
HAL Id: hal-00369328
https://hal.science/hal-00369328v1

Preprint submitted on 19 Mar 2009 (v1), last revised 12 Jun 2009 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cartesian effect categories are Freyd-categories
Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud

To cite this version:
Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. Cartesian effect categories are
Freyd-categories. 2009. �hal-00369328v1�

https://hal.science/hal-00369328v1
https://hal.archives-ouvertes.fr

Cartesian effect categories are Freyd-categories

Jean-Guillaume Dumas∗ Dominique Duval∗ Jean-Claude Reynaud†

{Jean-Guillaume.Dumas,Dominique.Duval,Jean-Claude.Reynaud}@imag.fr

March 19., 2009

Abstract. Although categorical composition and finite products can be used for dealing with the
substitution of terms, they do not deal with the order of evaluation of arguments, which may have major
consequences when there are side-effects. In this paper cartesian effect categories are introduced for
solving this issue, and they are compared with strong monads, Freyd-categories and Haskell’s Arrows.
It is proved that a cartesian effect category is a Freyd-category where the premonoidal structure is
provided by a kind of binary product, called the sequential product.

Keywords. Categorical logic, computational effects, monads, Freyd-categories, premonoidal cate-
gories, Arrows, sequential product, cartesian effect categories.

1 Introduction

Roughly speaking, a categorical semantics for a programming language associates an object to each type, a
morphism to each term, and uses composition and finite products for dealing with the substitution of terms.
This framework does behave very well in a simple equational setting, but it has to be adapted as soon as
there is some kind of side-effects, for instance non-termination or state updating in imperative languages. In
this paper we focus on the following sequentiality issue: the categorical products do not deal with the order
of evaluation of arguments, although this order may have major consequences when there are side-effects.
We introduce cartesian effect categories for this purpose.

Other approaches include strong monads [Mog89], Freyd-categories [PR97] and Arrows [Hug00], as well as
[HPP06] and [HLPP07] for the combination of effects. These frameworks are quite similar from several points
of view [HJ06, Atk08], while our framework is more precise, and thus less generic. A first draft for cartesian
effect categories can be found in [DDR07], and a similar approach in [DR05].

A Freyd-category roughly consists in a category K with a wide subcategory C (wide means with the same
objects), such that C is cartesian (i.e., it has finite products) and K is symmetric premonoidal. Quoting
[Pow06]: “a Freyd-category is a subtle generalisation of the notion of a category with finite products”. The
aim of this paper is similar, but the resulting structure, called a cartesian effect category, is more precise
and more homogeneous than a Freyd-category: like the symmetric monoidal structure on C derives from
its product, here the symmetric premonoidal structure on K derives from some kind of product, called a
sequential product, which extends the product of C and which generalizes the usual categorical product.
Moreover, there are two steps in our definition. First an effect category is defined, without mentioning any
kind of product, as a category K with a wide subcategory C and with a consistency relation 2, which can

∗Laboratoire Jean Kuntzmann, Université de Grenoble and CNRS, France. ljk.imag.fr/membres/{Jean-Guillaume.Dumas,
Dominique.Duval}

†Malhivert, Claix, France.

1

be seen as an up-to-effects relation. Then a sequential product on an effect category is defined by a property
that generalizes the categorical product property.

A binary product on a category C provides a bifunctor×on C such that for all v1 : X1 → Y1 and v2 : X2 → Y2,
the morphism v1×v2 : X1×X2 → Y1×Y2 is is characterized by the following diagram, where the pi’s and qi’s
are the projections. This property is symmetric in v1 and v2. When C is the category of sets, this means
that v1×v2(x1, x2) = (v1(x1), v2(x2)).

X1
v1 //

=

Y1

X1 ×X2
v1×v2 //

p1

OO

p2

��

Y1 × Y2

q1

OO

q2

��
X2

v2 // Y2

=

On the other hand, a left sequential product of f1 : X1 → Y1 and f2 : X2 → Y2 in a category K should
provide a morphism f1 ⋉ f2 : X1×X2 → Y1×Y2 satisfying some property for formalizing the notion of
sequentiality: “first f1, then f2”, and symmetrically a right sequential product f1 ⋊ f2 : X1×X2 → Y1×Y2

for “first f2, then f1”. The left sequential product f1 ⋉ f2 can be seen as the composition of two simpler
operations, which are both denoted× (it will be proved later that there is no ambiguity in this notation):
f1 ⋉ f2 = (id1×f2) ◦ (f1× id2) where id1 and id2 denote the identities of Y1 and X2, respectively. For
instance, when K is the category of sets with partial functions, f1× id2 is the partial function such that
f1× id2(x1, x2) = (f1(x1), x2) whenever f1(x1) is defined, otherwise f1× id2(x1, x2) is not defined. This
means that f1×id2 is characterized by the following diagram, where 2 is the usual partial order on partial
functions, so that the bottom square means that q2 ◦ (f1 × id2) 2 p2.

X1
f1 //

=

Y1

X1 ×X2
f1×id2 //

p1

OO

p2

��

Y1 × Y2

q1

OO

q2

��
X2

id2 // X2

3

Let us look more closely at the partial order relation 2 on partial functions, in order to define a similar
relation for other kinds of effects. Let us say that two partial functions f and f ′ have the same effect if
they have the same domain of definition. This defines an equivalence relation ≈ by: f ≈ f ′ if and only if
D(f) = D(f ′). Then we can say that the relation 2 is an up to effects relation, because whenever f ≈ f ′

and f 2 f ′ then f = f ′. In this paper, we introduce a framework where the notions of having the same
effect and being consistent up to effects are well defined, so that we are able to axiomatize the consistency
relation 2 and to define sequential products.

There are some variants in the use of the word “cartesian” for categories, in this paper a cartesian category
is simply a category with a binary product, it is not required that it has a terminal object nor that it has all
finite limits. First effect categories, then cartesian effect categories, are defined in section 2. In section 3 we
give a precise meaning to the notions of “having the same effect” and “being consistent up to effects”, which
provides the motivation for the name “effect categories” in the previous section. Cartesian effect categories
are related to Freyd-categories, Arrows and strong monads in section 4. Three examples are presented:
partiality and state throughout the paper, and non-determinism in section 4.

2

2 Cartesian effect categories

The aim of this paper is to generalize the binary product functor in a way that formalizes the idea of
sequentiality, as explained in the introduction. We define effect categories in section 2.1. Then cartesian
effect categories are defined in section 2.3 as effect categories with semi-pure products, which themselves
are defined by generalizing the universal property of products. Then sequential products are defined in
section 2.4 from the composition of semi-pure products. Various premonoidal-like properties of cartesian
effect categories are proved in section 2.5, while a description of sequential products by a generalization of
the universal property of semi-pure products is given in section 2.6. Examples are studied in section 2.7. The
link between effect categories and computational effects will be given in section 3. Note: in many proofs,
when a result is a pair of symmetric properties, only the first one is proved.

2.1 Effect categories

Definition 2.1. A subcategory C of a category K is wide if it has the same objects as K, this is denoted
C j K. Given a category K with a wide subcategory C j K, a morphism of K is called pure if it is in C;
in the latter case it is denoted with “ ”.

Example 2.2. Let C0 be a category with a monad (M, µ, η), let K be the Kleisli category of M , and let C
denote the image of C0 in K by the functor J : C0 → K associated with M , which is the identity on objects.
Then C is a wide subcategory of K. A morphism f : X → Y in K is, or stands for, a morphism [f] : X →
M(Y) in C0, and each pure morphism v : X Y stands for a morphism [v] = ηY ◦ J(v0) : X → M(Y) for
some morphism v0 : X → Y in C0. Let us assume that the mono requirement is satisfied by the monad,
which means that ηX is a mono for every object X , or equivalently that the functor J is faithful. Then the
correspondence between pure morphisms v : X Y in K and morphisms v0 : X → Y in C0 defined by
[v] = ηY ◦ v0 is one-to-one.

Definition 2.3. Let K be a category with a wide subcategory C. A consistency 2 on C j K is a reflexive
and transitive relation between parallel morphisms that satisfies:

• substitution: for all f : X → Y and g, g′ : Y → Z, if g 2 g′ then g ◦ f 2 g′ ◦ f ;
• pure replacement : for all f, f ′ : X → Y and w : Y Z, if f 2 f ′ then w ◦ f 2 w ◦ f ′.
• equality on pure morphisms: for all v, v′ : X Y , if v 2 v′ then v = v′.

Then C j K with 2 is called an effect category (for short, the consistency relation 2 may be implicit).

The (full) replacement property, which means that for all f, f ′ : X → Y and g : Y → Z, if f 2 f ′ then
g ◦ f 2 g ◦ f ′, is not required. In some examples, it happens that pure morphisms are maximal for the
preorder 2, which means that whenever v 2 f with v pure then v = f .

2.2 Cartesian categories

In this paper, a cartesian category is a category with a binary product, it is not required that it has a
terminal object. Let us remind some facts about binary products. We introduce the (unusual) notion of
product skeleton because it will be useful later on.

Definition 2.4. A binary product skeleton on a category C associates to each pair of objects (X1, X2) in

C an object X1 ×X2 and a pair of morphisms (called projections) X1
p1

←− X1 ×X2
p2

−→ X2 in C. A graph
homomorphism C2 → C is compatible with the binary product skeleton if they agree on objects. In the
latter case, the graph homomorphism may also be denoted ×.

We will use the letters p, q, r, s, t, . . . for the projections.

3

Definition 2.5. A binary product on a category C is made of a binary product skeleton × on C and a
compatible graph homomorphism × : C2 → C such that:

• for all v1 : X1 → Y1 and v2 : X2 → Y2, the morphism v1 × v2 : X1 × X2 → Y1 × Y2 is the unique
morphism that satisfies the binary product property:

{

q1 ◦ (v1 × v2) = v1 ◦ p1

q2 ◦ (v1 × v2) = v2 ◦ p2

Then the category C with the binary product × is called a cartesian category (for short, the binary product
× may be implicit).

X1
v1 //

=

Y1

X1 ×X2
v1×v2 //

p1

OO

p2

��

Y1 × Y2

q1

OO

q2

��
X2

v2 // Y2

=

Proposition 2.6. Let C be a cartesian category, then the graph homomorphism × : C2 → C is a functor.
If in addition C has a terminal object 1, then C with × and 1 is a symmetric monoidal category [Mac97].

