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Abstract 
 

We present an application of bi-dimensional and 

heterogeneous time series clustering in order to resolve a 

Social Sciences study issue. The dataset is the result of a 

survey involving more than eight thousand handicapped 

persons. Sociologists need to know if there are in this 

dataset some homogeneous classes of people according to 

two attributes: the idea that handicapped people have 

about the quality of their life and their couple status (i.e. 

if they have a partner or not). These two attributes are 

time series so we had to adapt the k-Means clustering 

algorithm in order to be efficient with this kind of data. 

For this purpose, we use the Longest Common 

Subsequence time series distance for its efficiency to 

manage time stretching and we extend it to the bi-

dimensional and heterogeneous case. The results of our 

unsupervised process give some pertinent and surprising 

clusters that can be easily analyzed by sociologists. 

 

1. Introduction 
 

In data mining research, time series represent an actual 

challenge due to the unique structure of this kind of data. 

Most classic data mining algorithms, which were initially 

conceived for classic (i.e. non temporal) data, do not work 

well for time series. The need to adapt data mining 

methods to time series has created a new field of research 

called temporal data mining [3, 32]. 

Temporal data mining includes association rules [12, 

13], indexing (query by content) [23, 47], feature mining 

[26, 28], the discovery of recurrent or surprising motifs [9, 

11, 20, 30], classification [10, 18, 21, 42] and clustering 

[17, 29, 31, 34, 45]. 

Time series clustering is a difficult field where 

numerous papers propose algorithms that work well with 

artificial data but they are not efficient in real-world 

dataset problems [19]. Time series clustering using 

Hidden Markov Models is proposed in [29, 34]. Some 

approaches perform clustering using k-Means algorithm 

with Euclidean distance measure [31, 45]. A time series 

clustering algorithm that uses k-Means with Dynamic 

Time Warping distance measure is proposed in [17]. 

Although it is efficient with several artificial datasets, it 

does not work with real heterogeneous dataset like the one 

we have deal with. 

Multivariate time series clustering is a more difficult 

issue where few methods and distances are already 

proposed. Traditional distances like Weighted Sum SVD 

[40], Principal Component Analysis similarity factor 

(SPCA) [25, 41] or Eros [46] are only for numerical data 

with the same size. Moreover they are often too complex 

for large dataset and they are basically used for indexing 

process in databases (e.g. with k-Nearest Neighbors 

method). In another work, Lee et al propose a method to 

index sequences of multidimensional points [27]. They 

extend the ideas presented by Faloutsos et al. in [15] and 

they use the Euclidean distance. 

Some works on indexing moving objects (i.e. bi-

dimensional time series) are proposed in order to answer 

spatial proximity query [1, 24, 35, 36, 39]. Also in [43, 

44], an efficient indexing of trajectories is performed by 

Vlachos et al. using Longest Common Subsequence 

(LCSS) distance. For reasons that we explain in the next 

section, this method is relatively suitable for our issue. 

But Vlachos et al. are dealing with numerical data, so we 

have to make this distance work with heterogeneous data 

as well. Moreover this technique, and also all the others 

described above, has not been used for unsupervised 

clustering with algorithm such k-Means yet. 

Our work is based on a study carried out by the French 

National Institute for Statistics and Economic Studies 

(INSEE). This study is trying to show how living in 

couples affects the view that handicapped people have on 

their lives. The dataset owns the result of a survey 

involving 8403 handicapped persons. For each year all 

along their life, they had to give a numeric estimation of 

the quality of their life, and at the same time they also 



noted down if they had a partner or not (Fig.1). 

Sociologists need to know if it exists in this dataset some 

homogeneous classes of people according to its “couple 

status / life-quality estimation” behaviors. So we have a 

set of 8403 bi-dimensional and heterogeneous time series 

that we try to classify in an unsupervised way. The aim is 

that sociologists can work with our partitioning in order to 

bring out relevant categories of handicapped people. We 

can sum up the difficulties of our issue as follows: 

- Bi-dimensional and heterogeneous data: Each 

handicapped person is represented by two time 

series; one numeric (the life quality estimation) 

and one symbolic (to have a partner or not). 

