pAL formula. As a consequence, any nite class of heap structures can be de ned in pAL 5 . This extends our previous result in 2], that pAL has the power to distinguish between any two non-isomorphic heap con gurations6 . However, the far more interesting question, of whether and how could pAL be extended to describe recursive data structures and still preserve decidability, is subject to ongoing and future work.

For the rest of this section, let M = fX 1 ; : : : ; X n g be a given heap. We shall de ne a formula M such that M ] ] M = 1 and, for any other heap M 0 such that M ] ] M 0 = 1, we have M = M 0 . For a nite word w 2 + , we denote by Pref(w) the set of all its pre xes, including w. For a set X 2 M, a word w 2 X is elementary if and only if it has at most two pre xes in X and at most one pre x in any other set Y 2 M, Y 6 = X. Formally, we have Elem M (X) = fw 2 X j j jPref(w) \ Xj j 2 and 8Y 6 = X : j jPref(w) \ Y j j 1g.

An important property of the sets of elementary words is niteness. This results as a consequence of the fact that both M and are nite, since the length of any w 2 Elem M (X) is jwj j jMj j + 1, thus j jElem M (X)j j j j j j j jMj j+1 . A dangling word is a minimal unde ned path in M. Formally, we de ne Dang M (X) = fwa j w 2 Elem M (X); a 2 ; wa 6 2 S Mg. Since Elem M and are nite, so is Dang M (X). With this notation, we de ne: ? M = X2M fw3w 0 j w; w 0 2 Elem M (X)g [START_REF] Benedikt | A decidable logic for describing linked data structures[END_REF] X;Y 2M;X6 =Y f:(w3w 0 ) j w 2 Elem M (X); w 0 2 Elem M (Y )g

(2) X2M f:(w3w) j w 2 Dang M (X)g f:(a3a) j a 2 n Mg [START_REF] Bozga | On Logics of Aliasing[END_REF] This set is constructed as follows: the rst component [START_REF] Benedikt | A decidable logic for describing linked data structures[END_REF] describes each object as a set of alias propositions composed of elementary sequences, the second component [START_REF] Bozga | Storeless Semantics and Alias Logic[END_REF] distinguishes between objects using negated alias propositions and the third and fourth components (3) describe the dangling sequences. Notice that ? M is not minimal, since for instance in (2) it is su cient to choose only one w 2 Elem M (X) and one w 0 2 Elem M (Y ). However, it is nite, according to our previous considerations. Intuitively, ? M contains all the necessary information to characterize M, thus we shall take M = V ? M . To show that M is a model of M is a trivial but tedious check. That it is indeed the only model, will be shown in the rest of this section. Lemma 4. Let M be a heap with X 2 M, and ? M be the characteristic set de ned in the previous. Then the following hold:

1. for each w 2 X there exists w 0 2 Elem M (X) such that ? M `w3w 0 . 2. for all w 6 2 S M we have ? M `:(w3w). 3. for any x; y 2 + we have x3y] ] M = 1 ) ? M `x3y and x3y] ] M = 0 ) ? M `:(x3y).

Notice that, from the third point of Lemma 4, and since ? M is satis able, hence consistent, we obtain that '] ] M = 1 if and only if ? M `'. Thus, the set of formulas that are satis ed by M is nitely axiomatisable since Th(? M ) = f' j '] ] M = 1g, and ? M is nite by de nition. Theorem 3. Let M be a heap and M be the formula V ? M . If M ] ] M 0 = 1, then M = M 0 . Example Given = fa; b; cg, the heap M = fab g composed of one element pointed to by a with a b self loop is characterized by the formula a3ab ^:c3c: ac3ac.

Tableau Decision Procedure for pAL

A proof that uses natural deduction is mainly based on manually adding assumptions in order to reach contradictions (and deleting them afterwards). This makes, in general, natural deduction unsuitable for automated reasoning and motivates our preference for the method of analytic tableaux 24], an elegant and e cient proof procedure for propositional logic, which we subsequently extend to pAL. Traditionally, a tableau for a propositional formula ' is a tree having '

as the root node and subformulas of ' or negations of subformulas of ' as nodes.