Remark 2.7. Let us assume that for all v, v′ : X → Y1 × Y2, if q1 ◦ v = q1 ◦ v′ and q2 ◦ v = q2 ◦ v′ then
v = v′. Then obviously if a morphism v1 × v2 : X1 ×X2 → Y1 × Y2 satisfies the binary product property, it
is unique.

2.3 Semi-pure products

In this section, we define the semi-pure products on an effect category C j K as two graph homomorphisms
⋉ : C ×K → K and ⋊ : K × C → K satisfying some generalization of the binary product property.

Definition 2.8. Let C j K be an effect category with a binary product skeleton × on C. A left semi-pure
product on C j K (with respect to ×) is a graph homomorphism ⋉ : C×K → K compatible with ×, which
maps C2 to C and such that:

• for all v1 : X1 Y1 and f2 : X2 → Y2, the morphism v1 ⋉ f2 : X1 × X2 → Y1 × Y2 is the unique
morphism that satisfies the left semi-pure product property:

{

q1 ◦ (v1 ⋉ f2) 2 v1 ◦ p1

q2 ◦ (v1 ⋉ f2) = f2 ◦ p2

Symmetrically, a right semi-pure product on C j K is a graph homomorphism ⋊ : K × C → K compatible
with × which maps C2 to C and such that:

• for all f1 : X1 → Y1 and v2 : X2 Y2, the morphism v1 ⋉ f2 : X1 × X2 → Y1 × Y2 is the unique
morphism that satisfies the right semi-pure product property:

{

q1 ◦ (f1 ⋊ v2) = f1 ◦ p1

q2 ◦ (f1 ⋊ v2) 2 v2 ◦ p2

Then the effect category C j K with the semi-pure products ⋉, ⋊ is called a cartesian effect category (for
short, the binary product skeleton × and the semi-pure products ⋉, ⋊ may be implicit).

4

X1
v1 ///o/o/o/o/o/o/o/o

3

Y1

X1 ×X2
v1⋉f2 //

p1

OO
O�
O�
O�

p2

�� �O
�O
�O

Y1 × Y2

q1

OO
O�
O�
O�

q2

���O
�O
�O

X2
f2 // Y2

=

X1

=

f1 // Y1

X1 ×X2
f1⋊v2 //

p2

���O
�O
�O

p1

OO
O�
O�
O�

Y1 × Y2

q1

OO
O�
O�
O�

q2

�� �O
�O
�O

X2
v2 ///o/o/o/o/o/o/o/o Y2

3

Proposition 2.9. Let C j K be a cartesian effect category. Then the restrictions of ⋉ and ⋊ to C2 coincide
and define a binary product functor × on C.

Proof. Let v1 : X1 Y1 and v2 : X2 Y2. Since ⋉ maps C2 to C, the morphism v1 ⋉ v2 is pure, and since
consistency is the equality on pure morphisms, the left semi-pure product property for v1 ⋉v2 coincides with
the binary product property. Therefore, the restriction of ⋉ to C2 defines a binary product functor on C.
Symmetrically, the restriction of ⋊ to C2 defines a binary product functor on C. Both binary products are
compatible with the same product skeleton ×, hence the binary product unicity property implies that they
agree.

Corollary 2.10. Let C j K be a cartesian effect category. Then for all X1 and X2:

idX1
⋉ idX2

= idX1
⋊ idX2

= idX1
× idX2

= idX1×X2
.

2.4 Sequential products

In accordance with the intended meaning of “sequential”, we define sequential products as composed from
semi-pure products.

Definition 2.11. Let C j K be a cartesian effect category. The pair of sequential products composed
from the semi-products ⋉, ⋊ is made of the graph homomorphisms ⋉seq, ⋊seq : K2 → K (the left and right
sequential products, respectively) defined as follows:

• for all f1 : X1 → Y1 and f2 : X2 → Y2:

f1 ⋉seq f2 = (idY1
⋉ f2) ◦ (f1 ⋊ idX2

)

• for all f1 : X1 → Y1 and f2 : X2 → Y2:

f1 ⋊seq f2 = (f1 ⋊ idY2
) ◦ (idX1

⋉ f2)

X1

=

f1 // Y1
id ///o/o/o/o/o/o/o/o

3

Y1

X1 ×X2
f1⋊id //

p2

���O
�O
�O

p1

OO
O�
O�
O�

Y1 ×X2

r1

OO
O�
O�
O�

r2

���O
�O
�O

id⋉f2 // Y1 × Y2

q1

OO
O�
O�
O�

q2

���O
�O
�O

X2
id ///o/o/o/o/o/o/o/o X2

3

f2 // Y2

=

X1
id ///o/o/o/o/o/o/o/o

3

X1

=

f1 // Y1

X1 ×X2
id⋉f2 //

p1

OO
O�
O�
O�

p2

���O
�O
�O

X1 × Y2

s1

OO
O�
O�
O�

s2

���O
�O
�O

f1⋊id // Y1 × Y2

q1

OO
O�
O�
O�

q2

���O
�O
�O

X2
f2 // Y2

=

id ///o/o/o/o/o/o/o/o Y2

3

Proposition 2.12. Let C j K be a cartesian effect category, with the sequential products ⋉seq, ⋊seq com-
posed from ⋉, ⋊. Then, as graph homomorphisms, ⋉seq and ⋊seq extend ⋉ and ⋊, respectively.

5

Proof. Let v1 : X1 Y1 and f2 : X2 → Y2. Since v1 ⋉seq f2 = (idY1
⋉ f2) ◦ (v1 ⋊ idX2

) and since ⋊ coincides
with the binary product × on C2 (by proposition 2.9) we have:

v1 ⋉seq f2 = (idY1
⋉ f2) ◦ (v1 × idX2

) .

The left semi-pure product property yields:

q1 ◦ (idY1
⋉ f2) 2 r1 and q2 ◦ (idY1

⋉ f2) = f2 ◦ r2

so that by substitution:

q1 ◦ (v1 ⋉seq f2) 2 r1 ◦ (v1 × idX2
) and q2 ◦ (v1 ⋉seq f2) = f2 ◦ r2 ◦ (v1 × idX2

)

hence from the binary product property we get:

q1 ◦ (v1 ⋉seq f2) 2 v1 ◦ p1 and q2 ◦ (v1 ⋉seq f2) = f2 ◦ p2

which is the left semi-pure product property. Thus, ⋉seq extends ⋉, as required.

Notation 2.13. It follows from proposition 2.12 that we may drop the subscript “seq”.

2.5 Some properties of cartesian effect categories

2.5.1 Pure morphisms are central

The next definition is similar to the definition of central morphisms in a binoidal category, see section 4.1.

Definition 2.14. Let C j K be a cartesian effect category. A morphism f1 is central if for all morphism
f2, f1 ⋉ f2 = f1 ⋊ f2 and symmetrically f2 ⋉ f1 = f2 ⋊ f1.

Remark 2.15. Definition 2.11 and corollary 2.10 imply that the identities are central:

• for all f1 and X2, f1 ⋉ idX2
= f1 ⋊ idX2

;
• and symmetrically, for all X1 and f2, idX1

⋊ f2 = idX1
⋉ f2.

Theorem 2.16. Let C j K be a cartesian effect category. Then every pure morphism is central.

Remark 2.17. Theorem 2.16 means that the graph homomorphisms ⋉, ⋊ coincide on C×K and on K×C:

• for all f1 : X1 → Y1 and v2 : X2 Y2:

f1 ⋉ v2 = f1 ⋊ v2 ;

• and symmetrically, for all v1 : X1 Y1 and f2 : X2 → Y2:

v1 ⋊ f2 = v1 ⋉ f2 .

It may be noted that, according to the definitions, f1 ⋊ v2 and v1 ⋉ f2 are semi-pure products, while f1 ⋉ v2

and v1 ⋊ f2 are not.

Proof. Let h = f1 ⋉ v2 = (idY1
⋉ v2)◦ (f1 ⋊ idX2

). Since ⋉ coincide with × on C2 by proposition 2.9, we get:

h = (idY1
× v2) ◦ (f1 ⋊ idX2

) .

The binary product property yields:

q1 ◦ h = r1 ◦ (f1 ⋊ idX2
) and q2 ◦ h = v2 ◦ r2 ◦ (f1 ⋊ idX2

)

6

and the right semi-pure product property:

r1 ◦ (f1 ⋊ idX2
) = f1 ◦ p1 and r2 ◦ (f1 ⋊ idX2

) 2 p2

so that, using pure replacement, we get:

q1 ◦ h = f1 ◦ p1 and q2 ◦ h 2 v2 ◦ p2

which means that h satisfies the right semi-pure product property, hence h = f1 ⋊ v2 as required.

Using definition 2.11, theorem 2.16 can also be stated as follows.

Corollary 2.18. Let C j K be a cartesian effect category. Then:

• for all f1 : X1 → Y1 and v2 : X2 Y2:

(idY1
⋉ v2) ◦ (f1 ⋊ idX2

) = (f1 ⋊ idY2
) ◦ (idX1

⋉ v2) ;

• and symmetrically, for all v1 : X1 Y1 and f2 : X2 → Y2:

(v1 ⋊ idY2
) ◦ (idX1

⋉ f2) = (idY1
⋉ f2) ◦ (v1 ⋊ idX2

) .

Notation 2.19. According to theorem 2.16 there would not be any ambiguity in denoting × for the semi-
pure products ⋉ and ⋊, as in the introduction and in [DDR07], however we will not use this opportunity.

2.5.2 Functoriality properties

As reminded in proposition 2.6, the binary product in a cartesian category is a functor. In this section it is
proved that similarly the semi-pure products in a cartesian effect category are functors.

Lemma 2.20. Let C j K be a cartesian effect category. Then:

• for all X1, f2 : X2 → Y2 and g2 : Y2 → Z2:

(idX1
⋉ g2) ◦ (idX1

⋉ f2) = idX1
⋉ (g2 ◦ f2)

• and symmetrically for all f1 : X1 → Y1, g1 : Y1 → Z1 and X2:

(g1 ⋊ idX2
) ◦ (f1 ⋊ idX2

) = (g1 ◦ f1) ⋊ idX2
.