- Temporal gap: Different persons may have the 

same bi-dimensional pattern that occurs at 

different moments in time axis. The process has to 

match two same patterns despite the potential time 

axis gap. 

- Time series with very different size: Lengths of 

time series may vary between 2 and 80. The 

distance measure that we use must be able to 

manage these differences. 

- Unsupervised clustering: All the process must be 

automatic. This is more a data exploratory analysis 

than a machine learning problem. 

 

 

 
 

Figure 1. Example of a bi-dimensional time series representing 

a handicapped person. 

 

So firstly we have to choose an efficient distance 

measure, and then we have to develop an algorithm that 

uses the distance measure and performs the clustering in a 

satisfying way. In section 2, we present the LCSS distance 

and explain why it is efficient and how we adapt it for our 

bi-dimensional and heterogeneous issue. In section 3, we 

describe how we adapt the k-Means clustering algorithm 

with LCSS and get a complete clustering process. In 

section 4 we experiment our process on the dataset and 

present the results. We conclude in section 5. 

 

2. Longest Common Subsequence Distance 
 

Euclidean distance is the most widely used distance 

measure, even for calculating distances between data such 

as time series, because it is easy to compute and very fast. 

The operation consists in matching a given point from a 

time series with the point from another one that occurs at 

the same time. The main drawback of Euclidean distance 

is its inability to manage time axis gap. Two time series 

with the same shapes that do not occur concurrently on 

time axis may have a high Euclidean distance. This result 

is very illogical and it can significantly perturb the 

clustering [22]. 

For the particular case of our dataset, we need a 

distance measure that is able to match some shapes that 

not occur at the same time. Indeed, some handicapped 

persons may have similar “couple status / life-quality 

estimation” patterns at different periods of their life. 

Among all the measures able to perform time series 

distance in this way, the Dynamic Time Warping (DTW) 

distance is the most popular. The particularity of DTW is 

that it compare two time series together by allowing a 

given point from one time series to be matched with one 

or several points from the other [6, 38]. We choose not to 

use this distance for two reasons: Firstly, DTW manages 

only numeric time series. Its adaptation to symbolic data 

is not obvious and it includes some additional parameters 

that are difficult to fix. Secondly, DTW forces all 

elements of each time series to be matched, even if these 

elements do not have any relevant meaning. Typically for 

our dataset we have a lot of non relevant periods (e.g. 

when neither the life-quality appreciation nor the couple 

status changes for a handicapped person). 

 

 
 

Figure 2. Computation of the distance between two time series 

with Euclidean distance (fig. A) and LCSS distance (fig. B). 

 



The Longest Common Subsequence (LCSS) distance, 

like DTW, is a time stretching distance. It matches two 

time series together by allowing them to stretch, without 

rearranging the sequence of the elements [2, 7, 8, 12]. 

Whereas in Euclidean and DTW distance all elements 

must be matched, LCSS can keep some elements 

unmatched by allowing one point of a time series to be 

matched with one or zero point of the other (Fig.2).  

In order to force time stretching not to match too 

distant elements, we may add to LCSS a warping window 

(i.e. a constant  δ) that controls how far in time we can go 

in order to match two points from two different time 

series. For example, if we set δ = 3, a point that occurs at 

instant t must only be matched with points from the other 

time series that occurs at instants t-3, t-2, t-1, t, t+1, t+2 

and t+3. In fact, δ is not inevitably a constant and may 

vary according to time [37], but for simplicity we consider 

δ to be a constant in this paper. Moreover, we have to set 

a spatial window (i.e. a constant ε) as a matching 

threshold that defines if two point from two different time 

series can be matched or not. LCSS distance gives in 

result a value between 0 (the two time series are perfectly 

similar) and 1 (no common points between the two time 

series). 

