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Abstract

In this study, we numerically investigate the evolution of two-dimensional mixing and heat
transfer enhancement within a two-rod stirring device. The fluid is heated by the walls, which
are maintained at a constant temperature. We show by analysis of different stirring protocols
that the use of discontinuous wall rotations is necessary to promote heat transfer by chaotic
mixing. This condition is also required to avoid hot spots in the vicinity of the walls. The
statistics of temperature scalars (mean and standard deviation of dimensionless temperature
fields) allow us to determine the influence of geometrical and physical parameters on mix-
ing and heating performance. Thermal strange eigenmodes are revealed during the mixing
process by the development of complex recurrent patterns, and the self-similar character of
temperature evolutions is confirmed by the probability distribution functions of the rescaled
non-dimensional temperature.

Key words: Chaotic mixing, Laminar mixing, Heat transfer, High Prandtl number,
Thermal eigenmodes, Unstructured finite volume method

Nomenclature

Ac surface of a mesh element (m2)
ATσ composite mixing indicator
cp heat capacity (J.kg−1.K−1)
~d vector joining the centers of two cells
E energy (J)
k thermal conductivity (W.m−1.K−1)
~n normal oriented vector
p pressure (Pa)
R3 tank radius (m)
R1, R2 rod radii (m)
s strip width (m)
Stot total surface of the fluid (m2)
t time (s)
T temperature (K)
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U tangential velocity
~U velocity field (m.s−1)
V volume (m3)
X rescaled dimensionless temperature
Dimensionless numbers

Pe Péclet number
Pr Prandtl number
Re Reynolds number
St Strouhal number
T ∗ dimensionless temperature
Greek symbols

α thermal diffusivity (m2.s−1)
ε eccentricity (m)
φ generic scalar variable
Γ generic diffusion coefficient
λ stretching rate (s−1)
ρ fluid density (kg.m−3)
σ standard deviation
τ period of modulation (s)
=
τ viscous stress tensor
Ω angular velocity (rd.s−1)
χg scalar temperature dissipation indicator
Subscript

c cell
m mean
f face of a cell
Superscript

∗ dimensionless

1. Introduction

The topic of heat transfer and mixing plays an important role in many fields as various as
earth and life sciences, chemical engineering and material science. This subject is particularly
difficult to solve when highly viscous fluids are concerned. A variety of industrial processes
involve the heating of highly viscous liquids; they include material processing (molten poly-
mers for example), petroleum engineering, food engineering or environmental engineering.
The motivation for this study is to analyze the heating and mixing performance of a chaotic
mixer with a rather simple design. Chaotic mixing is obtained by considering the chaotic
advection phenomenon [1, 2, 3] that occurs in laminar flow. Today it is well recognized that
chaotic mixing is the most efficient mixing process when highly viscous fluids are involved
[4]. Chaotic mixing is also recommended for the mixing of delicate fluids that do not resist
the high strains encountered in turbulent flows. Despite the simplicity of their velocity fields,
chaotic advection flows are able to create very complex patterns of the advected scalar with
highly stretched and folded structures. The more numerous are very thin striations produced
by the flow, the more efficient the diffusion and the faster the homogenization of the scalar.
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When heat transfer is considered, temperature is the scalar and heat conduction is the diffu-
sion source. In the present study we focus only on the relationship between chaotic mixing and
the enhancement of heat transfer in a particular flow. Despite its obvious industrial relevance,
there are only a limited number of works that consider this problem. In fact, many more works
in the literature concern the relationship between chaotic mixing and chemical reaction more
than the coupling of chaotic mixing with heat transfer. When heat transfer enhancement is
involved, mainly two classes of flow geometries are encountered in the production of chaotic
mixing: those that use rotating elements as eccentric cylinders [5, 6, 7, 8] and those that
use multiple pipe bends [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. For the latter geometries,
chaotic trajectories are determined by continuous modification of pipe wall design; the third
space dimension provides the required additional degree of freedom and no displacement of
the wall is imposed. As a consequence, the number of operating parameters that determines
the options for effective stirring protocols is reduced, and the flow structure is given only by
the chosen pressure gradient (i.e., the Reynolds number for a particular fluid). Another inter-
esting 3D geometry is the continuous chaotic flow generated inside the Rotated Arc Mixer of
Lester et al. [20]. The mixer consists of an inner stationary cylinder lacking internal structure,
with apertures cut through its wall, wrapped by a concentric outer rotating cylinder. This
geometry offers a large, tunable, optimization parameter space for the enhancement of heat
and/or mass transfer. For all of the cases discussed above, thermal chaotic mixing is used
to attain multiple objectives: to encourage heat transfer between the heated walls and the
neighboring fluid and to achieve temperature homogeneity for the whole fluid domain. For
this last condition, we need to both prevent the formation of a large, unmixed KAM island,
where the fluid remains cold, and also avoid hot spots in the vicinity of heated walls, which
can degrade the fluid.

