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Abstract specify an environment and (i) it makes it easy to emulate
environments to show minimality results.

This paper investigates under which conditions informa- We first define the moving source environment (MS) in
tion can be reliably shared and consensus can be solvedhich at every time at least one process (called the source)
in unknown and anonymous message-passing networks the¢nds timely messages to all other processes, but thisesourc
suffer from crash-failures. We provide algorithms to enteila may change over time and infinitely often. Although this
registers and solve consensus under different synchrongnvironmentis considerably weaker than a total synchrsnou
assumptions. For this, we introduce a novel pseudo leaderenvironment, we show that it is still sufficient to implement
election approach which allows a leader-based consensuregisters, although it is not possible to implement the con-

implementation without breaking symmetry. sensus abstraction. In fact, it can be emulated by hardware
registers in totally asynchronous “known” networks for
1. Introduction any number of process crashes. Therefore, if we would

be able to implement consensus in this environment, we
Most of the algorithms for distributed systems considercould contradict the famous FLP impossibility resmﬂk [7].
that the number of processes in the system is known antihis result states, that consensus cannot be implemented in
every process has a distinct ID. However, in some networkasynchronous message passing networks, even if only one
such as in wireless sensors networks, this is not necassariprocess may crash. Since we can emulate registers if only
true. Additionally, such networks are typically not tojall one process may craslﬁ] [2], we can also emulate the MS
synchronous and processes may suffer from failures such @&vironment and therefore cannot be more powerful.
crashes. To implement consensus, we consider some additional
Designing protocols for such networks is especially in-stronger synchrony assumptions. Our first consensus algo-
tricate, since a process can never know if its messagesthm assumes that additionally to the assumptions of the MS
have been received by all processes in the system. In thisnvironment, eventually all processes communicate timely
paper, we investigate under which conditions informationWe call this environment the eventual synchronous (ES)
can be reliably shared and consensus can be solved in suehvironment. It resembles Dwork et a[] [6]. In our second
environments. consensus algorithm, we consider a weaker environment and
Typically, in systems where no hardware registers arepnly assume that eventually always the same process is able
available, one makes additional assumptions to be able send timely to all other processes. We call it the eventual
to reliably share information, e.g. by assuming a correcstable source environment (ESS). It resembles the model of
majority of processes. However, these techniques assunﬁﬂ] in which it is used to elect a leader, a classical approach
also some knowledge about the total number of processet implement in turn consensus.
With processes with distinct identities, the requirements Due to the indistinguishability of several processes that
to emulate a register have been precisely determined blyehave identical, a true leader election is not possible
showing that the quorum failure detecttiris the weakest in our anonymous environment. Therefore, in our second
failure detector to simulate registers in asynchronous-meslgorithm, we take benefit of the fact that it suffices for the
sage passing systen{$ [5]. But again, this approach fails dumplementation of consensus if all processes that consider
to the lack of identities in our anonymous environment. itself as a leader behave the same way. We show how to
To circumvent these problems, we assume that the systesventually guarantee this using the history of the prosesse
is not totally asynchronous, but assume the existence qdroposal values.
some partial synchrony. We specify our environments by us- Furthermore, we consider the weak-set data-strucﬂlre [4].
ing the general round-based algorithm framework (GIRAF)This data-structure comes along some problems that arise
of [ﬂ]. This has two advantages: (i) it is easy to preciselywith registers in unknown and anonymous networks. Every
_ process can add values to a weak-set and read the values
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and without the risk of an overwritten value due to a concur- We model an algorithmA as a set of deterministic
rent write. Furthermore, we show that it precisely capturesautomata, one for every process in the system. We assume
the power of the MS environment, i.e. we can show that itonly fair runs, i.e. every correct process executes infinite
can be implemented in the MS environment and a weak-sahany steps.