X1
id ///o/o/o/o/o/o

3

X1
id ///o/o/o/o/o/o

3

X1

X1 ×X2

p1

OO
O�
O�

p2

��
�O
�O

id⋉f2 // X1 × Y2

s1

OO
O�
O�

s2

��
�O
�O

id⋉g2 // X1 × Z2

s′

1

OO
O�
O�

s′

2��
�O
�O

X2
f2 // Y2

=

g2 // Z2

=

X1

=

f1 // Y1

=

g1 // Z1

X1 ×X2

p2

��
�O
�O

p1

OO
O�
O�

f1⋊id // Y1 ×X2

r1

OO
O�
O�

r2

��
�O
�O

g1⋊id // Z1 ×X2

r′

1

OO
O�
O�

r′

2��
�O
�O

X2
id ///o/o/o/o/o/o X2

3

id ///o/o/o/o/o/o X2

3

Proof. Let h = (idX1
⋉ g2) ◦ (idX1

⋉ f2). The left semi-pure product property yields:

s′1 ◦ (idX1
⋉ g2) 2 s1 and s′2 ◦ (idX1

⋉ g2) = g2 ◦ s2

and also:
s1 ◦ (idX1

⋉ f2) 2 p1 and s2 ◦ (idX1
⋉ f2) = f2 ◦ p2 .

Hence by substitution and transitivity:

s′1 ◦ h 2 p1 and s′2 ◦ h = g2 ◦ f2 ◦ p2

which proves that h = idX1
⋉ (g2 ◦ f2).

7

Theorem 2.21. Let C j K be a cartesian effect category. Then:

• for all f1 : X1 → Y1, w1 : Y1 Z1, f2 : X2 → Y2 and g2 : Y2 → Z2:

(w1 ⋉ g2) ◦ (f1 ⋉ f2) = (w1 ◦ f1) ⋉ (g2 ◦ f2)

• and symmetrically for all f1 : X1 → Y1, g1 : Y1 → Z1, f2 : X2 → Y2 and w2 : Y2 Z2:

(g1 ⋊ w2) ◦ (f1 ⋊ f2) = (g1 ◦ f1) ⋊ (w2 ◦ f2) .

Proof. According to definition 2.11:

(w1 ⋉ g2) ◦ (f1 ⋉ f2) = (idZ1
⋉ g2) ◦ (w1 ⋊ idY2

) ◦ (idY1
⋉ f2) ◦ (f1 ⋊ idX2

) .

We know from corollary 2.18 that:

(w1 ⋊ idY2
) ◦ (idY1

⋉ f2) = (idZ1
⋉ f2) ◦ (w1 ⋊ idX2

) ,

so that:
(w1 ⋉ g2) ◦ (f1 ⋉ f2) = (idZ1

⋉ g2) ◦ (idZ1
⋉ f2) ◦ (w1 ⋊ idX2

) ◦ (f1 ⋊ idX2
) .

The result now follows from lemma 2.20 and definition 2.11 again.

Corollary 2.22. Let C j K be a cartesian effect category. Then the graph homomorphisms ⋉ : C×K → K,
⋊ : K × C → K are functors.

Proof. By corollary 2.10 for identities and theorem 2.21 for composition.

Remark 2.23. Although we are here more interested in pure morphisms than in central morphisms, it is
worth noting that, according to the proof of theorem 2.21, this theorem is valid as soon as w1 and w2 are
central morphisms. A consequence is that the objects of K together with the central morphisms form a wide
subcategory CK of K, called the center, and that corollary 2.22 can be stated more generally as follows.
Let C j K be a cartesian effect category. Then the restrictions of the sequential products are functors
⋉ : CK ×K → K and ⋊ : K × CK → K.

2.5.3 Naturality properties

Let C j K be a cartesian effect category, then according to proposition 2.9 the category C is cartesian. Let
us assume that in addition C j K has a pure terminal object, which means, an object 1 that is terminal in
C. As reminded in proposition 2.6, then C with × : C2 → C and 1 is a symmetric monoidal category, which
means that the projections can be combined in order to get natural isomorphisms a, r, l, c with components:

• aX = aX1,X2,X3
: (X1 ×X2)×X3 → X1 × (X2 ×X3),

• rX : 1×X → X , lX : X × 1→ X ,
• cX = cX1,X2

: X1 ×X2 → X2 ×X1,

which satisfy the symmetric monoidal coherence conditions [Mac97]. In this section we prove that a, r, l, c
satisfy more general naturality conditions, involving the sequential products ⋉, ⋊.

Lemma 2.24. Let C j K be a cartesian effect category,

• For all f1, f2 and pure v1, v2:

{

cY ◦ (v1 ⋉ f2) = (f2 ⋊ v1) ◦ cX

cY ◦ (f1 ⋊ v2) = (v2 ⋉ f1) ◦ cX

8

• For all f1, f2, f3 and pure v1, v2, v3:







aY ◦ (f1 ⋊ (v2 ⋊ v3)) = ((f1 ⋊ v2) ⋊ v3) ◦ aX

aY ◦ (v1 ⋉ (f2 ⋊ v3)) = ((v1 ⋉ f2) ⋊ v3) ◦ aX

aY ◦ (v1 ⋉ (v2 ⋉ f3)) = ((v1 ⋉ v2) ⋉ f3) ◦ aX

Proof. Straightforward.

Theorem 2.25. Let C j K be a cartesian effect category,

• For all f1 : X1 → Y1, f2 : X2 → Y2 and f3 : X3 → Y3:

{

aY ◦ (f1 ⋉ (f2 ⋉ f3)) = ((f1 ⋉ f2) ⋉ f3) ◦ aX

aY ◦ (f1 ⋊ (f2 ⋊ f3)) = ((f1 ⋊ f2) ⋊ f3) ◦ aX

• For all f : X → Y :
{

rY ◦ (id1 ⋉ f) = f ◦ rX

lY ◦ (f ⋊ id1) = f ◦ lX

• For all f1 : X1 → Y1 and f2 : X2 → Y2:

{

cY ◦ (f1 ⋉ f2) = (f2 ⋊ f1) ◦ cX

cY ◦ (f1 ⋊ f2) = (f2 ⋉ f1) ◦ cX

Proof. For l and r, this comes directly from the semi-pure product properties. For a, let us use the definition
of sequential products:

f1 ⋉ (f2 ⋉ f3) = (id ⋉ (f2 ⋉ f3)) ◦ (f1 ⋊ id)

and:
f2 ⋉ f3 = (id ⋉ f3) ◦ (f2 ⋊ id)

hence by lemma 2.20:
id ⋉ (f2 ⋉ f3) = (id ⋉ (id ⋉ f3)) ◦ (id ⋉ (f2 ⋊ id))

and finally:
f1 ⋉ (f2 ⋉ f3) = (id ⋉ (id ⋉ f3)) ◦ (id ⋉ (f2 ⋊ id)) ◦ (f1 ⋊ id) .

In a symmetric way:

(f1 ⋉ f2) ⋉ f3 = (id ⋉ f3) ◦ ((id ⋉ f2) ⋊ id) ◦ ((f1 ⋊ id) ⋊ id) .

Hence the result follows from lemma 2.24, from which the three lines relative to a are used, and from
corollary 2.10 for dealing with identities. For c the proof is similar, though shorter.

2.6 The left and right sequential product properties

We have defined the semi-pure products in a way similar to the binary products (definition 2.8), then the
sequential products as compositions of semi-pure products (definition 2.11). In this section we prove that
sequential products do also satisfy some left and right sequential product properties, which generalize the
binary product property and the semi-pure products properties. In section 3, we will see that under some
additional assumptions the left and right sequential product properties characterize the sequential products.

Definition 2.26. Let C j K be an effect category with a pair of graph homomorphisms ⋉seq, ⋊seq : K2 → K
compatible with × and which maps C2 to C. Then:

9

• the left sequential product property says that for all f1 : X1 → Y1 and f2 : X2 → Y2, the morphism
f1 ⋉ f2 : X1 ×X2 → Y1 × Y2 satisfies:

{

q1 ◦ (f1 ⋉ f2) 2 f1 ◦ p1

q2 ◦ (f1 ⋉ f2) = f2 ◦ r2 ◦ (f1 ⋊ idX2
)

• and symmetrically, the right sequential product property says that for all f1 : X1 → Y1 and f2 : X2 → Y2,
the morphism f1 ⋊ f2 : X1 ×X2 → Y1 × Y2 satisfies:

{

q1 ◦ (f1 ⋊ f2) = f1 ◦ s1 ◦ (idX1
⋉ f2)

q2 ◦ (f1 ⋊ f2) 2 f2 ◦ p2

X1
f1 //

3

Y1

X1 ×X2
f1⋉f2 //

p1

OO
O�
O�
O�
O�

f1⋊id
//

Y1 × Y2

q1

OO
O�
O�
O�
O�

q2

�� �O
�O
�O
�O
�O

Y1 ×X2

r2��
�O

X2
f2 // Y2

=

X1

=

f1 // Y1

X1 × Y2

s1

OO
O�

X1 ×X2
f1⋊f2 //

p2

�� �O
�O
�O
�O

id⋉f2 //

Y1 × Y2

q1

OO
O�
O�
O�
O�
O�

q2

�� �O
�O
�O
�O

X2
f2 // Y2

3

Let us check that the sequential product properties extend the semi-pure product properties.

Proposition 2.27. For all v1 : X1 Y1 and f2 : X2 → Y2, the left sequential product property for v1 ⋉ f2

is the left semi-pure product property. Symmetrically, for all f1 : X1 → Y1 and v2 : X2 Y2, the right
sequential product property for f1 ⋊ v2 is the right semi-pure product property.

Proof. The left sequential product property for v1 ⋉ f2 is:

q1 ◦ (v1 ⋉ f2) 2 v1 ◦ p1 and q2 ◦ (v1 ⋉ f2) = f2 ◦ r2 ◦ (v1 ⋊ idX2
)

We know from proposition 2.9 that v1 ⋊ idX2
= v1 × idX2

, so that r2 ◦ (v1 ⋊ idX2
) = p2, hence:

q1 ◦ (v1 ⋉ f2) 2 v1 ◦ p1 and q2 ◦ (v1 ⋉ f2) = f2 ◦ p2

which is the left semi-pure product property.

Remark 2.28. The left and right sequential product properties appear as mutually recursive, however
proposition 2.27 proves that this recursivity has only two steps: the left sequential product property uses a
right semi-pure product, then the right semi-pure product property does not use any kind of product, and
symmetrically.

Theorem 2.29. Let C j K be a cartesian effect category. Then the sequential products ⋉, ⋊ do satisfy the
sequential product properties.

Proof. The left sequential product is defined (in definition 2.11) as f1 ⋉seq f2 = (idY1
⋉ f2) ◦ (f1 ⋊ idX2

).
The left semi-pure product property yields:

q1 ◦ (idY1
⋉ f2) 2 r1 and q2 ◦ (idY1

⋉ f2) = f2 ◦ r2

so that by substitution:

q1 ◦ (f1 ⋉ f2) 2 r1 ◦ (f1 ⋊ idX2
) and q2 ◦ (f1 ⋉ f2) = f2 ◦ r2 ◦ (f1 ⋊ idX2

) .