A 

Fig. 5. Tableau Expansion Rules

Figure 5 shows the tableau expansion rules for pAL. We consider that x; y; z 2 + and t 2 that is, we can apply the rules also for an empty su x (t = ). The tableau is constructed top-down. A rule whose hypothesis are of the form ' : : : (namely T 1 and T 8 ) can be applied at a node, as soon as both ' and are on the path from the root to the current node, order independent. Rule (T 5 ) expands by putting both ' 1 and ' 2 on the same branch of the tableau, while rule (T 6 ) creates two new branches, one containing ' 1 and the other one containing ' 2 . All other rules expand by appending their conclusion to the current branch. We use rule (T 8 ) to close a branch, since ? does not expand any further. Each rule can only be applied provided that its conclusion does not already appear on the current branch, otherwise the procedure runs the risk of looping forever (for instance, applying one of rules T 3;4 ), without introducing any new formulas7 .

Example Figure 6 presents a sample run of the tableau procedure whose goal is to prove that, for some given k 2 N , k = a3ab ! a3ab k is a tautology. First, we eliminate the implication: k = :(a3ab ^:(a3ab k )) and start the tableau procedure with : k as the root node. To the right of each node occurs the number of the node(s) used in the hypothesis, followed by the name of the rule applied in order to obtain that node. In this example, the tableau closes after k + 6 steps. Branching lacks in this tableau because the rule (T 6 ) is never applied. 2

Fig. 6. Tableau Example

The tableau expansion rules can be easily understood with the natural deduction rules in mind. For instance, rule (T 1 ) can be derived using (sufI), (?I) and (:I). Rules (T 2 ) and (T 3 ) are (sufE) and (sufI), respectively, while (T 4 ) is easily derived using (sym) and (:I). The rest of the rules correspond to the purely propositional part of the natural deduction system and are an easy check. This (and the fact that the natural system is sound and complete) ensures that the tableau rules are sound i.e., if a tableau started with :' closes, then ' is a tautology. The dual implication, if ' is a tautology then every tableau started with :' will eventually close, will be dealt with in the following.

Note that the rules in Figure 5 do not cover the entire pAL syntax from Figure 3: the atomic propositions of the form x y are not considered. The reason is that such propositions trivially evaluate to either true or false and could be eliminated from a formula a priori. For completeness, rules for the pre x test are given in 3]. The rest of this section is concerned with proving that the tableau method is both complete and e ective. To handle the tableau rules in an uniform way, we use the uni ed notation of 24]: let an -rule be one of the rules (T 1:::5 ) and -rule be the rule (T 6 ). We denote the premises of a R-rule by R 1 : : : R n and its conclusions by e R 1 ; : : : e R m , where R = ; . De nition 2. A set of formulas ? is said to be downward closed if and only if it respects the following conditions:

{ for no x; y 2 + , we have x3y; :(x3y) 2 ?, { for any -rule, if 1 ; : : : ; n 2 ?, then e 1 ; : : : ; e m 2 ?, { for any -rule, if 1 ; : : : ; n 2 ?, then either e 1 2 S or : : : or e m 2 ?.

A tableau branch is said to be complete if no more rules can be applied to expand it. A tableau is said to be complete if and only if each of its branches is complete. It is manifest that an open complete tableau branch is a downward closed set. The following technical lemma is key to showing satis ability of downward closed sets. We recall here the de nition of the ? relation from Lemma 3. The following theorem is the main result of this section. Lemma 5. For any downward closed set of formulas ?, :(x3y) 2 ? implies x 6 ? y. Theorem 4. Any downward closed set of formulas containing a nite number of alias propositions is satis able.

The proof of the above theorem uses the model construction technique from Lemma 3. The same method can be moreover used to derive a counterexample of a non-valid formula, starting from an open tableau branch. Before stating our completeness result for the tableau method, let us show that the method is e ective. That is, each tableau procedure started with a nite formula as the root node, using the rules from Figure 5, eventually terminates. Lemma 6. The tableau of a nite formula is nite.

Besides showing termination of the tableau procedure, the above lemma, together with Theorem 4 ensure that the tableau approach is complete.

Corollary 1. If a formula ' is a tautology then every complete tableau starting with :' eventually closes. In the light of the decidability result concerning pAL, we are next investigating the time complexity of the above satis ability problem, and nd that it is NPcomplete. The proof uses Lemma 3 to show that satis ability is in NP, and a reduction from the satis ability problem for a set of boolean clauses with three literals (3-SAT) to show NP-hardness.

Theorem 5. The satis ability problem for pAL is NP-complete.