can be used to emulate the MS ennvironment. Interestingly,

in known networks, a weak-set is equivalent to the registep 1. Consensus

abstraction and can thus be seen as a generalization for

unknown and anonymous networks. In the consensus problem, the processes try to decide on
Furthermore, we show that although it is possible toone of some proposed values. Three properties have to be

emulate registers in our MS environment, it is not possible t satisfied:

emulateX [E], the weakest failure detector for registers. And validity: Every decided value has to be a proposed

this result is not only due to the anonymity of the processes, value.

it holds even if the number of processes and their identities 1ormination: Eventually,

are known. Note that this is not a contradiction, since the Agreement:

result in E!]S] means only thal is the weakest of all failure

detectors with which a register can be implemented and w .

have exhibited synchrony assumptions where the existen(?e'z' An extension to GIRAF

of a failure detector is not necessary at all.

every correct process decides.
No two processes decide different values.

Algorithm ﬂ presents an extension to the generic round-
based algorithm framework oﬂll] (GIRAF). It is extended
to deal with the particularities of our model, namely the
anonymity and unknown number of the processes. The
There have been several approaches to solve fault-toleragfgmework is modeled as an I/O automaton. To implement
consensus in anonymous networks deterministically[]in [4]a specific algorithm, the framework is instantiated with two
fault-tolerant consensus is solved under the assumptan thfynctions:initialize() and computé). The computé) func-
failure detector [H] exists, i.e. exactly one correct process tion takes the round number and the messages received so far
eventually knows forever that it is the leader. [h [9], fault as parameters. We omit to specify a failure detector output
tolerant and obstruction-frﬂeonsensus is solved if registers g5 parameter (as irljll]), because we are not interested
are available. in failure detectors here. Both functions are non-blocking
There has also been some research on systems where 1Ds, they are not allowed to wait for any other event.
are known but the number of processes is not.[In [8], it Our extension lies in the way we model the received
is assumed that processes may crash, but furthermore thgfessages. Since the processes have no IDs, we represent
it is possible to detect the participants initially. In[12]  the messages that are received during one round as a set
leader election algorithm for a system where infinitely manyinstead of an array.
processes may join the system is presented if the number of The communication between the processes proceeds in
processes simultaneously up is bounded. rounds and the advancement of the rounds is controlled by
To the best of our knowledge, this paper presents comthe environment via theeceive andend-of-rounginput ac-
pletely new approaches to emulate registers and solve thfyns. These actions may occur separately at each prpgess
consensus problem in unknown and anonymous environand therefore rounds are not necessarily synchronizedgmon

1.1. Related work

ments with partial synchrony. processes. The framework can capture any asynchronous
message passing algorithm (s@ [11)).
2. Model and Definitions Environments are specified using round-based properties,

restricting the message arrivals in each round.

We assume a network with an unknown (but finite) num-
ber of processes where the processes have no IDs (i.e. théy3. Environments
are totally anonymous) and communicate using a broadcast
primitive. The set of processes is denofdd We assume We say that a procegs is in roundk, if there have beeh
that the broadcast primitive is reliable, although it may no invocations ofend-of-roungl A processp; has atimely link
always deliver messages on time. Furthermore, any numbén round k, if end-of-roungd occurs in roundt and every
of processes may crash and the processes do not recoveorrect procesp; receives the round message op; in
Processes that do not crash are called correct. roundk.

In this paper, we consider three different environments:
1. For obstruction-free consensus, termination is onlyrantaed if

a process can take enough steps without beeing interrupgedther e In the first one, which we call th_e moving-source (MS)
processes. environment, we assume that in every roundthere



Algorithm 1: Extended GIRAF generic algorithm for

Algorithm |_3r implements consensus in the ES environ-

procesy;. ment. The idea of the algorithm is to ensure safety by waiting
1 States: until a value is contained in every message received in a
2 k; € N, initially 0; round. In this way, one can ensure that a value has also
3 | M;[N] C Messages, initiallwk € N : M;[k] = 0; been relayed by the current source and is therefore known
4 Actions and Transitions: by everybody (we say that the value is written). If a process
5 | input end-of-round evaluates Line 9 to true, thevaL is known by everybody

6 if (ks =0) then (because it was written in the last round) and no other
; e||sem = Initialize(); process will consider another value as written, because onl
9 | m := computk;, M); a value which has also been relayed by a source can be in
10 Milks +1] i= Mifks + 1] U {m}; WRITTEN. But the relayed value of a source would also be
1 ki = ki + 1 in PROPOSEDat every process.