The right semi-pure product property implies that r1 ◦ (f1 ⋊ idX2
) = f1 ◦ p1, so that:

q1 ◦ (f1 ⋉ f2) 2 f1 ◦ p1 and q2 ◦ (f1 ⋉ f2) = f2 ◦ r2 ◦ (f1 ⋊ idX2
)

which is the left sequential product property.

10

2.7 Examples

2.7.1 Partiality

Let K = Part be the category of sets with partial functions and C = Set the wide subcategory of sets, so
that the pure morphisms are the total functions. Hence, in this paper, we use “→” and “ ” for denoting
partial functions and total functions, respectively, instead of the more usual “⇀” and “→”. For every partial
function f : X → Y let D(f) denote the domain of definition of f (while X is the domain of f). The usual
partial order relation between partial functions is denoted 2, it is defined by: for all f, f ′ : X → Y ,

f 2 f ′ ⇐⇒ D(f) ⊆ D(f ′) and f, f ′ agree on D(f) .

Then 2 is a consistency relation, so that Set j Part with 2 is an effect category. In addition, 2 satisfies
the replacement property and pure morphisms are maximal for 2. The left semi-product property can be
illustrated as follows, with two cases: either f2(x2) is defined or not, in the second case we use the symbol ⊥.

x1
�

v1 ///o/o/o/o/o/o/o/o/o/o/o y1

〈x1, x2〉
_

OO
O�
O�
O�

_

��
�O
�O
�O

�

v1⋉f2 //

=

=

〈y1, y2〉
_

OO
O�
O�
O�

_

���O
�O
�O

x2
�

f2 // y2

or x1
�

v1 ///o/o/o/o/o/o/o/o/o y1 6= ⊥

〈x1, x2〉
_

OO
O�
O�
O�

_

��
�O
�O
�O

�

v1⋉f2 //

=

3

⊥
_

OO
O�
O�
O�

_

��
�O
�O
�O

x2
�

f2 // ⊥

It follows that the left semi-pure product v1 ⋉ f2 is such that D(v1 ⋉ f2) = X1 ×D(f2) and:

∀(x1, x2) ∈ X1 ×D(f2) , v1 ⋉ f2(x1, x2) = (v1(x1), f2(x2)) ,

then the definition of the left sequential product yields D(f1 ⋉ f2) = D(f1)×D(f2) and:

∀(x1, x2) ∈ D(f1)×D(f2) , f1 ⋉ f2(x1, x2) = (f1(x1), f2(x2)) .

It may be noted that in this example f1 ⋉ f2 = f1 ⋊ f2, which means that all morphisms are central.

Remark 2.30. On the other hand, there is an actual product in the category Part : the product of X1 and
X2 has vertex (X1×X2) + X1 + X2, where × and + denote the cartesian product and the disjoint union of
sets, respectively. But this product does not fit with the semantics of non-termination, in contrast with the
sequential product.

2.7.2 State

Let S be some fixed set, called the set of states (or stores), and for each set X let πX : S × X → X and
σX : S × X → S denote the projections. Let KS be the category with the sets as objects and with a
morphism f : X → Y for each map [f] : S ×X → S × Y in Set ; we will say that the morphism f in KS

stands for the map [f] in Set . Let CS be the wide subcategory of KS with the pure morphisms v : X Y
standing for the maps of the form [v] = idS × v0 : S ×X → S × Y for some map v0 : X → Y in Set . For all
f, f ′ : X → Y in KS, let:

f ⌣S f ′ ⇐⇒ πY ◦ [f] = πY ◦ [f ′] .

11

Then ⌣S is a consistency relation, so that CS j KS with ⌣S is an effect category where the consistency
relation is symmetric (hence its notation). The left semi-product property can be illustrated as follows:

(s, x1)
�

[v1] ///o/o/o/o/o/o/o/o/o (s, y1) 6= (s2, y1)

(s, x1, x2)
_

OO
O�
O�
O�

_

���O
�O
�O

�

[v1⋉f2] //

=

⌣

(s2, y1, y2)
_

OO
O�
O�
O�

_

�� �O
�O
�O

(s, x2)
�

[f2] // (s2, y2)

It follows that the left semi-pure product v1 ⋉ f2 is such that:

∀(x1, x2) ∈ X1 ×X2 , ∀s ∈ S , [v1 ⋉ f2](s, x1, x2) = (s2, y1, y2)

where [v1](s, x1) = (s, y1) and [f2](s, x2) = (s2, y2). Then the definition of the left sequential product yields

∀(x1, x2) ∈ X1 ×X2 , ∀s ∈ S , [f1 ⋉ f2](s, x1, x2) = (s2, y1, y2)

where [f1](s, x1) = (s1, y1) and [f2](s1, x2) = (s2, y2). Hence the left sequential product f1 ⋉ f2 is usually
distinct from the right sequential product f1 ⋊ f2.

3 Computational effects

Semi-pure and sequential products have been defined in section 2 in the framework of an effect category. In
this section we focus on the relation between effect categories and “computational effects”. As mentioned in
the introduction, the key point is that, given some computational effect, for an effect category C j K with
consistency 2 to be considered as a formalization of this notion, we must be able to interpret the relation 2 as
an “up-to-effects” relation. So, we now provide definitions for the informal notions of “computational effects”
and “up-to-effects”. We do not claim that our definitions exhaust the various meanings of these informal
notions. However we claim that our definitions are relevant. This claim is supported by a comparison with
other approaches in section 4 and by several examples: the examples about partiality and state have been
used as guidelines for forging our notions, while the example about non-determinism in section 4.4.3 has
been considered afterwards.

First we define the symmetrization of a consistency relation in section 3.1. In section 3.2, starting from a
definition of effects that fits with the notion of computational effects, we define a same-effect equivalence
relation ≈. Then in section 3.3, given a same-effect equivalence relation ≈, we define what it means for a
consistency relation 2 to be an up-to-effects relation. In section 3.4 we come back to products and we prove
some additional results about cartesian effect categories. Examples are studied in section 3.5.

3.1 Symmetric consistency

Given a consistency relation 2, we define a new relation ⌣ such that f ⌣ f ′ when f and f ′′ have a common
upper bound with respect to 2.

Definition 3.1. Let C j K be an effect category. The symmetrization of 2 is the relation ⌣ between
parallel morphisms defined by:

• symmetrization: for all f, f ′ : X → Y , f ⌣ f ′ if and only if there is some f ′′ : X → Y such that
f 2 f ′′ and f ′ 2 f ′′.

12

Clearly, ⌣ always contains 2, and whenever 2 itself is symmetric then ⌣ is the same as 2, so that the
notation in example 2.7.2 is sound. Some properties of ⌣ are stated in proposition 3.2, they are quite
similar to the properties of 2, although of course 2 is transitive while ⌣ is symmetric. Let us recall that
the consistency relation 2 is reflexive and transitive, satisfies substitution and pure replacement, and is the
equality on pure morphisms.

Proposition 3.2. In an effect category, the symmetrization ⌣ of 2 is reflexive and symmetric and it
satisfies substitution and pure replacement. If in addition 2 is symmetric or if pure morphisms are maximal
for 2, then ⌣ is the equality on pure morphisms.

Proof. The first part is straightforward, let us focus on the equality on pure morphisms. When 2 is symmetric
then ⌣ is the same as 2, which is the equality on pure morphisms. When pure morphisms are maximal for
2, let v, v′ : X Y be such that v ⌣ v′, then there is some f ′′ : X → Y such that v 2 f ′′ and v′ 2 f ′′, and
the maximality of pure morphisms implies that v = f ′′ = v′.

3.2 Same-effect equivalence

Let K be a category and C a wide subcategory. This section is independent from sections 2 and 3.1, the
relation will be established in section 3.3.

Remark 3.3. We claim that the effect of a morphism f : X → Y should provide some kind of measure of
how far f is from being pure, by wiping out the pure part of f . Let us assume that there is a pure terminal
object 1 (which means, as in section 2.5.3, that 1 is terminal in C), and for each object X let the unique
pure morphism from X to 1 be denoted 〈 〉X : X 1. We claim that the effect of a morphism f : X → Y
can be defined as the morphism 〈 〉Y ◦ f : X → 1. Indeed, every pure morphism v : X Y is effect-free, in
the sense that its effect 〈 〉Y ◦ v is 〈 〉X , which does not bear any information on v since it is also the effect of
the identity idX . More generally, if a morphism f : X → Y is composed with a pure morphism v : Y Z
then v ◦ f has the same effect as f . The examples will further justify the soundness of this definition. In
definition 3.4 we keep the main properties of the relation having the same effect, without assuming that there
is a terminal object in C, hence without defining explicitly the effect of a morphism (see example 3.10).

Definition 3.4. Let K be a category with a wide subcategory C. A same-effect relation ≈ on C j K is an
equivalence relation ≈ on morphisms with the same domain that satisfies:

• substitution: for all f : X → Y and g : Y → Z, g′ : Y → Z ′, if g ≈ g′ then g ◦ f ≈ g′ ◦ f ;
• pure morphisms are effect-free: for all v : X Y , v ≈ idX .

A morphism f : X → Y is effect-free if f ≈ idX .

Here are some straightforward consequences of definition 3.4.

Proposition 3.5. Let K be a category with a wide subcategory C and let ≈ be a same-effect relation on
C j K. Then:

• for all v : X Y and v′ : X Y ′, v ≈ v′;
• for all f : X → Y and v : Y Z, v ◦ f ≈ f ;
• for all f : X → Y , f ′ : X → Y ′ and v : Y Z, v′ : Y ′ Z ′, if v ◦ f ≈ v′ ◦ f ′ then f ≈ f ′.

Example 3.6. As in example 2.2, let C j K be associated to a monad (M, µ, η) on a category C0, that
satisfies the mono requirement. Let us assume that there is a terminal object 1 in C0, which means, a pure
terminal object 1 in K. For each object X , the pure morphism 〈 〉X : X 1 stands for [〈 〉X] = η1 ◦ 〈 〉X :
X →M(1) in C0, and for each morphism f : X → Y in K the effect 〈 〉Y ◦ f of f , in the sense of remark 3.3,
stands for:

[〈 〉Y ◦ f] = M(〈 〉Y) ◦ [f] : X →M(1) in C0 .