An E ective Program Logic

In this section we demonstrate the possibility of using pAL as a weakest precondition calculus for imperative programs with destructive updating. Otherwise stated, we show that pAL is closed under applications of the weakest preconditions predicate transformers. Intuitivelly, this is a consequence of the fact that pAL formulas refer to nite portions of the heap, and also that straight-line statements a ect bounded regions of the heap. Our proof of closure is constructive i.e., we de ne weakest preconditions in terms as predicate transformers directly on pAL. This is achieved by means of the sound and complete program logic de ned on top of wAL 2]. Moreover, soundness and completness of the pAL weakest precondition axioms are consequences of soundness and completness in the case of wAL.

We consider a simple imperative language consisting of the following three atomics statements. Note that the statements of most object-oriented languages can be precompiled in this form, possibly by introducing fresh temporary variables:

Stmnt := uv = null j uv = new j uv = w (where uv 6 w) Here v; w 2 denote pointer variables, and u 2 is a (possibly empty) dereferencing path. The rst statement resets the v eld of the object pointed to by u, if u 6 = , or the v top-level variable, otherwise. This may cause the builtin garbage collector recall all non-reachable objects. The second statement allocates a fresh object for further uses, and the third statement assigns its lefthand side the object pointed to by the right-hand side variable. The syntactic constraint that comes with the last statement is due to the following technical problem. The semantics of the assignment is given as the composition of two primitive operations: rst one removes the v arc from the node pointed to by u, and then it assigns it to w. If uv w and there are no other paths to the cell pointed to by w, the garbage collection caused by the rst operation removes the unreachable cell before the assignment is nished. The requirement uv 6 w is however su cient to ensure that, in practice, this situation never occurs.

The axiomatic semantics of this language has been introduced in 2], by de ning a weakest precondition operator g pre on wAL formulas, and is brie y recalled here. For any transition relation over a sequence of statements ! 2 Stmnt + , g pre distributes over conjunction and universal quanti cation i.e., g pre(!; ' 1 ^'2 ) = g pre(!; ' 1 ) ^g pre(!; ' 2 ) and g pre(!; 8X : ') = 8X : g pre(!; '). For total transition relations we have g pre(!; ') ) :g pre(!; :'). If, moreover, the transition relation is total and deterministic, we have that g pre is its own dual i.e., g pre(!; ') , :g pre(!; :'). In the latter case, g pre distributes over disjunction and existential quanti cation too. These properties of g pre for total, deterministic programs allow us to de ne general inference rules for the precondition inductively on the structure of the postcondition. In particular, it is su cient to de ne preconditions only for modalities, the rest of the atomic propositions in wAL being pure i.e., having model-independent denotations. Figure 7 (upper part) gives the precondition of primitive storeless operations add, rem and new for arbitrary modalities. This is generalized to the statements de ned in the previous (lower part).

f9X:X n Sv = T ^hX i( n Sv )g rem(S,v) fhT i g f9X: v (S; T; X) = U ^Wi=1;2 ; i (X; X)g add(S,v,T) fhU i g where v (S; T; X) = X Sv((T ?1 S)v) (T ?1 X)

x;y 1 (X; Y ) = Sv((T ?1 S)v) (T ?1 X) \ x = ; ^hY iy x;y 2 (X; Y ) = Sv((T ?1 S)v) (T ?1 X) \ x 6 = ; ^hY i f(T = Sv ^ \ Sv 6 = ;) _ hT i g new(S,v) fhT i g f9S:hSiu ^g pre(rem(S; v); ')g uv = null f'g f9S:hSiu ^g pre(rem(S; v); g pre(new(S; v); '))g uv = new f'g f9S9T :hSiu ^hT iw ^g pre(rem(S; v); g pre(add(S; v; T); '))g uv = w f'g Fig. 7.

wAL Weakest Preconditions

For the rest of this section, let ; ; ; u; v; w denote constant words, and x; y; z denote variables ranging over words. We introduce the following notation: 9x

: '(x) = W 2Pref( ) '( ). Since is a nite word, so is the formula on the right. Figure 8 We assert that all translations de ned in Figure 8 preserve logical equivalence. To convince ourselves of this fact, let us perform the step-by-step derivation for the positive form of . The rest of the formulas are translated along the same lines.

9S : hSiu ^ 9S : hSiu ^ 2 Sv () 9S : 9x : hSiu ^hSix ^xv () 9x : x3u ^xv

The goal of this section is to prove that the logic pAL is expressive enough to characterize the destructive updating program statements considered in the previous. The following theorem captures the result. Theorem 6. For any sequence of statements ! 2 Stmnt and any formula ' 2 pAL ], we have g pre(!; ') 2 pAL ].