PR e
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output send (M;[k:], k:)):;
input receive (M, k)
| Milk] := Mi[k] U

7

M;

exists a procesg, (a source) that has a timely link in
roundk.

In the second environment, which we call the eventual
synchronous (ES) environment, we demand the samg,iaple of process;
as in the MS environment, but additionally require that .

there is some round such that in every round’ > k,
all correct processes have timely links in roukfd

To guarantee the liveness of the consensus algorithm,
we use the fact that eventually, all proposal values in the
system are received in every even round by everybody
and everybody will select the same maximum in Line 12.
Therefore, everybody will propose the same value in the
next round and the algorithm will terminate.

3.1. Analysis

For all local variables/Ar, we denote bywAR; the local
(e.g.,PROPOSED). For every variable
VAR;, VARQC is the value of this variable after process
has executed Line 7 whesomputehas been invoked with
parameter; (i.e. in roundk).

In the third environment, which we call the eventually _
stable source (ESS) environment, we demand the sanle€mma 1. If no process has decided yet and for some
as in the MS environment, but additionally require thatv € WRITTEN, then every procesg; that enters round:

eventually the source procesgs is always the same in
every round. This means, that there is some roknd
such that in every round’ > k, the same procesgs,
has a timely link in round:’.

3. Implementing consensus in ES

Algorithm 2: A consensus algorithm in ES for process
Pi-

1
2
3
4
5
6
7
8
9

10
11
12

13

14
15

on initialization do

o

n

VAL := initial value;
WRITTEN := WRITTENOLD := PROPOSED= (;

return PROPOSED

computék;, M;) do
WRITTEN := (., ay, 1r,] ™
PROPOSED= (U, ¢ rs,[1,] ™) U PROPOSED
if (ks mod 2 = 0) then
if (PROPOSED= WRITTENOLD = {VAL }) then
decide vAL; halt
else if (WRITTEN # ) then
| VAL := max(WRITTEN);

PROPOSED:= {VAL };

WRITTENOLD := WRITTEN,;
return PROPOSED

hasv € PROPOSED.

Proof: If a processp; has a valuev in WRITTENf,
thenwv has been contained in every message, whichas
received in roundk (Line 6). This includes the message
of the source, since by assumption the source has not yet
terminated. But by definition, every other procggsthat
enters roundk also has received the message of this source
in this round and added it to its se?lROPOSEI;’; (Line 7).
Therefore,v is in PROPOSEL. O

Lemma 2. If no process has decided yet apd hasv €
WRITTENOLD? in an even round:, then every other process
p; that enters round: hasv € WRITTEN.

Proof: If a procesg; has a valuev in WRITTENOLD?,
then it has hadv in WRITTEN/"!. Therefore, every other
processp; that enters round: — 1 haswv in F>R0POSEL§‘1
in the same odd round — 1 (Lemma[ll). Since no value
is removed from a sePROPOSEDIN odd rounds,v will
be contained in every se&tROPOSEDbroadcast at the end
of round k — 1 and therefore get inthR|TTEN§ at every
processp; that enters rounds. O

Theorem 1. Algorithm D implements consensus in the ES
environment.

Proof: We have to prove the 3 properties of consensus.
Validity is immediately clear, becausenL is always an
initial value.