One of the main differences between thermal chaotic mixing and reactive chaotic mixing
is due to the large contrast in transfer rates between mass and heat. Effectively, it is com-
mon to notice a difference of two decades or more between the values of the molecular and
thermal diffusivities. Thermal diffusivities are higher than molecular diffusivities, which has
consequences on the solutions obtained for the advection-diffusion problem. Typically, the
patterns of the strange eigenmodes [21, 22] obtained for the scalar fields will differ. These
patterns appear repeatedly for periodic velocity fields and repeat themselves every period with
an exponential decay of the scalar contrast. More often, asymptotic transport is controlled
by the slowest eigenmodes, but that is not always the case [23, 24].

Thus, the main issue of the present work is to analyze the heating and mixing performances
in a realistic mixer of simple geometry and, in particular, to study the effect of wall rotation
on the enhancement of heat transport in the whole fluid domain. This crucial effect of wall
on the mixing efficiency has been recently highlighted by Gouillart et al. [25, 26] for the
homogenization of concentration in a 2D closed flow environment.

This article is organized as follows: in section 2, we present the problem, the geometrical
description of the mixer, the fluid properties and the flow parameters. We also describe
the different types of stirring protocols used to study the performance of the mixer for heat
transport. The section ends with a presentation of the governing equations. In section 3, the
numerical methods used to perform the simulations are described; in section 4, the mixing
and energy indicators defined to quantify the efficiency of heat transport and homogenization
are presented. All the results are detailed and discussed in section 5. At first, different flow
topologies resulting from the choice of the stirring protocol imposed on the walls are shown,
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and their incidences on mixing and heat transport are given. The results are also analyzed
with the help of temperature probability distribution functions (PDFs), which are very useful
in globally characterizing the homogenization of temperature in time. We show the existence
of recurrent patterns of the temperature fields and explain them in terms of thermal strange
eigenmodes. We also analyze the temporal evolution of the temperature gradients in the fluid
domain. We conclude the section with a study of the effect of rod eccentricity. Finally, in
section 6, concluding remarks are drawn and some perspectives for future work are given.

2. Problem statement

2.1. Geometrical description: the two-rod rotating mixer

A sketch of the studied mixer is presented in Figure 1. It is composed of two circular rods
of equal radii, which are maintained vertically inside a cylindrical tank (a bounded domain).
The tank and the rods are heated and can rotate around their respective revolution axis. This
geometry is similar to the two-roll-mills studied in the literature by Price et al. [27] ; however,
in our case, the outer cylinder has the ability to rotate. The rotation of the outer cylinder
induces important consequences for the flow and mixing properties that will be explained
later.

The geometry of the flow domain is characterized by two dimensionless parameters: the
ratio of the radii of the rod and the cylindrical tank (R1 or R2)/R3, and the dimensionless
eccentricity e = ε/R3. The geometrical parameters are set to (R1 or R2)/R3 = 1/5 and a
range between 0.35 and 0.60 for e (R1 = R2 = 10 mm , R3 = 50 mm and an eccentricity of
ε = 25 mm for the standard case study). In section 5.4, we will investigate the influence of
variable eccentricity on thermal mixing.