Originally, LCSS is a one-dimensional distance for 

numeric data. So we have extended its definition to be 

able to manage time series with two heterogeneous 

dimensions (one numeric and one symbolic) as follow: 

Let A and B be two bi-dimensional time series with 

size m and n respectively, where A = {(ax1, ay1), …, (axm, 

aym)} and B = {(bx1, by1), …, (bxn, byn)}. axi and bxi are the 

i
th
 value of the numeric time series of A and B 

respectively. ayi and byi are the i
th
 value of the symbolic 

time series of A and B respectively. 

Let Equal(i, j) be the matching function between the i
th
 

point of A and the j
th
 point of B, where: 
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Given the recursive function Sim(i, j) that compute the 

similarity between the subsequence Ai = {(ax1, ay1), …, 

(axi, ayi)} and the subsequence Bj = {(bx1, by1), …, (bxj, 

byj)} as follows: 
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We can now define our LCSS distance as follow: 
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It’s important to notice that LCSS is not a metric 

distance. Therefore it does not necessary respect the 

triangular inequality LCSS(A ,B) ≤ LCSS (A, C) + 

LCSS(C, B). 

The recursive definition of our LCSS distance has a 

non computational complexity and needs a dynamic 

programming approach [4, 5]. Dynamic programming 

consists in creating a m×n matrix. Inside the cell (i, j) of 

the matrix we store 1 if Equal(i, j) = True, 0 otherwise. 

Once all the cells are filled we search for the best warping 

path. It is the path beginning in cell (1, 1), finishing in cell 

(m, n) that maximise the sum of the cells it goes through 

(Fig. 3). 

 

 
 

Figure 3. Example of best warping path between two time 

series A = {1, 2, 4, 3, 1, 1, 2, 1} and B = {1, 1, 1, 2, 4, 3, 1, 1}. 

The sequence of cells crossing by the best warping path is (1, 1), 

(2, 4), (3, 4), (4, 6), (6, 7), (8, 8). 



Actually, the non recursive algorithm we use to 

compute the LCSS distance in an optimal and efficient 

way does not search directly for the best warping path. It 

simply obtains the LCSS distance value thanks to a 

cumulative similarity matrix π built as shown in Table 1 

(here, for simplicity there is no warping window, but the 

addition it is trivial to add it). 

 

for i = 1 to m, do: 

      for j = 1 to n, do: 

            if ( (i = 1 or j = 1) and Equal(i, j) = True ) 

                  then πij = 1 

            if ( (i = 1 or j = 1) and Equal(i, j) = False ) 

                  then πij = 0 

            if ( i > 1 and j > 1 and Equal(i, j) = True ) 

                  then πij = πi-1,,j-1 + 1 

            if ( i > 1 and j > 1 and Equal(i, j) = False ) 

                  then πij = max{πi-1,,j , πi,,j-1} 

{ }nm
BALCSS mn

,min
1),(

π
−=  

 

Table 1. The non recursive algorithm that computes the LCSS 

distance between two bi-dimensional and heterogeneous time 

series A and B. 

 

So the longer step of this algorithm is the completion 

of the cumulative similarity matrix. This step has a 

complexity of O(m×n) (O(m²) if the two time series have 

the same length). If we add a warping window with size δ, 

this algorithm allows to compute LCSS in O(m×δ) time 

(with  δ << n).  

 

3. The clustering process 
 

3.1. The k-Means algorithm 
 

A classic way to perform clustering is the use of the k-

Means algorithm [33]. This approach is very interesting 

for us because it generates “spherical” clusters (i.e. each 

cluster can be considered as a hypersphere inside the 

multidimensional data space. The center of the 

hypersphere is the fictive mean between all the objects 

owned by this cluster. The radius is the distance between 

the fictive mean and the furthest object in the cluster. 

Because of admitting relocation after each iteration, using 

k-means clustering allows poor initial partitions to be 

corrected at a later stage. So when the fictive mean moves, 

the sphere-shaped structure of the cluster is conserved and 

it keeps its homogeneity. This characteristic is empirically 

observed for non metric distances like LCSS. It permits 

the creation of homogeneous and proportional clusters 

that are, for our study, less sensitive to outliers than 

Hierarchical Clustering clusters. The intuition behind k-

Means approach is shown in Table 2. 