To prove termination, assume that the system has stabevery round they require only finite space. Thus, if we
lized, i.e. all faulty processes have crashed and all messag could ensure that eventually all processes that propose hav
are received in the round after which they have been senin every round the same history (and at least one process
Then, all processes receive the same set of messages in evprgposes infinitely often), then the proposal values sent
round. Therefore, the setROPOSEDand thuswRITTEN is  are indistinguishable from the proposal values of a single
the same at all correct processes and everybody will alwayéclassical” leader.
select the same maximum in Line 12. In the next round all However, the history of a process permanently grows.
processes start with the same proposal value and this valu€herefore, every process includes its current history erev
will be written in every future round. Thus, everybody will message it broadcasts. Furthermore, it maintains a counter
evaluate Line 9 to true in the next round. C for every history it has yet heard of (in such a way that

To prove agreement, assurpe is the first process that no memory is allocated for histories it has not yet heard
decides a valuev in a round k. This means, thafp;  of). Then, it compares the histories it receives with thesone
has evaluated Line 9 to true. If some other value than it has received in previous rounds. If some old history is a
would have been written anywhere in the system, this woulgrefix of a new history, it assigns the counter of the new
contradict PROPOSED= {v} (Lemma[ll), sincep; is the  history the value of the counter of the old one, increased by
first process that decides. Furthermoteis in WRITTEN at ~ one. Thus, the counter of a history that corresponds to an
every process in the system in rouhdsince it is also in  eventual source is eventually increased in every round.
WRITTENOLD (Lemma[|2). Therefore, every other process In this way, it is possible to ensure that eventually only
decidesv in the same round, or it will evaluate Line 11 to eventual sources that converge to the same infinite history
true and select as newvAL . Thus, no other value will ever consider itself as leader. In a classical approach, eviyntua
get into PROPOSEDanywhere in the system, no other value only these leaders would propose values. But to meet our
will ever be written and no other value will ever be selectedsafety requirements, it is crucial to ensure that all preess
as VAL. propose in every round at least something to make sure that

0  the value of the current source is received by everybody.
Therefore, we let processes that do not consider itself as a
4. Implementing consensus in ESS leader propose the special valie

Algorithm [ implements consensus in the ESS environ4.2. Analysis
ment. For the safety part, the algorithm is very close to
algorithm[R (see Sectioff 3). Similarly to Section[[3, for every variablear;, VARY is
To guarantee liveness, we use the fact that we have dhe value of this variable after procegshas executed Line
least one process which is eventually a source forever. W8 in roundk.
use the idea of the construction of the leader failure detect. Definition 1. We say, thatp; has heard ofp,’s round k

Q [B]. It elects a leader among the processes which '?nessager@f), if p; has receivedn;? in round %, or if there

eventually stable. In “known” networks, with some eventual,yists another procegs such thap; has heard ofy’s round
. . K3

synchrony,©2 can be implemented by counting heartbeats;., message for some > k andp, has heard of;’s round

of processes (e.g. inf][1]). But we are not able to count, message.

heartbeats of different processes here, because in oud mode

the processes have no IDs. To circumvent this problem, we Let processp,; be an eventual source. We then identify
identify processes with the history of their proposal valug  three groups of processes:

several processes have the same history, they either gropos out-connected The processes, the eventual soyscdras

the same value, or their histories diverge and will never infinitely often heard of.

become identical again. Eventually, all processes wikdel o-silent The processes that are rmit-connected

the same history as maximal history and the processes with o-proposer ~ The out-connectedprocesses that have

this history will propose in every round the same values. eventually in every round timely links to-
wards all otheout-connectegbrocesse§.

4.1. Implementation leader We say that a process; is a leader
in some roundk (p; € leadefk)), iff

Every process maintains a list of the values it broadcasts VH, CF[HISTORY¥] > CF[H].
in every round (specifically, its proposal values). This is If processp; is eventually a leader for-
denoted by the variableiSTORY. In this way, two processes ever, i.e. there exists &, such that for

that propose in the same round different values will eventu-
a"y have d|ﬁere_ntH|STORY Va”_ables' Note that, although actually has received is not the message thatpmoposerhas sent. It is
the space required by the variables may be unbounded, Kufficient if it receives an identical message from anothrecess.