The rods and the tank rotate alternately or with a continuous modulation of velocities.
They can also have different directions of rotation.
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Figure 1: Sketch of the two-rod mixer.
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The classical eccentric cylinder geometry studied in the past [5, 6, 7, 8] produced a large
recirculation bubble, which could not be avoided even with a careful choice of stirring proto-
cols. In contrast, the two-rod mixer [28] studied here is suitable to obtain full chaotic flow
without KAM regions.

2.2. Fluid properties and flow parameters

The fluid considered in this study has the thermophysical properties listed in Table 1.

Dynamic viscosity (µ) 1.5 Pa.s
Density (ρ) 990 kg.m−3

Thermal conductivity (k) 0.15 W.m−1K−1

Specific heat (cp) 1000 W.kg−1K−1

Prandtl number (Pr) 104

Table 1: Fluid properties.

This fluid is Newtonian and has a high Prandtl number of Pr = 104. Considering these
properties, the thermal diffusivity a is equal to 1.515 × 10−7 m2.s−1. The maximum angular
wall velocities are fixed to: Ω1 = Ω2 = 30 rpm for the rods and Ω3 = 6 rpm for the outer
tank. The tangential wall velocity is then the same, and equal to U = 31.41 mm.s−1. A
characteristic Reynolds number for this flow can be evaluated as:

Re =
ρ U · 2 · (R3 − R1)

µ
= 1.66 (1)

The walls of the rods and tank are kept at a constant hot temperature of Thot. The initial
uniform temperature of the fluid (before heating) is set to a cold temperature Tcold. We define
the dimensionless fluid temperature as:

T ∗ =
T − Tcold

Thot − Tcold
(2)

Therefore, T ∗

cold = 0 and T ∗

hot = 1 and the maximum temperature difference between the
walls and the fluid is always 1. The heated walls play the role of a variable heat source that is
continuously dissipated in the 2D modulated flow field. This is a specific situation, not usually
encountered when dealing with the scalar dissipation of concentration in a 2D velocity field.
The Dirichlet boundary condition imposed to the walls implies that during the mixing of the
fluid in the tank, the parietal fluxes will change along the walls as well as with time depending
on the local flow conditions.

The other important dimensionless parameter for this non-isothermal mixing problem is
the Péclet number, Pe = Re Pr. The Péclet number can be seen as the ratio of thermal
diffusion time τtd over advection time τad for the scalar temperature. The limit Pe = 0
corresponds to the pure diffusion case. In our case, Pe is large (1.66 104 and then τtd is
16, 600 times greater τad); hence, the need to speed-up the mixing of temperature scalars is
clearly demonstrated.
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2.3. Stirring protocols

Chaotic mixing is produced here by varying in time the angular speed of the circular rods
and the tank using a sine-squared waveform. The stirring protocols studied can be defined
by two parameters: the respective direction of rotation between the rods and cylindrical
tank, and the duration of the time periodic modulation. Other parameters, such as the ratio
between the maximum velocities of the rod and cylindrical tank, and the amplitude of the
angular velocity modulation, are not considered in this work. The three possible stirring
configurations corresponding to the different flow topologies are specified in Table 2. The
symbol (+) indicates a counter-clockwise direction and (−), a clockwise direction.

Stirring configuration Rod 1 Rod 2 Tank

1 (+) (−) (+)
2 (+) (+) (+)
3 (−) (−) (+)

Table 2: The three possible stirring configurations related to the sign of angular velocity.

For chaotic flows, two types of temporal modulation are considered for the stirring pro-
tocols: a continuous one (a sine-squared modulation of wall velocities) and a non-continuous
one (the rods are stopped together for half a period, during which time the outer cylinder
is rotating; for the next half-period the contrary is considered). These stirring protocols are
illustrated in Figure 2. The maximum angular velocity is the same for the two types of
modulation. The rods and the cylinder tank follow sine-squared modulations as defined by
equations 3 (here for a modulation period τ = 30 s):
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Figure 2: Temporal modulation of the angular velocities of the rods and tank for continuous and non-continuous
stirring cases. Here the modulation period, τ , is 30 s.
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Non-continuous case:
Ω1,2 = 30 − 60 sin2(πt

T
) if Ω1,2 < 0 ⇒ Ω1,2 = 0

Ω3 = 6 − 12 sin2(πt
T

+ π
2
) if Ω3 < 0 ⇒ Ω3 = 0

Continuous case:
Ω1,2 = 30 − 15 sin2(πt

T
)

Ω3 = 6 − 3 sin2(πt
T

+ π
2
)

(3)

It was common practice in the chaotic mixing process design to introduce a temporal
modulation to the velocity of movement of mixer walls, which generally enhanced the efficiency
of mixing. But often, the alternate rotation was not investigated.