 

1 Decide on a value for k. 

2 Initialize the k cluster centres (randomly, if necessary). 

3 
Decide the class memberships of the N objects by 

assigning them to the nearest cluster centre. 

4 
Re-estimate the k cluster centres, by assuming the 

memberships found above are correct. 

5 
If none of the N objects changed membership in the last 

iteration, exit. Otherwise return to step 3. 

 

Table 2. K-Means algorithm 

  

To resolve our catalysis clustering problem, the k-

Means approach has one major drawback: At step 4, the 

algorithm has to re-estimate the k cluster centers. This 

means computing the average of all the time series for 

each cluster in the multidimensional data space. This is 

straightforward with non temporal data (we just have to 

compute the Euclidean average) but illogical for temporal 

data like time series. We will resolve this difficulty with 

by using a variant of this algorithm proposed by Didey 

[14]. 

 

3.2. Using k-Means with LCSS distance 
 

K-Means algorithm is a variant of the Forgy algorithm 

[16]. The Forgy algorithm resumes the basic intuition 

behind all partitional clustering algorithms like k-Means. 

It creates clusters with only two parameters: the number of 

clusters noted k and the size of seeds noted c. For the 

reasons explained in the previous section, the distance 

measure used by our method is LCSS, so we have adapted 

this algorithm to make time series clustering work with 

this distance (Table 3). 

Each cluster is characterized by a seed of c time series. 

Seeds are used to compute distances between time series 

and clusters as well as distances between each cluster. The 

c times series of a cluster are those that minimize the 

Inertia function. This function is also used to compute the 

intra-class variance between all clusters that evaluates the 

quality of the clustering. 

The exact complexity of this algorithm ca not be 

determined because it depends on the relative size of each 

cluster during the iterations.  However, for a dataset of N 

time series, it has a complexity inferior or equal to O( 

kPL.(N² + N) ), where k is the number of clusters specified 

by the user, P is the number of iterations until 

convergence, and L is the duration of one LCSS 

calculation (i.e. O(m×δ)).  

It is obvious that the final time series clustering 

depends on the seeds initialization. Ideally, each seed 

should be initialized only with the time series that belong 

to the same cluster, but if we do not have any a priori 

knowledge about the dataset (as it is usually the case in 

unsupervised knowledge data discovery), we have to 



initialize the seeds at random. For a dataset with k time 

series clusters (with the same number of time series for 

each cluster), the probability to have a perfect 

initialization at random is approximately equal to 
k
k

!k  (for 

example if k = 6 then the probability is equal to 0.015, i.e. 

1 in 65 to have a perfect initialization).  Here we use intra-

class variance to evaluate the quality of the seeds 

initialization: if a seed initialization does not give an intra-

class variance inferior to a threshold, then another 

initialization is tried. 

 

1 
Let X be a set of N time series that we aim to split in k 

clusters, where X = {x1,…,xn). 

2 

Let S be a set of k seeds, where S = {S1, …, Sk}. Each 

seed Sj is composed of c time series chosen among the 

initial set X (randomly if necessary). One time series ca 

not belong to more than one seed. 

3 

Given L(c, Sj), the distance between the time series xi and 

the seed Sj as follows: 

∑
∈

=
jSy

iji
yxLCSS

c
SxL ),(

1
),(  

4 
For i = 1,…, N do: 

        For j = 1,…, k do: 

         Compute L(xi, Sj) 

5 
Assign to each time series xi its nearest seed (i.e. the seed 

Sj that minimize L(xi, Sj)). 

6 
Let C be a set of k clusters, where C = {C1, …, Ck}. Each 

cluster Cj is made of all time series that have Sj as nearest 

seed. 