2. Note that it is possible that the message cat-connectedprocess



Algorithm 3: The consensus algorithm in ESS for

© ~
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proces;.

1 on initialization do

2 VAL := initial value; VH, C[H] := 0; HISTORY := VAL;
3 WRITTEN := WRITTENOLD := PROPOSED= {);

4 return m = (PROPOSEDHISTORY, C);

5 on computék;, M;) do

6 WRITTEN := ﬂmeMi[ki] m.PROPOSED

PROPOSED=( |
meM,;[k;]

VH, C[H] = minmeMi[ki] (mC[H]),
Vm € M;[k;], C[m.HISTORY] := 1 +
max{ C[H] | H is a prefix ofm.HISTORY};

if (ks mod 2 = 0) then

if (WRITTENOLD = {VAL }) A (PROPOSEDC
{vaL,1}) then

| decidevaL; halt;

else if (WRITTEN\ { L} # 0) then

| VAL :=max(WRITTEN\ {1});

if
(VH, C[HISTORY] > C[H])V(PROPOSEDC {VAL, L})
then

| PROPOSED= {VAL};
else

| PrROPOSED= {l};

m.PROPOSE[) U PROPOSED

WRITTENOLD := WRITTEN;

WRITTEN := PROPOSED

appendvAL to HISTORY;

return m = (PROPOSEDHISTORY, C);

all ¥ > k, p; € leade(k’), then we
simply write thatp; € leader. Note that
it may be possible that there are several

processes imeader

The sets relate to each other in the following way:

{ps} C o-proposerC out-connected- correct
and o-silentn out-connectee-

We will later show thateaderC o—proposer(LemmaI]S).

Lemma 3. Eventually, in every odd round, for every
o-proposerp;, the setPROPOSEDIN mF is a subset of the
setWRITTEN at all out-connected processes in roukd- 1.

More formally:

3k, VK’ > k with ¥’ mod2 = 1,
Vp; € o-proposeryp; € out-connected
m¥ = (PROPOSED—, —)

k' +1
— PROPOSEDC WRITTENj

Proof: Follows directly from the definition of-

Lemma 4. Eventually, at all out-connected processes, the
counters that correspond to histories®eproposers increase
in every round by one. More formally:

3k, Vk' > k,Vp,; € o-proposervp, € out-connected
Ch 1 HisTORYY +!

%

] = C¥'[HisTORY] + 1

Proof: Assume a time when the system has stabilized.
This means, that allk-proposers send timely messages
to all out-connected processes in every round and no
out-connected process receives timely messagesfsitant
processes. Then, lét be the number of the current round
and for everyo-proposerp; let p; be an out-connected
process, such that the count@f[mstYf] is minimal
among all out-connected processes in roundThen, the
counter forp;’s history atp; will never decrease, because
p; will never receive a message with a lower counter from
any other process.

Since p; is a o-proposer, the counter fop;’s history
will increase by one ap; in every round. For every other
out-connected process, since it receives also a message fro
p; in every round and it can only finitely often receive a
lower counter corresponding tg;’s history (the lowest one
is p;'s), the counter ofp;'s history eventually increases in
every round by one. O

Lemma 5. If a history of a procesg; infinitely often
corresponds to a maximal counter atogproposerp;, then
p; is a leader forever. More formally:

Vp; € o-proposervp; € 11 :
(Vk, 3k’ > k,Vh, (C¥ [misTORYY] > CI [1)))
— p; € leader

Proof: We first show thap; € o-proposer. Assume
that it is not. Sincep; € o-proposer, eventually the counter
that corresponds tg;’s history is increased by one at every
out-connected process (Lemrﬂa 4). SipgeZ o-proposer,
some out-connected procegssdoes not receivmf in round
k for infinitely many roundst. Therefore, the counter at
p; that corresponds tg;’s history is not increased by one
in these rounds and is eventually strictly lower than the
one that corresponds tp;’s history. Since every time some
out-connected process has a lower counter than the others,
eventually this counter propagates to all other out-cortedc
processesy;’s history will eventually be higher thap,’s at
all out-connected processes. A contradiction.