13

For all f : X → Y and f ′ : X → Y ′ let f ≈ f ′ if and only if f and f ′ have the same effect:

f ≈ f ′ if and only if M(〈 〉Y) ◦ [f] = M(〈 〉Y ′) ◦ [f ′] : X →M(1) in C0 .

We claim that this notion is relevant in many situations where a monad is used for dealing with some kind
of effect. Examples are provided in section 4.4.

3.3 Up-to-effects consistency

Given a same-effect relation ≈ on C j K, we define what it means for a consistency relation 2 on C j K
to be an up-to-effects relation. We rely on definition 3.4 for same-effect relations and on definition 2.3 for
consistency relations.

Definition 3.7. Let C j K with 2 be an effect category, and let ⌣ be the symmetrization of 2. Let ≈ be
a same-effect relation on C j K. Then 2 is an up-to-effects consistency relation with respect to ≈ if:

• complementarity: for all f, f ′ : X → Y , if f ≈ f ′ and f ⌣ f ′ then f = f ′.

When ≈ is not explicitly needed, we simply say that 2 is an up-to-effects relation.

Remark 3.8. The complementarity property means that every clique for ⌣ (a clique is a set of pairwise
related elements) has at most one element in each equivalence class for ≈. Clearly this property can be
expressed without ⌣:

• complementarity: for all f, f ′, f ′′ : X → Y , if f ≈ f ′ and f 2 f ′′ and f ′ 2 f ′′ then f = f ′.

Then, due to the reflexivity of 2, a consequence of complementarity is that:

• for all f, f ′ : X → Y , if f ≈ f ′ and f 2 f ′ then f = f ′.

Proposition 3.2 can now be completed.

Proposition 3.9. In an effect category C j K, if 2 is an up-to-effects relation, then the symmetrization
⌣ of 2 is the equality on pure morphisms.

Proof. Let v, v′ : X Y , then v ≈ v′ (proposition 3.5). Thus, if v ⌣ v′ then by complementarity v = v′.

Example 3.10. Most examples of same-effect relations in this paper are built as in remark 3.3, by mapping
everything to 1; here is a simple example of another kind of same-effect relation. The set Z of integers with
the addition is a monoid, which is seen as a category K with one object X , a morphism f : X → X for
each f ∈ Z, and with f ◦ f ′ = f + f ′ and idX = 0. Let us consider some fixed integer m ≥ 2, then the
subset m Z of Z defines a wide subcategory C of K. Let ≈ be the congruence modulo m, clearly it is a
same-effect equivalence relation on C j K. In addition, this example provides a relation ⌣ that satisfies
the properties of proposition 3.2 whithout being the symmetrization of a consistency relation. The relation
⌣ is defined on Z by f ⌣ f ′ if and only if |f − f ′| < m. Then ⌣ is symmetric and reflexive, not transitive,
it is such that if g ⌣ g′ then g + f ⌣ g′ + f (this is both substitution and replacement), and ⌣ is the
equality on pure morphisms. In addition, ⌣ is a complement of ≈ in the sense that if f ≈ f ′ and f ⌣ f ′

then f = f ′. More precisely, every maximal clique for ⌣ has exactly one element in each equivalence class
for ≈. However, there is no consistency relation 2 on Z such that ⌣ is the symmetrization of 2. Indeed, let
us assume that such a relation exists, and let f, f ′ be such that f ⌣ f ′ with f 6= f ′ (for instance f = 0 and
f ′ = m− 1). Then there is some f ′′ such that f 2 f ′′ and f ′ 2 f ′′. We can assume that f ′′ 6= f (otherwise
we have f ′′ 6= f ′, so that a similar argument holds). Let k = f ′′ − f 6= 0, then from f 2 f + k we get (by
substitution) f + k 2 f + 2k, and so on until f + (l−1) k 2 f + l k for some l such that |l k| ≥ m. It follows
that f 2 f + l k (by transitivity of 2) so that f ⌣ f + l k, which contradicts the definition of ⌣.

14

3.4 Unicity up-to-effects

Here is a new result about sequential products which holds as soon as the consistency relation 2 is an
up-to-effects relation.

Definition 3.11. Let C j K be an effect category where 2 is an up-to-effects relation, and let ⌣ be the
symmetrization of 2. Let us assume that there is a product skeleton × on C. Then the unicity up-to-effects
property is:

• unicity up-to-effects : for all f, f ′ : X → Y1 × Y2, if q1 ◦ f ⌣ q1 ◦ f ′ and q2 ◦ f ⌣ q2 ◦ f ′ then f ⌣ f ′.

Lemma 3.12. Let C j K be an effect category where 2 is an up-to-effects relation, with a binary product
skeleton × on C that satisfies the unicity up-to-effects property. Let f, f ′ : X → Y1 × Y2, g1 : X → Y1 and
g2 : X → Y2 be such that:

{

q1 ◦ f 2 g1

q2 ◦ f = g2
and

{

q1 ◦ f ′ 2 g1

q2 ◦ f ′ = g2

then f = f ′.

Proof. Since q1 ◦ f 2 g1 and q1 ◦ f ′ 2 g1 we have q1 ◦ f ⌣ q1 ◦ f ′ (definition 3.1). Since q2 ◦ f = g2

and q2 ◦ f ′ = g2 we have q2 ◦ f = q2 ◦ f ′, hence from the reflexivity of ⌣ and ≈ we get q2 ◦ f ⌣ q2 ◦ f ′

and q2 ◦ f ≈ q2 ◦ f ′. Then the unicity up-to-effects property implies that f ⌣ f ′, and on the other hand
proposition 3.5 implies that f ≈ f ′. The result follows from the complementarity of ⌣ and ≈.

Proposition 3.13. Let C j K be an effect category where 2 is an up-to-effects relation, with a binary
product skeleton × on C that satisfies the unicity up-to-effects property. If there is a pair of graph homomor-
phisms ⋉, ⋊ : K2 → K compatible with ×, that map C2 to C and that satisfy the left and right sequential
product properties, then this pair is the unique pair of sequential products on C j K compatible with ×.

Proof. First let us look at the restrictions of ⋉, ⋊ to semi-pure arguments: according to proposition 2.27
they satisfy the semi-pure product properties (definition 2.8) hence by lemma 3.12 they are uniquely defined.
Then, the sequential product properties (definition 2.26) and lemma 3.12 prove that ⋉, ⋊ : K2 → K also
are uniquely defined.

3.5 Examples

3.5.1 Partiality

As in section 2.7.1, we consider the effect category Set j Part with the usual partial order relation as its
consistency relation: for all f, f ′ : X → Y ,

f 2 f ′ ⇐⇒ D(f) ⊆ D(f ′) and f, f ′ agree on D(f) .

Then the symmetrization ⌣ of 2 is the usual consistency of partial functions: for all f, f ′ : X → Y ,

f ⌣ f ′ ⇐⇒ f, f ′ agree on D(f) ∩ D(f ′) .

The singleton 1 = {∗} is a terminal object in Set , so that for every partial function f : X → Y the effect
of f is the partial function 〈 〉Y ◦ f : X → {∗}, with domain of definition D(f) and value f(x) = ∗ for all
x ∈ D(f). Hence the same-effect relation ≈ is having the same domain of definition: for all f : X → Y ,
f ′ : X → Y ′,

f ≈ f ′ ⇐⇒ D(f) = D(f ′) .

Then clearly the complementarity property holds, so that 2 is an up-to-effects consistency with respect to ≈.
Moreover, the unicity up-to-effects property is satisfied.

15

3.5.2 State

With the same notations as in section 2.7.2, on the effect category CS j KS the consistency relation is
symmetric, it means that both functions return the same result, whatever the change of state:

f 2S f ′ ⇐⇒ f ⌣S f ′ ⇐⇒ πY ◦ [f] = πY ◦ [f ′] .

The singleton 1 = {∗} is a terminal object in CS and S × {∗} may be identified to S, so that the morphism
〈 〉X : X {∗} stands for the projection σX : S ×X → S and the effect of a morphism f : X → Y stands
for σY ◦ [f] : S ×X → S. Hence the same-effect relation ≈S means that both functions update the state in
the same way:

f ≈S f ′ ⇐⇒ σY ◦ [f] = σY ′ ◦ [f ′] .

Then for all f, f ′ : X → Y in KS , if f 2S f ′ and f ≈S f ′ then [f], [f ′] : S ×X → S × Y agree when they
are projected onto Y and when they are projected onto S, so that [f] = [f ′], which means that f = f ′.
Therefore, the complementarity property holds, which means that 2S is an up-to-effects consistency with
respect to ≈S. Here also, the unicity up-to-effects property is satisfied.

4 Comparisons

In this section we compare our approach with other categorical semantics for a language with effects: Freyd-
categories in section 4.1, strong monads in section 4.3 and Arrows in section 4.2; Examples are given in
section 4.4.

4.1 Premonoidal categories and Freyd-categories

It is now easy to prove that cartesian effect categories are Freyd-categories, as in [PR97, PT99, Pow06].

Definition 4.1. A binoidal category is a category K together with two functors ⊗ : |K| × K → K and
⊗ : K × |K| → K which coincide on |K|2 (so that the notation ⊗ is not ambiguous). The functors ⊗
can be extended as two graph homomorphisms ⋉Fr, ⋊Fr : K2 → K, as follows. For all f1 : X1 → Y1 and
f2 : X2 → Y2 in K, let:

{

f1 ⋉Fr f2 = (idY1
⊗ f2) ◦ (f1 ⊗ idX2

) : X1 ⊗X2 → Y1 ⊗ Y2

f1 ⋊Fr f2 = (f1 ⊗ idY2
) ◦ (idX1

⊗ f2) : X1 ⊗X2 → Y1 ⊗ Y2

A morphism f1 : X1 → Y1 is central if for all f2 : X2 → Y2, f1 ⋉Fr f2 = f1 ⋊Fr f2 and symmetrically
f2 ⋉Fr f1 = f2 ⋊Fr f1. Let t : Φ⇒ Ψ be a natural transformation between two functors Φ, Ψ : K ′ → K, then
t is central if every component of t is central.

In theorem 4.3 the graph homomorphisms ⋉Fr, ⋊Fr will be related to the sequential products ⋉, ⋊ from
section 2. In the next definition, “natural” means natural in each component separately [Sel01].