7 

Redefine a new set of seeds S’ = {S’1, …, S’k}. Each new 

seed S’j is made of the c time series xi from Cj that 

minimize:  

∑
∈

=
jCy

iji
yxLCSSCxInertia ),(),(  

8 

To estimate the clustering quality, calculate the intra-class 

variance Var(C) as follows: 

∑ ∑
= ∈

=
k

j Cx

ji

ji

CxInertia
n

CVar
1

),(
1

)(  

If the value of Var(C) does not decrease between the 

iteration p and the iteration p+1 (or decrease less than an 

arbitrary threshold), then stop the process. Else restart a 

new iteration at step 4 with S = S’. 

 

Table 3. Didey’s k-Means generalization with LCSS distance 

 

Because of the nature of our data, we do not use a 

temporal window because similar patterns that we search 

in two handicapped person can occur anywhere in time 

axis. So it leaves us only with three parameters: the 

number of clusters k, the size of seeds c and the spatial 

window ε for LCSS. 

Only the numeric variable of our bi-dimensional time 

series needs the ε parameter. This parameter must be fixed 

by user according to the maximum difference that he 

considers that two persons have the same life estimation. 

We notice that the value of c does not influence the 

intra-class variance defined in our algorithm (contrary to δ 

and k). So we can consider that the optimal value of c 

minimizes this variance. 

We ca not use the same method to find the optimal 

value of k because this parameter influences the intra-class 

variance final value (the more k increases, the more the 

intra-class variance decreases). This limitation can be 

minimized by attempting all values of k within a large 

range. 

 

4. Application to handicapped people dataset 

 
We apply our algorithm on our handicapped people 

dataset. We split the data in two parts according to sex 

(i.e. one part with 4617 women and one part with 3786 

men). Sociologists need to know if the “direct link” 

hypothesis (i.e. to have a partner implies an increase of 

life-quality estimation for handicapped people) is valid or 

not. Results of our process give, for each sex, surprising 

clusters that contradict this expectation. In spite of the 

very large multiplicity of patterns, we are able to bring out 

some homogeneous classes, in particular if we cluster the 

dataset with k = 4 (Table. 4). 

The first surprising fact that we notice is the quasi-

perfect symmetry between the two sexes. The difference 

between the proportional cluster sizes for the two sexes is 

always inferior or equal to 1 %. That logically means that 

living in couples affects in the same way the view that 

handicapped men and women have on their lives. 

The other surprising fact is the frequency of 

handicapped people that have no variation of their life-

quality estimation in spite of their couple-status change 

(72 % for men and 73 % for women). The second largest 

cluster is composed of people without a couple-status 

change. People that directly relate life quality with couple 

status (i.e. to find a partner implies a life quality increase) 

are in the third cluster. With a frequency of 6 % for the 

two sexes, this cluster is surprisingly small. In the same 

way, the cluster with people that have an opposite relation 

between the two variables is relatively insignificant (3 % 

for each sex). 

As a conclusion, contrary to what sociologists expect, 

we can consider that living in couples (or not) is not a 

determinant variable to explain the increase (or the 

decrease) in the life quality estimation of handicapped 

people. This conclusion may be an important decision 

factor for future assistance programs towards handicapped 

people. 

 

 

 



 

M W General tendency 

72% 73% 

 

19% 18% 

 

6% 6% 

 

3% 3% 

 

 

Table 4. The clustering result of the handicapped people 
dataset (with k = 4). The first and the second columns give the 

proportional size of each cluster for handicapped men (M) and 

women (W) respectively. Because of the very large multiplicity 

of patterns, we only show here for each cluster the main pattern 

that is the most representative of the general tendency of the 

cluster. 

 

5. Conclusion 
 

In this paper we present an exploratory analysis on a 

survey with 8403 handicapped persons. This dataset needs 

a methodology that is able to manage bi-dimensional, 

heterogeneous, with different size and temporal gap data. 

The approach we propose is based on the k-Means 

algorithm and the Longest Common Subsequence 

distance. We adapt the LCSS distance to bi-dimensional 

and heterogeneous data, and adapt the k-Means algorithm 

to be able to support this distance measure. The results 

obtained by our process are pertinent and surprising. They 

can be easily analyzed by sociologists in order to assist 

them in their work. 
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