If p; and p; are botho-proposers, then eventually they
receive their messages timely in every roundSincep;’s
history increases at all out-connected processes by one
(Lemma[ls), eventuallC¥[HISTORYY] = Cf[HISTORY].

proposers and the fact that out-connected processes eveBince by our assumption, in some future roukid p;'s

tually do not receive any timely messages frorsilent
processes.

O

history is maximal atp; and a counter can increase by
at most one and the counters that correspond pits



history increase always by one (Lemfja &f;[HISTORY]
is maximal forever and therefoye; is a leader forever. [J

Lemma 6. Eventually, there exists a procegs € leader
and every leader is @-proposer. More formally:

3k, Ip; € VK >k : p; € leaderk’) 1)
and Vp; € I1: (Vk, 3K k' > k, p; € leade(k’))
— p; € o-proposer  (2)

Proof: The eventual sourcg; is a o-proposer. There-
fore, there exists at least oneproposer. Eitherp, is also

select 1) and everybody will evaluate Line 11 to true in the
next round. Therefore, eventually, every correct procals w
decide.

To prove agreement, assurpeg is the first process that
decides a valuey in a round k. This means, thap; has
evaluated Line 11 to true. Then, RBROPOSEDC {v, L}, no
other value different fromL is in a setwRITTEN anywhere
in the system (compare Lemrﬂa 1) ands in WRITTEN at
every process in the system in rouhdsince it is also in
WRITTENOLD (compare Lemmﬂ 2). Therefore, every other
process decides in the same round, or it will evaluate

a leader forever, or there is another process whose history-IN€ 13 to true and seleat as newvAL and no other value

infinitely often corresponds to a higher counteratthan

different from_ L will ever get intoPROPOSEDanywhere in

py's history. Then, with LemmE 5 this process is a leaderthe system and therefore, no other value will ever be selecte
S . 1

forever. This implies[[1).

Assume a procesy; is not a o-proposer. Thenp;'s
counter is increased by less than one in infinitely man
rounds at some processes. Because eventually these un
propagate to all out-connected processes and the values
o-proposers are increased in every round by at least on
(Lemma|]4), eventually the history of sorgroposer is
higher than that ofp;. Therefore,p; cannot be a leader
forever. This implies[]2).

0

Lemma 7. If no process has decided yet, then eventuall
only values of leaders and. get into a setwRITTEN
anywhere. More formally:
Ik, VE' > k,Vp; € 11 :
WRITTEN C U, cleaderi) VAL ¥ U {1}

Proof: There is a time after which there exists at leas
one leader and all leaders are-proposers (LemmE 6) and

as VAL.
|

i/gr. Weak-Sets

gf The weak-set data structure has been introduced by
Delporte-Gallet and Fauconnier iﬂ [4].

A weak-setS is a shared data structure that contains a
set of values. It is defined by two operations: #mds(v)
operation to add a value to the set and thgety operation
which returns a subset of the values contained in the weak-
Yset. Note that we do not consider operations to remove values
from the set. Everget; operation returns all valueswhere
the correspondingdds(v) operation has completed before
the beginning of thget, operation. Furthermore, no valué
where noadds(v’) has started before the termination of the
gety operation is returned. Fadds operations concurrent
{With thegety operation, it may or may not return the values.
Therefore, weak-sets are not necessarily Iineariﬂable

since leaders propose their values always, all their values

get into every setwRITTEN at all out-connected processes
in every even round (Lemnfh 3).
Therefore, every sePROPOSEDcoNtains a value of a

5.1. Weak-Sets and registers

A weak-set is clearly stronger than a (regular) register:

leader (compare Lemmfg 1) and no process that considerproposition 1. A weak-set implements a (regular) multiple-
itself not as leader and has a value different from a leadefyriter multiple-reader register.

will evaluate line 15 to true and add a different value to its

SetPROPOSED 0

Theorem 2. Algorithmﬁi implements consensus in ESS.
Proof: We have to prove the 3 properties of consensu
Validity is clear, sincevAL is always an initial value.