Definition 4.2. A symmetric premonoidal category is a binoidal category K together with an object I of K
and central natural isomorphisms with components aX,Y,Z : (X ⊗ Y)⊗Z → X ⊗ (Y ⊗Z), lX : X ⊗ I → X ,
rX : I⊗X → X and cX,Y : X⊗Y → X⊗Y , subject to the usual coherence equations for symmetric monoidal
categories [Mac97, Sel01]. Note that every symmetric monoidal category, hence every category with finite
products, is symmetric premonoidal. A symmetric premonoidal functor between two symmetric premonoidal
categories is a functor that preserves the partial functor ⊗, the object I and the natural isomorphisms a, l, r, c.
It is strict if in addition it maps central morphisms to central morphisms. A Freyd-category is an identity-
on-objects functor J : C → K where the category C has finite products, the category K is symmetric
premonoidal and the functor J is strict symmetric premonoidal.

16

The following result states that each cartesian effect category with a pure terminal object is a Freyd-category.
It is an easy consequence of the results in section 2.

Theorem 4.3. Let C j K be a cartesian effect category with a pure terminal object 1. Let a, l, r, c be the
natural isomorphisms on C defined as in section 2.5.3. Let J : C → K be the inclusion, let ⊗ : |K|×K → K
and ⊗ : K×|K| → K be the restrictions of ⋉ and ⋊, respectively, and let I = 1. This forms a Freyd-category,
where ⋉Fr and ⋊Fr coincide with ⋉ and ⋊, respectively.

Proof. It follows from proposition 2.9 that C is a category with finite products. The graph homomorphisms
⊗ : |K| × K → K and ⊗ : K × |K| → K are functors by corollary 2.10 and they coincide on |K|2 by
remark 2.15, hence K with ⊗ is a binoidal category. Definition 2.11 states that the graph homomorphisms
⋉Fr, ⋊Fr are the sequential products ⋉, ⋊, so that both notions of central morphism (definitions 2.14 and 4.1)
coincide. The fact that the transformations a, l, r, c are natural, in the sense of symmetric premonoidal
categories, is a consequence of theorem 2.25. All the components of a, l, r, c are defined from the symmetric
monoidal category C. It follows that they are isomorphisms, that they satisfy the coherence equations, and
since pure morphisms are central (theorem 2.16) it follows also that they are central. Hence K with ⊗, I
and a, l, r, c is a symmetric premonoidal category. Clearly the inclusion functor J : C → K is symmetric
premonoidal, and strictly because of theorem 2.16.

Remark 4.4. It is well-known that the center of a symmetric premonoidal category is a symmetric monoidal
category [PR97]. For effect categories with sequential products this result can also be deduced from re-
mark 2.23.

4.2 Arrows

In the functional language Haskell, in order to deal with effects one can use strong monads [Wad92] (see
section 4.3), which have been generalized as Arrows [Hug00]. A categorical model of Arrows is presented in
[Atk08]. Here we follow [Pat01], and we build a bridge from cartesian effect categories to Arrows.

Definition 4.5. An Arrow type is a binary type constructor A of the form:

class Arrow A where

arr :: (X → Y)→ A X Y
(>>>) :: A X Y → A Y Z → A X Z
first :: A X Y → A (X, Z) (Y, Z)

satisfying the following equations:

(1) arr id >>> f = f
(2) f >>> arr id = f
(3) (f >>> g) >>> h = f >>> (g >>> h)
(4) arr (w.v) = arr v >>> arr w
(5) first (arr v) = arr (v × id)
(6) first (f >>> g) = first f >>> first g
(7) first f >>> arr (id× v) = arr (id× v) >>> first f
(8) first f >>> arr fst = arr fst >>> f
(9) first (first f) >>> arr assoc = arr assoc >>> first f

where the functions (×), fst and assoc are defined as:

(×) :: (X → X ′)→ (Y → Y ′)→ (X, Y)→ (X ′, Y ′) such that (f × g)(x, y) = (f x, g y)
fst :: (X, Y)→ X such that fst(x, y) = x
assoc :: ((X, Y), Z)→ (X, (Y, Z)) such that assoc((x, y), z) = (x, (y, z))

17

Let CH denote the category of Haskell types and ordinary functions, so that the Haskell notation (X→ Y)
represents CH(X, Y), made of the Haskell ordinary functions from X to Y . An arrow A contructs a type
A X Y for all types X and Y . We slightly modify the definition of Arrows by allowing (X→ Y) to represent
C(X, Y) for any cartesian category C and by requiring that A X Y is a set rather than a type: more on this
issue can be found in [Atk08]. In addition, we use categorical notations instead of Haskell syntax. So, from
now on, for any cartesian category C, an Arrow A on C associates to each objects X , Y of C a set A(X, Y),
together with three operations:

arr : C(X, Y)→ A(X, Y)
>>>: A(X, Y)→ A(Y, Z)→ A(X, Z)
first : A(X, Y)→ A(X × Z, Y × Z)

that satisfy the equations (1)–(9). Basically, the correspondence between a cartesian effect category C j K
and an Arrow A on C identifies K(X, Y) with A(X, Y) for all types X and Y . This is stated more precisely
in proposition 4.6.

Proposition 4.6. Every cartesian effect category C j K gives rise to an Arrow A on C, according to the
following table:

Cartesian effect categories Arrows
K(X, Y) A(X, Y)
C(X, Y) ⊆ K(X, Y) arr : C(X, Y)→ A(X, Y)
f 7→ (g 7→ g ◦ f) >>>: A(X, Y)→ A(Y, Z)→ A(X, Z)
f 7→ f × id first : A(X, Y)→ A(X × Z, Y × Z)

Proof. The first and second line in the table say that A(X, Y) is made of the morphisms from X to Y in
K and that arr is the conversion from pure morphisms to arbitrary morphisms. The third and fourth lines
say that >>> is the (reverse) composition of morphisms and that first is the right semi-product with the
identity. The following table proves that A is an Arrow, by translating each property (1)–(9) in terms of
cartesian effect categories and giving the argument for its proof. Note that fst is the common name for
projections like p1, q1, . . . (in section 2) and that assoc is the natural isomorphism a as in section 2.5.3.

(1) f ◦ id = f identity in K
(2) id ◦ f = f identity in K
(3) h ◦ (g ◦ f) = (h ◦ g) ◦ f associativity in K
(4) w ◦ v in C = w ◦ v in K C ⊆ K is a functor
(5) v × id in C = v × id in K proposition 2.9
(6) (g ◦ f)× id = (g × id) ◦ (f × id) lemma 2.20
(7) (id× v) ◦ (f × id) = (f × id) ◦ (id× v) corollary 2.18
(8) q1 ◦ (f × id) = f ◦ p1 definition 2.8
(9) a ◦ ((f × id)× id) = (f × id) ◦ a lemma 2.24

The Arrow combinators second, (∗∗∗) and (&&&) can be derived from arr, (>>>) and first, see e.g [Hug00,
Pat01]. The correspondence in proposition 4.6 is easily extended to these functions. We denote 〈idX , idX〉 :
X X × X the diagonal in C and 〈f1, f2〉l = (f1 ⋉ f2) ◦ 〈id, id〉 : X → Y1 × Y2 (where the subscript l
stands for “left”) for all f1 : X → Y1 and f2 : X → Y2 in K. The natural isomorphism c is defined as in
section 2.5.3, it corresponds to swap.

Cartesian effect categories Arrows
(id× f) = c ◦ (f × id) ◦ c second f = arr swap >>> first f >>> arr swap

f1 ⋉ f2 = (id× f2) ◦ (f1 × id) f1 ∗∗∗ f2 = first f1 >>> second f2

〈f1, f2〉l = (f1 ⋉ f2) ◦ 〈id, id〉 f1&&&f2 = arr(λx→ (x, x)) >>> (f1 ∗∗∗ f2)

18

For instance in [Hug00, §4.1] it is stated that &&& is not a categorical product since in general (f1&&&f2) >>>
arr fst is different from f1: “there is no reason to expect Haskell’s pair type, &&&, to be a categorical product
in the category of arrows, or indeed to expect any categorical product to exist”. We can state this more
precisely in a cartesian effect category, where (f1&&&f2) >>> arr fst corresponds to q1 ◦ 〈f1, f2〉l. Indeed,
according to theorem 2.29, q1 ◦ (f1 ⋉ f2) 2 f1 ◦ p1, so that, by substitution, q1 ◦ 〈f1, f2〉l 2 f1 ◦ p1 ◦ 〈id, id〉.
We thus get the following result, which of course is weaker than an equality:

q1 ◦ 〈f1, f2〉l 2 f1 .

4.3 Strong monads

The use of strong monads for dealing with computational effects is introduced in [Mog89, Mog91]. As in
examples 2.2 and 3.6, let C0 be a category with a monad (M, µ, η), that satisfies the mono requirement, let
K be the Kleisli category of M and let C denote the image of C0 in K by the faithful functor J : C0 → K
associated with M , so that C j K. A morphism f : X → Y in K stands for [f] : X → M(Y) in C0,
and a pure morphism v : X Y stands for [v] = ηY ◦ v0 : X → M(Y) for the unique v0 : X → Y in C0

such that v = J(v0). The composition g ◦ f of f : X → Y and g : Y → Z stands for [g ◦ f] = [g]∗ ◦ [f]
where [g]∗ = µZ ◦M([g]). It follows that when v : X Y and w : Y Z, one gets [g ◦ v] = [g] ◦ v0,
[w ◦ f] = M(w0) ◦ [f] and [w ◦ v] = ηZ ◦ w0 ◦ v0.

It has been seen in example 3.6 that if there is a terminal object 1 in C0 then the effect of a morphism
f : X → Y of K, in the sense of remark 3.3, stands for [〈 〉Y ◦ f] = M(〈 〉Y) ◦ [f] : X →M(1) in C0, so that
for all f : X → Y and f ′ : X → Y ′:

f ≈ f ′ ⇐⇒ M(〈 〉Y) ◦ [f] = M(〈 〉Y ′) ◦ [f ′] : X →M(1) .

Now, let us assume that C0, hence C, has binary products. In [Mog89], it is explained why the monad
(M, µ, η) and the product × are not sufficient for dealing with several variables: there is a type mismatch
from Y1 ×M(Y2) to M(Y1 × Y2). This issue is solved by introducing a strength t for the monad (M, µ, η),
which means, a natural transformation with components tY1,Y2

: Y1 ×M(Y2)→ M(Y1 × Y2) satisfying four
axioms [Mog89]. One of these axioms is that for all X , rM(X) = M(rX) ◦ t1,X : 1×M(X)→M(X), where
the natural isomorphism r is made of the projections rX : 1×X → X as in section 2.5.3. A strong monad is
a monad with a strength. In K, let v : X1 Y1 and f : X2 → Y2. In order to form a kind of product of v and
f , the usual method using strong monads is to compose in C0 the product v0× [f] : X1×X2 → Y1×M(Y2)
with the strength tY1,Y2

: Y1 ×M(Y2)→M(Y1 × Y2).