In this work, the modulation period was varied from 15 to 100 s. For a modulation period
of 15 s, the Strouhal number is typically on the order of St = 0.34. The Strouhal number is
defined as:

St =
2 · (R3 − R1)

Umoy · τ
(4)

with Umoy ≈ 0.5 U . Considering this value, we can notice that this flow does not satisfy the
quasi-steady hypothesis. As a consequence, in our modeling of the flow we need to account
for inertial effects.

2.4. Governing Equations

The evolution of the scalar temperature transported in an incompressible laminar flow of
a Newtonian fluid is described by the advection-diffusion equation written in its integral form:

∂

∂t

∫

V
ρcpT dV +

∫

S
ρcpT ~U · ~n dS =

∫

S
k~∇T · ~n dS (5)

where k is the thermal conductivity. The integration is over a volume V surrounded by a
surface S, which is oriented by the outward unit normal vector ~n. As indicated before, the
fluid is initially at a uniform cold temperature Tcold, and during the process the walls are
maintained at a uniform hot temperature Thot (Dirichlet condition). The velocity field of the
flow ~U is obtained by resolution of the unsteady Navier-Stokes equations:

∫

S

~U · ~n dS = 0 (6)

∂

∂t

∫

V
ρ ~U dV +

∫

S
ρ ~U ~U · ~n dS =

∫

V
−~∇p dV +

∫

S

=
τ · ~n dS (7)

where
=
τ is the viscous stress tensor. Here, the full Navier-Stokes equations are solved in order

to take into account the inertial effects that are induced by the accelerated or decelerated
movement imposed on the walls. The evolution of the fluid velocity and temperature fields
are obtained by a CFD method, described in the next section.

3. Numerical methods

Two-dimensional continuity and Navier-Stokes equations, as well as the energy conser-
vation equation, are solved by means of a inhouse code called Tamaris. This code has an
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unstructured finite volume framework that is applied to hybrid meshes. Variable values (~U ,
p and T) are stored at cell centers in a collocated arrangement. Cell shapes can be triangular
or quadrilateral.

Nb

C

d
n

f

Figure 3: A computational cell and its neighbours.

To describe the discretization practice used in the code, we can write the above equations
(5 and 7) in a unique generic form:

∂

∂t

∫

V
ρφ dV +

∫

S
ρφ~U · ~n dS =

∫

S
Γ~∇φ · ~n dS +

∫

V
Sφ dV (8)

where Sφ is a source term. Spatial schemes approximating diffusive and convective fluxes
are both second-order accurate. The discretization of the diffusion term is performed by
approximating the surface integrals by a sum over all the cell faces f (see Figure 3):

∫

S
Γ~∇φ · ~n dS =

∑

f

ΓfAf (
−→
∇φ)f · ~nf (9)

In unstructured meshes, the normal gradient (
−→
∇φ)f ·~nf is decomposed into an implicit contri-

bution that uses the values of f at the centers of the two cells sharing the face f (first term in
the RHS of Eq. 10 ) and a non-orthogonality correction term treated explicitly by a deferred
approach in order to preserve second order accuracy:

(
−→
∇φ)f · ~nf =

φnb − φc

||~d||
+

−→
∇φ ·

(

~n −
~d

||~d||

)

(10)

~d is the vector joining the centers of the two cells (see Figure 3). The average gradient
−→
∇φ is

interpolated from the gradients of these neighboring cells. The gradients of variables at the
cell centers are computed by a second order least-square method that uses weighted values of
φ at all the neighboring cells. Convection terms are also transformed in a sum over the faces
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f composing the surface S:

∫

S
ρφ~U · ~n dS =

∑

f

(ρφA)f ~Uf · ~nf (11)

where face values φf require an appropriate interpolation. In the momentum equations,
the blending difference scheme is used [29]. This scheme combines a second order accurate
centered scheme with a low amount of upwind differencing to enforce the stability of the global
scheme:

φf = φupwind
f + β(φcentered

f − φupwind
f )m−1 (12)

where m − 1 stands for the previous iteration. Here the weighting factor β is fixed at 0.95.
In the energy equation, special care was given to the face value interpolation in order

to limit the numerical diffusion introduced, while preserving a strict boundedness. For this
purpose the Normalized Variable Diagram (NVD) Gamma high resolution scheme of Jasak et
al. [30] is used. This scheme introduces a smooth transition between centered and upwind dif-
ferencing, depending on the local variation of the variable. This property is important for our
study since we need to evaluate the efficiency of the heat advection mechanism in the absence
of the numerical diffusion effect that may overshoot the thermal conduction role. Pressure-
velocity coupling is ensured by the SIMPLE algorithm [31], while the mass fluxes at the cell
faces are evaluated using the Rhie-Chow interpolation [32] to avoid pressure checkerboarding.
Unsteady computations are advanced in time by the implicit three time step Gear’s scheme
that ensures second-order accuracy. At each iteration, the discretization technique presented
above leads to the creation of a linear system with a non-symmetric sparse matrix for each
variable. These linear systems are solved by means of an ILU preconditioned GMRES solver
using the implementation of the IML++ library [33]. After a grid size-dependence study, a
mesh of 9944 computational cells is adopted. This mesh was generated by the open-source
software Gmsh [34] and is shown in Figure 4, where the use of regular quadrilateral cells near
the walls to enhance the resolution of the boundary layers is noticeable. More details about
the sensitivity of the results to the grid size as well as code validation are given in our recent
paper [28].

4. Mixing and energy indicators

As mentioned by Finn et al. [35], a large variety of computational mixing measures
exist. Many different criteria by which the quality of the mixing (with heat transfer or
chemical reaction) may be evaluated will depend upon the application of interest. In order to
characterize the efficiency of heat transfer by chaotic mixing, we introduce different mixing
indicators, which are monitored throughout the evolution of the process. The first one is the
mean temperature T ∗

m of the fluid, which represents the energy extracted from the walls:

T ∗

m =
1

∑

c Ac

(

∑

c

AcT
∗

c

)

(13)

where the summation is made over all 2D computational cells c of area Ac. Indeed, this mean
temperature evolution can be seen as an indicator of the ratio of the total energy supplied to
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Figure 4: Computational mesh of the mixer.

the fluid from time 0 to t :

E(t) =

∫

Vtank

ρcp(T (t) − Tcold)dV = ρcp

(
∫

Vtank

T (t)dV − TcoldVtank

)

= ρcpVtank(Tm(t) − Tcold)

(14)

As a consequence, the mean temperature is asymptotically bounded by the fixed tempera-
ture imposed on the walls (i.e., Thot or 1 for non-dimensional temperature). The second mixing
efficiency indicator is the standard deviation σ of the fluid temperature, which accounts for
the level of homogenization of the scalar temperature inside the 2D tank:

σ =

[

1
∑

c Ac

∑

c

(

Ac(T
∗

c − T ∗

m)2
)

]
1

2

(15)

Efficient thermal mixing requires good values for both of the aforementioned indicators
(i.e., T ∗ near 1 and σ near 0). In order to compare several stirring protocols on the basis of
these two indicators, it is useful to introduce a new indicator that combines the two effects:

ATσ =
1

tfinal

∫ tfinal

0

T ∗
m

σ
dt (16)

Then, for an efficient stirring protocol, ATσ must tend toward a high value. While the T ∗
m and

σ are unsteady indicators that evolve during the mixing process, ATσ is a single value that
characterizes the whole process or at least during a period of tfinal. This duration is chosen
in such a way that, for all the studied stirring processes, T ∗

m exceeds 0.95.
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5. Results and discussion

5.1. Flow topologies and the effect of stirring protocols

In order to analyze the flow topologies involved in this mixer, we first present the flows
obtained without modulation of the magnitude of the angular velocity. For the three stirring
configurations discussed (cf. Table 2), we plotted the steady-state streamline topologies with
and without the rotation of the outer cylinder.