To prove termination, assume there exists a run where nH1

process ever decides. Then, eventually only nowalues
of leaders will get into a setvRITTEN anywhere (Lemma
IZ) and they will get intowRITTEN always in every even

round (Lemme[|3) and all out-connected processes select t

same value (the maximum in Line 14). Therefore, only th

value and_L will be written in subsequent rounds and every
out-connected process will select this value as value for 3 A eak object is linearizable (also called atomic)

PROPOSEDIN Line 16 (i.e., no out-connected process will

Proof: To write a value, every process reads the weak-
set and stores the content in a variablgsToORY. Then,
every process adds the value to be written together with
SHISTORY to the weak-set.

To read a value, a process reads the weak-set and returns
e highest value among all values accompanied by a
HISTORY with maximal length.

This transformation satisfies the two properties of regu-
lar registers, namely termination and validity. Termirgati
Hgllows directly from the termination property of weaksset
is If several processes write at the same time, two reads at
two different processes may return different values, bigtraf

if dllte operations
appear to take effect instantaneou [10].



all writes have completed, the return value will be the same

Proof: We have to show that all operations terminate

at all processes. To see that also validity holds, consilder t at all correct processes and that every get operation regurn
value returned by a read. If there is no concurrent write, all values which have been added before.
then the value returned is the last value written (i.e. the The only position where an operation may be blocked is in

maximal value of all values concurrently written).
O

In [, a weak-set is implemented using (atomic) register

in the following two cases:

S

Line 11. But since eventually all messages will be received
by all correct processes, every value will eventually be in
every setPRoPOSEDand therefore eventually be in every
set WRITTEN. Thus, no correct process will block in Line
11 forever.

Proposition 2. If the set of processes using the weak set is To show that every get operation returns all values which
known (i.e. the IDs and the quantity), then weak-sets can bbave been added before, see that an(agidperation only

implemented with single-writer multiple-reader register

Proposition 3. If the set of possible values for the weak set
is finite, then weak-sets can be implemented with multiple-

writer multiple-reader registers.

5.2. Weak-Sets and the MS environment

terminates ifv is in WRITTEN at some process. Together
with Lemmg]9, this means that this value will be returned
by every process in Line 6.

]

5.3. Emulation of the MS environment with weak-
sets

Algorithm [} shows how to implement a weak-set in the Algorithm [§ emulates the MS environment using a weak-
MS environment. S|m|lar|y to SeCtIOﬂ 3, for every variable set S and the Correspondirmdg and gets methods.

VAR;, VAR is the value of this variable after procgsshas
executed Line 15 in round (i.e. aftercomputeis called
with parameterk).

Algorithm 4: A weak-set algorithm in the MS environ-
ment for procesy;.

on initialization do
\; VAL := 1; PROPOSED= WRITTEN := ();

BLOCK := falsg
return PROPOSED

|_ return PROPOSED

on add(v) do

PROPOSED:= PROPOSEDJ {v};
VAL :=v;

10 BLOCK := true;

11 wait until (BLock = false);

12 return ack

13 on computék;, M;) do
14 WRITTEN := (., oy 1, 7

1
2
3
4
5 on getdo
6
7
8
9

15 PROPOSED= (UmeMi[k,]’lgk,Ski m) U PROPOSED
16 if (VAL € WRITTEN) then BLOCK := falsg
17 return PROPOSED

Lemma 8. If for somep;, v € WRITTENY, then every
processp; that enters round: hasv € PROPOSED.
Proof: The proof is analogous to Lemrfla 1. 0

Lemma 9. If some value is iWRITTEN at some process,
then this value will be forever iRROPOSEDat all processes.

Proof: Since it is never a value removed from any se

PROPOSED this follows immediately from Lemnfp 8. [J

Theorem 3. Algorithm @ implements a weak-set.

t

As a weak-set is implementable by only using registers
(see Propositiofi 2) and the FLP impossibility regyit [7}esa
that consensus is not implementable using only registass, t
implies, that it is not possible to implement consensus én th
MS environment (without any additional assumptions like in
ES).