Definition 4.7. For all v : X1 Y1 and f : X2 → Y2 in K, the left Kleisli product of v and f is
v ⋉Kl f : X1 ×X2 → Y1 × Y2 defined by:

[v ⋉Kl f] = tY1,Y2
◦ (v0 × [f]) : X1 ×X2 →M(Y1 × Y2) .

In proposition 4.11, we will prove that the left Kleisli product is a left semi-pure product, under some
assumption about the strength.

Lemma 4.8. Let C0 be a category with binary products and with a strong monad (M, µ, η, t). For all Y1, Y2

in C0 (with the projections q2 : Y1 × Y2 → Y2 and q′2 : Y1 ×M(Y2)→M(Y2)):

M(q2) ◦ tY1,Y2
= q′2 .

Proof. The projection q2 can be decomposed as q2 = r2 ◦ (〈 〉Y1
× Y2), where r2 = rY2

: 1 × Y2 → Y2

is the projection. Hence on the one hand M(q2) = M(r2) ◦M(〈 〉Y1
× Y2), and on the other hand q′2 =

r′2 ◦ (〈 〉Y1
×M(Y2)) where r′2 = rM(Y2) : 1 ×M(Y2) → M(Y2) is the projection. In the following diagram,

the square on the top is commutative because t is natural, and the square on the bottom is commutative

19

because of the property of the strength with respect to r. Hence the large square is commutative, and the
result follows

Y1 ×M(Y2)

q′

2
=

''

〈 〉×M(id)
��

tY1,Y2 //

=

M(Y1 × Y2)

M(〈 〉×id)
��

M(q2)=

ww

1×M(Y2)

r′

2

��

t1,Y2 //

=

M(1× Y2)

M(r2)

��
M(Y2)

id // M(Y2)

Definition 4.9. Let C0 be a category with binary products, with a strong monad (M, µ, η, t) and with a
consistency 2 on C j K. Let 20 denote the relation between parallel morphisms of C0 with codomain of
the form M(Y) defined by: ∀f, f ′ : X → Y in K,

[f] 20 [f ′] ⇐⇒ f 2 f ′ .

The strength is consistent with the unit if for all Y1, Y2 (with the projections q1 : Y1 × Y2 → Y1 and
q′1 : Y1 ×M(Y2)→ Y1):

• M(q1) ◦ tY1,Y2
20 ηY1

◦ q′1.

Remark 4.10. Roughly speaking, the fact that the strength is consistent with the unit means that “the
strength is similar to the unit, except for the fact that the strength may have effects”. In order to check
whether this consistency property is satisfied, one can first look at the case when Y2 = 1, so that M(q1) is
an isomorphism.

Proposition 4.11. Let C0 be a category with binary products, with a strong monad (M, µ, η, t) and with a
consistency 2 on C j K such that the strength is consistent with the unit. Then the left Kleisli product ⋉Kl

is a left semi-pure product on C j K.

Proof. In the diagram below, the squares on the left handside illustrate the binary product property of
v0 × [f] and the squares on the right handside illustrate lemma 4.8 (bottom right) and the assumption that
the strength is consistent with the unit (top right).

X1
v0 //

[v]

=
++

Y1
η // M(Y1)

X1 ×X2

p1

OO

p2

��

v0×[f] //

=

=

Y1 ×M(Y2)

q′

1

OO

q′

2

��

t //

=

30

M(Y1 × Y2)

M(q1)

OO

M(q2)

��
X2

[f] //

[f]

=

33M(Y2)
id // M(Y2)

Let us give the same name to the projections in C0 and to their images by J in C. It follows immediately
from the bottom squares that M(q2) ◦ [v ⋉Kl f] = [f] ◦ p2, i.e. that [q2 ◦ (v ⋉Kl f)] = [f ◦ p2], which means
that:

q2 ◦ (v ⋉Kl f) = f ◦ p2 .

20

Now let us look at the top squares. Let Y = Y1 × M(Y2) and let g, g′ : Y → Y1 in K be defined by
[g] = M(q1) ◦ tY1,Y2

and [g′] = ηY1
◦ q′1. The assumption that the strength is consistent with the unit may

be stated as g 2 g′. Let X = X1 × X2 and let w0 = v0 × [f] : X → Y in C0 and w = J(w0) : X Y
in K. It follows from g 2 g′, by the substitution property of 2, that g ◦ w 2 g′ ◦ w. On the one hand
[g ◦ w] = [g] ◦ w0 = M(q1) ◦ tY1,Y2

◦ (v0 × [f]) = M(q1) ◦ [v ⋉Kl f] = [q1 ◦ (v ⋉Kl f)]. On the other hand
[g′ ◦ w] = [g′] ◦ w0 = ηY1

◦ q′1 ◦ (v0 × [f]). With the equality q′1 ◦ (v0 × [f]) = v0 ◦ p1 the latter yields
[g′ ◦ w] = ηY1

◦ v0 ◦ p1 = [v ◦ p1]. Hence:

q1 ◦ (v ⋉Kl f) 2 v ◦ p1 .

So that ⋉Kl satisfies the left semi-pure product property.

Now ⋉Kl will be denoted simply ⋉.

4.4 Examples

Let us look at three strong monads implemented in Haskell [Has].

4.4.1 Partiality: the Maybe monad

Partiality has been studied in examples 2.7.1 and 3.5.1. On the other hand, the Maybe monad in Haskell
deals with computations which may return Nothing (which means that thay fail to return a value): in a
chain of computations, if a step returns Nothing then the chain does return Nothing. This corresponds
to the monad with endofunctor M(X) = X + {e} on Set , where the symbol e stands for the error (like
Nothing in Haskell). A function f : X → Y + {e} can be seen as a partial function from X to Y with
domain D(f) = {x ∈ X | f(x) 6= e}. The strength associated to this monad has as components the functions
tY1,Y2

: Y1 × (Y2 + {e}) → (Y1 × Y2) + {e} that map 〈y1, y2〉 to 〈y1, y2〉 and 〈y1, e〉 to e. The strength is
consistent with the unit: with the same notations as in definition 4.9, both functions M(q1)◦tY1,Y2

and ηY1
◦q′1

return the same value y1 on any argument 〈y1, y2〉, while M(q1)◦ tY1,Y2
(〈y1, e〉) = e and ηY1

◦q′1(〈y1, e〉) = y1,
so that indeed M(q1) ◦ tY1,Y2

is smaller than ηY1
◦ q′1, as partial functions.

4.4.2 State: the State monad

Side-effects due to a hidden state have been studied in examples 2.7.2 and 3.5.2 in a “linear” way. This
effect can equivalently be studied with the help of the State monad with endofunctor M(X) = (S×X)S on
Set . The strength associated to the State monad has as components the functions tY1,Y2

: Y1× (S×Y2)
S →

(S×Y1×Y2)
S that map (y1, ϕ2) to ϕ such that ϕ(s) = 〈s2, y1, y2〉, where ϕ2(s) = 〈s2, y2〉, for each s ∈ S. The

strength is consistent with the unit: with the same notations as in definition 4.9, the function M(q1) ◦ tY1,Y2

maps (y1, ϕ2) to ϕ1 such that ϕ1(s) = 〈s2, y1〉 where ϕ2(s) = 〈s2, y2〉 for some y2, and the function ηY1
◦ q′1

maps (y1, ϕ2) to ϕ′
1 such that ϕ′

1(s) = 〈s, y1〉. Hence indeed M(q1) ◦ tY1,Y2
and ηY1

◦ q′1 differ only by their
effect on the state.

4.4.3 Non-determinism: the List monad

Non-determinism can be expressed by the List monad L on C0 = Set . For each set X , L(X) is the set of
lists of elements of X , and for each function f : X → Y the function L(f) : L(X)→ L(Y) maps (x1, . . . , xn)
to (f(x1), . . . , f(xn)). The multiplication µ flattens each list of lists and the unit η maps each element
x to the list (x). The strength t associated to the List monad has as components the functions tY1,Y2

:
Y1×L(Y2)→ L(Y1×Y2) that map each pair 〈y1, (y2,1, . . . , y2,n)〉 to the list of pairs (〈y1, y2,1〉, . . . , 〈y1, y2,n〉).
For all morphisms f : X → Y and g : Y → Z in the Kleisli category K, the composition g ◦ f : X → Z is

21

defined by [g ◦ f](x) = (z1,1, . . . , z1,p1
, . . . , zn,1, . . . , zn,pn

) for all x ∈ X such that [f](x) = (y1, . . . , yn) and
[g](yi) = (zi,1, . . . , zi,pi

) for each i ∈ {1, . . . , n}.

The singleton 1 = {∗} is terminal in Set , so that a list in L(1) can be identified to its length in N. For each
morphism f : X → Y in K, let |f | : X → N denote the function that maps each x ∈ X to the length of the
list [f](x). According to example 3.6, the effect of f : X → Y stands for [〈 〉Y ◦ f] = L(〈 〉Y)◦ [f] : X → L(1),
which gets identified with |f | : X → N. So, the same-effect relation is the relation “having the same length”:

∀f : X → Y, f ′ : X → Y ′, f ≈ f ′ ⇐⇒ |f | = |f ′| ,

and a morphism f is effect-free when |f | is the constant function 1. As explained in section 3.2, the relation
≈ is an equivalence relation that satisfies substitution and such that pure morphisms are effect-free. In
addition, here, every effect-free morphism is pure:

∀f : X → Y, f ≈ idX ⇐⇒ |f | = 1 ⇐⇒ f is pure .

On the other hand, for each f : X → Y in K and each k ∈ N, let f 〈k〉 : X → Y in K denote the morphism
defined by [f 〈k〉](x) = (yk

1 , . . . , yk
n) for each each x ∈ X such that [f](x) = (y1, . . . , yn), where yk

i denotes the
replication of k times yi. Then clearly for all f : X → Y and g : Y → Z in K and for all k, l ∈ N:

|f 〈k〉| = k |f | , f 〈1〉 = f , (f 〈k〉)
〈l〉

= f 〈k l〉 , h〈l〉 = f 〈k l〉 ⇒ h = f 〈k〉 , g〈l〉 ◦ f 〈k〉 = (g ◦ f)〈k l〉 .

Let us define the relation 2 as follows:

∀f, f ′ : X → Y, f 2 f ′ ⇐⇒ ∃k ∈ N, f = f ′〈k〉 .