The proof proceeds by deriving the weakest precondition for an arbitrary alias proposition 3 (equivalently written in wAL using the embedding rule) i.e., applying the rules in Figure 7. The result is then translated back from wAL to pAL using the shorthands from Figure 8. Then we can extend the result to arbitrary post-conditions using the distributivity properties for g pre, and to arbitrary sequences of statements by induction on the length of the sequence.

It is important to notice that the translations from pAL to wAL and back are logical equivalences. Since the g pre operators de ned on wAL formulas are sound and complete, according to the development in 2], we can infer the existence of a sound and complete weakest precondition calculus also for pAL.

Conclusions and Future Work

This paper concerns a deductive veri cation method for aliasing properties in imperative programming languages with destructive updating. Starting from previous work on storeless semantics and alias logic with a weakest precondition calculus wAL, we show that the satis ability problem is undecidable but recursively enumerable. Next, we focus on a decidable subset pAL that allows to express sound and complete weakest preconditions. The kind of properties expressible in this logic are related to pointer aliasing, but also arbitrary nite heaps can be de ned. We give two sound and complete proof systems for pAL, one based on natural deduction, and another based on analytic tableaux. The satis ability problem for pAL is shown to be NP-complete. A tool based on the pAL framework is planned in the near future.

The main question related to the existence of a decidable program logic that can express non-trivial shape properties of heap is not fully answered. Although undecidable, the wAL logic o ers a reach framework in which one can de ne decidable fragments having complete weakest precondition calculi. One such example is pAL. A still open question is the existence of a fragment of wAL that encompasses pAL, in which one can express properties such as reachability, circularity, etc. One such extension, called kAL, is currently under investigation. This logic is obtained from pAL, by considering words (over the heap alphabet) with integer counters (parameters indicating the repetition of a nite subword) and rst order quanti cation over the counters. In this way we can express for instance the existence of an unbounded next-path between two pointers head and tail: 9k : head:fnextg k 3tail, a property that is not expressible in pAL. We plan an extensive study of this logic, in order to cover both aspects of satis ability and expressiveness.
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  tableau branch is said to be closed if it contains a formula together with its negation, and open otherwise. A tableau is said to be closed if and only if all its branches are closed. To check whether a formula ' is a tautology one builds the tableau for :', and infers that ' is a tautology if and only if the tableau eventually closes. In case at least one branch remains open, a counterexample for ' can be extracted.

	:(xt3z) : : : yt3z :(x3y)	(T 1 )	xt3y x3x (T 2 )	x3y y3x (T 3 )	:(x3y) :(y3x)	(T 4 )
	' 1 ^'2 ' 1 ; ' 2 (T 5 )		:(' 1 ^'2 ) :' 1 j :' 2	(T 6 ) ::' ' (T 7 )	' : : : :' ?	(T 8 )

  introduces a number of syntactic shorthands, providing context-dependent translations from wAL to pAL for them. That is, we do not translate the shorthands individually, but rather in an existentially closed context.

	De nition : 2 Sv	wAL 9S : hSiu ^ 9S : hSiu ^: 9S9T 9X : hSiu ^hT iwĥ 9x u3u ^:(9x Xi ^ 9x	pAL : x3u ^xv : x3u ^xv ) : x3u ^xv ŵ((xv) ?1 )3
	: 2 Sv(T ?1 X)	9S9T 9X : hSiu ^hT iwĥ Xi ^: u3u ^w3w ^ 3 :(9x : x3u ^xv ŵ((xv) ?1 )3 ) 9S9T : hSiu ^hT iw ^ 9x 9y (xv) ?1 : x3ux v ^wy3u ^yv (xv) ?1
	: 2 Sv(T ?1 S)v	9S9T : hSiu ^hT iw ^:	u3u ^w3w: 9y (xv) ?1 : x3ux v ^wy3u ^yv (xv) ?1 ) (9x
	Fig. 8. wAL to pAL translation shorthands

Intuitivelly, we need the left derivate to describe paths between two objects in the heap. If X and Y are two objects in a heap, then X ?1 Y is the language of all paths between X and Y .

This syntactic restriction on the quanti cation domain was mainly suggested by the fact that, allowing quanti cation over P ( ) makes the logic undecidable even when modalities are not used at all in formulas. A formal proof will be included in an extended version of this paper.

De nition 2 in Section 4.

Even if a pAL formula, e.g x3y, is in general satis ed by an in nite number of heaps.

There we proved ony that two structures are isomorphic if and only if they are models of the same pAL formulas.

The de nition of a ner notion of redundancy is planned in the full version.