Algorithm 5 : Emulating the MS environment for process
p; using a weak-ses.
1 on initialization do

2 DELIVERED := (§;
3 trigger end-of-round;

o

n sendm;, k;); do
adds ({m, k:));
forall (m, k) € gety \ DELIVERED do
DELIVERED := DELIVEREDU {(m, k)};
L trigger receivém, k);;

trigger end-of-round,

© 00 ~N O U b

Theorem 4. Algorithm [§ emulates the MS environment.

Proof: Clearly, eventually all messages get delivered
and all correct processes execute an infinite number of
rounds.

It remains to show, that in every rounid there exists
a processs; such that for every procesg; at which
end-of-roungd occurs in roundk, p; receives the round
message o in round k.

Let p; be the first process that finishes to add the value
of a roundk. If several processes finish to add their values
at exactly the same time, choose one.

Claim: Every process at which end-of-round is triggered
in round £ has received;'s round k& value.



The proof is by contradiction. Assume that a procgss
triggers end-of-round in round: without having received

p;’s round k£ value. By the definition of a weak-set, this

means thap;’s gety begun beforg;’s adds was completed.
But a process will only start a ggtafter it has finished to
add its own value. A contradiction to the fact that was
the first process that has completed its add O

6. The MS-environment and the X failure de-
tector

The quorum failure detectdt [E] outputs lists of IDs of

trusted processes (i.e. it is not well-defined in our anonysno

model) and it satisfies the following properties:

7. Conclusions

This paper has provided algorithms to emulate registers
and solve consensus under different synchrony assumptions
in unknown and anonymous message-passing networks that
suffer from crash-failures. One of these algorithms uses a
novel pseudo leader election primitive.

Furthermore, we have shown that the MS environment
(i.e. a system with a moving timely source) is equivalent
to weak-sets, a generalization of registers for unknown and
anonymous systems. In some sense, this indicates that the
synchrony assumptions in this environment are necessary to
implement basic safety primitives.

Additionally, we have shown that in the MS environment,
it is not possible to emulatg, the weakest failure detector
to emulate registers|][5], even if we assume the existence
of IDs and a bound on the number of processes. To the

Intersection:  Given any two lists of trusted processes
possibly at different times and by different
processes, at least one process belongs t
both lists.

Completeness: Eventually at all correct processes, eve

trusted process is correct.

¥ has been shown to be the weakest failure detector to[l]
emulate registers in totally asynchronous message-gassin
systems |]|5] (with known IDs). This means, that is
sufficient to emulate registers in such systems and with
any failure detector which is also sufficient to implement
registers in such a system, it is possible to emuldte
Interestingly, although it is possible to implement a regis
in the MS environment (via weak-sets), we show that even
if we assume that the number of processes and their IDs
are known, it is not possible to emulafe Note that this is
no contradiction, since in our model no failure detector is
necessary for the emulation.

(2]

Proposition 4. It is not possible to emulat® in the MS-
environment, even if the number of processes and their IDs
are known.

Proof: Assume there exists such an algorithm and con- g
sider a runr; where procesg; is the only correct process,
p1 is always the source, ang, receives no messages from
other processes. Then, by the completeness properl); of
there exists some timeafter which the output o is {p; }.

Similarly, consider a runry where process, is the
only correct process ang; crashes after time. Again,
p1 is the source until time and receives no messages from [7]
other processes (this is possible, since the messages from
p2 may be arbitrary delayed). Fop;, run r; and ro are
indistinguishable up to timeé and consequently the at p;
will output {p,} at p; at time ¢t. But since eventually, the
output atp, has to be{p,} forever, this contradicts to the
intersection property of.

[4]

(6]

(8]

O

best of our knowledge, we found for the first time a
partially synchronous environment in which registers are
implementable and is not.
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