For all objects X and Y , the empty morphism e : X Y is defined as the unique morphism with constant
length 0: it is such that [e] maps every x ∈ X to the empty list in L(Y).

Proposition 4.12. With the relations ≈ and 2 defined as above:

1. the symmetrization ⌣ of 2 is such that for all f, f ′ : X → Y , f ⌣ f ′ if and only if either f is empty,

or f ′ is empty, or there are positive integers n, n′ such that f 〈n〉 = f ′〈n
′〉
;

2. C j K is an effect category where in addition 2 satisfies replacement and pure morphisms are maximal
for 2;

3. 2 is an up-to-effects relation with respect to ≈;
4. the unicity up-to-effects property is satisfied, with respect to the cartesian product;
5. C j K with its semi-pure products defined as the Kleisli products is a cartesian effect category.

Proof.

1. The empty morphism e : X → Y is such that e 2 f for every f : X → Y , because e = f 〈0〉. Hence e ⌣ f
(and f ⌣ e) for every f : X → Y . Now let us assume that neither f nor f ′ is empty. Let f ⌣ f ′, then

there are g and positive k, k′ such that f = g〈k〉 and f ′ = g〈k
′〉, so that f 〈k′〉 = g〈k k′〉 = f ′〈k〉, as required.

If there are n, n′ positive such that f 〈n〉 = f ′〈n
′〉
, then let h = f 〈n〉 = f ′〈n

′〉
and D = lcm(n, n′), and let us

check that there is some g such that h = g〈D〉. If h = v〈|h|〉 for a pure morphism v this is clear, otherwise
let us consider some x ∈ X with at least two distinct values in the list h(x) = (y1, . . . , yp), and let i be an
index such that yi−1 6= yi. Since h = f 〈n〉 the index i is a multiple of n, and similarly i it is a multiple of
n′, so that i is a multiple of D. This proves that h = g〈D〉 for some g. Now let k = D/n and k′ = D/n′, we
have f 〈n〉 = h = g〈D〉 so that f = g〈k〉, and similarly f ′ = g〈k

′〉, hence f ⌣ f ′.

2. The relation 2 is reflexive because f 〈1〉 = f and it is transitive because (f 〈k〉)
〈l〉

= f 〈k l〉. It satisfies

substitution because g〈l〉◦f = g〈l〉◦f 〈1〉 = (g ◦ f)〈l〉 and replacement because g◦f 〈k〉 = g〈1〉◦f 〈k〉 = (g ◦ f)〈k〉,
hence it satisfies pure replacement. If v 2 f with v pure, then v = f 〈k〉 for some k ∈ N so that 1 = k |f |,

22

hence k = 1 and f = v. This proves that pure morphisms are maximal for 2, from which it follows that 2
is the equality on pure morphisms. So, 2 is a consistency relation.

3. In order to prove the complementarity of 2 and ≈, let f, f ′ : X → Y be such that f ≈ f ′ (which means,
|f | = |f ′|) and f ⌣ f ′. If f or f ′ is empty then so is the other, because both must have length 0, hence

f = f ′. Now let us assume that neither f nor f ′ is empty, so that (using (1)) f 〈n〉 = f ′〈n
′〉 for some n, n′

positive. Then n |f | = n′ |f ′|, which together with |f | = |f ′| yields n = n′, hence f = f ′.

4. Let f, f ′ : X → Y1×Y2 be such that qi ◦f ⌣ qi ◦f
′ for i ∈ {1, 2}. Note that |qi ◦f | = |f | and |qi ◦f

′| = |f ′|
because the projections are pure. If qi◦f is empty for some i then so is f , hence f ⌣ f ′, and similarly if qi◦f

′

is empty for some i then f ⌣ f ′. Now let us assume that neither qi ◦ f nor qi ◦ f ′ is empty, so that (using

(1)) qi ◦ f 〈ni〉 = qi ◦ f ′〈n
′

i〉 for some ni, n
′
i positive, for i = 1 and for i = 2. It follows that ni|f | = n′

i|f
′| for

i ∈ {1, 2}, so that n1 n′
2 = n′

1 n2. Let k = n1 n2 and k′ = n1 n′
2 = n′

1 n2. Let F = f 〈k〉 and F ′ = f ′〈k
′〉. Then

q1 ◦ F = (q1 ◦ f)
〈k〉

= (q1 ◦ f)
〈n1〉

〈n2〉
and q1 ◦ F ′ = (q1 ◦ f ′)

〈k′〉
= (q1 ◦ f ′)

〈n′

1
〉〈n2〉

so that q1 ◦ F = q1 ◦ F ′.

And similarly q2 ◦ F = (q2 ◦ f)
〈k〉

= (q2 ◦ f)
〈n2〉

〈n1〉
and q2 ◦ F ′ = (q2 ◦ f ′)

〈k′〉
= (q2 ◦ f ′)

〈n′

2
〉〈n1〉

so that
q2 ◦ F = q2 ◦ F ′. The equalities qi ◦ F = qi ◦ F ′ in K mean that L(qi) ◦ [F] = L(qi) ◦ [F ′] in C0, so that

[F] = [F ′], which means that F = F ′. So, f 〈k〉 = f ′〈k
′〉, which proves (using (1)) that f ⌣ f ′.

5. Let Y1, Y2 be sets. For all y1 ∈ Y1 and (y2,1, . . . , y2,n) ∈ L(Y2), the pair 〈y1, (y2,1, . . . , y2,n)〉 ∈ Y1 × L(Y2)
is mapped by ηY1

◦ s1,0 to the list (y1) ∈ L(Y1) and by M(q1,0) ◦ tY1,Y2
to the list (y1, . . . , y1) ∈ L(Y1) of

length n. Hence M(q1,0) ◦ tY1,Y2
20 ηY1

◦ s1,0, so that the result follows from proposition 4.11.

Here is the diagram illustrating the left semi-pure product of v : X1 Y1 and f : X2 → Y2. This diagram
is in the category C0 of sets, with y1 = v0(x1) and (y2,1, . . . , y2,n) = [f](x2).

X1

[v] // L(Y1)

X1 ×X2

p1

OO

p2

��

[v⋉f] //

=

30

L(Y1 × Y2)

L(q1)

OO

L(q2)

��
X2

[f] // L(Y2)

x1
� // (y1) 6= (y1, . . . , y1)

〈x1, x2〉
_

OO

_

��

� // (〈y1, y2,1〉, . . . , 〈y1, y2,n〉)
_

OO

_

��
x2

� // (y2,1, . . . , y2,n)

Then the definition of the left sequential product (definition 2.11) yields, for all f1 : X1 → Y1 and f2 : X2 →
Y2, with (y1,1, . . . , y1,n1

) = [f1](x1) and (y2,1, . . . , y2,n2
) = [f2](x2):

∀(x1, x2) ∈ X1 ×X2 , [f1 ⋉ f2](x1, x2) = (〈y1,1, y2,1〉, . . . , 〈y1,1, y2,n2
〉, . . . , 〈y1,n1

, y2,1〉, . . . , 〈y1,n1
, y2,n2

〉) .

And symmetrically:

∀(x1, x2) ∈ X1 ×X2 , [f1 ⋊ f2](x1, x2) = (〈y1,1, y2,1〉, . . . , 〈y1,n1
, y2,1〉, . . . , 〈y1,1, y2,n2

〉, . . . , 〈y1,n1
, y2,n2

〉) .

It follows that f1 ⋉ f2 and f1 ⋊ f2 are usually distinct.

Remark 4.13. This example can easily be adapted to multisets instead of lists, then f1 ⋉ f2 and f1 ⋊ f2

are equal, so that all morphisms are central.

23

References

[Atk08] Robert Atkey. What is a Categorical Model of Arrows? Mathematically Structured Functional
Programming (MSFP’08), 2008.

[DDR07] Jean-Guillaume Dumas, Dominique Duval, Jean-Claude Reynaud. Sequential products in effect
categories. http://www.citebase.org/abstract?id=oai:arXiv.org:0707.1432, 2007.

[DR05] Dominique Duval, Jean-Claude Reynaud. Diagrammatic logic and exceptions: an introduction.
Mathematics, Algorithms, Proofs (MAP’05), Dagstuhl Seminar 05021, 2005.

[Has] Haskell. All About Monads. A comprehensive guide to the theory and practice of monadic programming
in Haskell. http://www.haskell.org/all about monads/.

[HJ06] Chris Heunen, Bart Jacobs. Arrows, like Monads, are Monoids. Electronic Notes in Theoretical
Computer Science, p. 219–236, 2006.

[Hug00] John Hughes. Generalising monads to arrows. Science of Computer Programming 37 (1–3), p. 67–
111, 2000.

[HLPP07] Martin Hyland, Paul Blain Levy, Gordon D. Plotkin, John Power. Combining algebraic effects
with continuations. Theoretical Computer Science 375 (1–3), p. 20–40, 2007.

[HPP06] Martin Hyland, Gordon Plotkin, John Power. Combining Effects: Sum and Tensor. Theoretical
Computer Science 357, p. 70–99, 2006.

[Mac97] Saunders Mac Lane. Categories for the Working Mathematician, 2nd edition. Graduate Texts in
Mathematics Vol. 5, Springer Verlag, 1997.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. Logic In Computer Science (LICS),
IEEE Press, p. 14-23, 1989.

[Mog91] Eugenio Moggi. Notions of Computation and Monads. Information and Computation 93, p. 55–92,
1991.

[Pat01] Ross Paterson. A New Notation for Arrows. International Conference on Functional Programming,
ACM, p. 229-240, 2001.

[Pow06] John Power. Generic models for computational effects. Theoretical Computer Science 364 (2),
p. 254–269, 2006.

[PR97] John Power, Edmund Robinson. Premonoidal Categories and Notions of Computation. Mathematical
Structures in Computer Science 7 (5), p. 453–468, 1997.

[PT99] John Power, Hayo Thielecke. Closed Freyd- and κ-Categories. Int. Coll. on Automata, Languages
and Programming, (ICALP’99). Springer Verlag, LNCS 1644, p. 625–634, 1999.

[Sel01] Peter Selinger. Control categories and duality: on the categorical semantics of the lambda-mu
calculus. Mathematical Structures in Computer Science 11 (2), p. 207–260, 2001.

[Wad92] Philip Wadler. Monads for functional programming. Program Design Calculi: Proceedings of the
1992 Marktoberdorf International Summer School. Springer Verlag, LNCS 925, 1995.

24