From the plots of Figure 5 (a), (b) and (c) showing the steady streamline flow topologies,
we can observe respectively:

• (a) Two stagnation points inside the fluid located towards the outer cylindrical wall
on the vertical axis, seven separatrices, four parabolic points on the wall of the outer
cylinder, counter-rotating closed streamlines around the rods, and four small vortices.

• (b) One stagnation hyperbolic point located at the centre of the tank, four separatrices,
four parabolic points on the wall of the outer cylinder, co-rotating closed streamlines
around the rods, and two large vortices. This configuration corresponds to the one
shown in the paper of Price et al. [27] concerning a study of a family of two-roll-mill
flows.

• (c) Closed streamlines along the wall of the cylindrical tank as in case (b), a hyperbolic
stagnation point at the center of the tank, two large vortices, two separatrices around
the vortices, two parabolic points on the wall of each rod and located on the vertical
axis of symmetry of the rod, and two separatrices that join the wall rods.

In the lower half of Figure 5, the outer cylinder rotates and closed streamlines are always
present in a layer near the wall regardless of the stirring configuration. This layer is thicker
for stirring configuration 2 (Fig. 5 (e)), corresponding to co-rotation of the rods and cylinder.

When the rods and outer cylinder rotate steadily at the same time (Fig. 5 (d), (e) and
(f)), the stagnation points observed on the walls in cases (a), (b) and (c) of the same figure
disappear. We know from dynamical system theory that chaotic mixing will appear from the
break-up of the separatrix, which dynamically separates regions of confined closed streamlines.
A separatrix defines a heteroclinic trajectory that relies on two fixed (stagnation) points in
the dynamical system terminology. Through the introduction of time-periodic perturbations,
this heteroclinic connection is broken into two manifolds (one stable and the other unstable)
that intersect transversely and give rise to what is called a heteroclinic tangle. The break-
up of the separatrix occurs in our case when the rods and tank alternate their rotation.
As a consequence, each stagnation point located on a wall is interesting because it defines
the starting point for separatrix emanation. We will see later that the presence of these
parietal fixed points play a key role in the extraction of heat from the walls. The fixed wall
temperature imposed on all of the solid boundaries acts as a source for the evolution of the
scalar; thus, the mean temperature will not be constant in time but will evolve asymptotically
from T ∗

m = 0 to T ∗
m = 1 (the whole fluid is at the wall temperature). This behavior is shown

in Figure 6 for stirring configuration 3 and three wall velocity modulation conditions: non-
modulated, continuous and non-continuous (see Figure 2). In comparison, if we had considered
the evolution of a material of dye for the same mixing process, the mean value of the dye
concentration field would have been constant.
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Figure 5: Generic steady-state streamline flow topologies. Upper half: without rotation of the outer cylinder:
(a) counter-rotation and (b) co-rotation of the rods and (c) rotation of the outer cylinder tank without rod
rotation. Lower half: with rotation of the outer cylinder for the stirring configurations 1 (d), 2 (e) and 3 (f)
given in Table 2 (from left to right).
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Figure 6: Temporal evolution of the standard deviation and mean value of the temperature for stirring config-
uration 3 and three wall velocity modulation conditions: non-modulated, continuous and non-continuous (see
Figure 2).

From the temporal evolution of the standard deviation and mean temperature shown in
Figure 6, it is evident that a non-continuous modulation of the velocity field enhances the
mixing efficiency. After a transition time, the standard deviation of the temperature field
decays exponentially for each modulation case; however, the decay rate is much higher for the
non-continuous modulation condition (about a decade of difference on σ at 1500 s). While the
temperature contrast decays exponentially, the mean temperature increases asymptotically
towards the wall temperature T ∗ = 1. This behavior is easily understandable when we
observe the temperature fields shown in Figure 7 for the three cases of angular velocity
wall modulation. After several periods (t = 120 s), we find that only the non-continuous
modulation condition avoids the persistence of large, non-heated zones. The temperature
fields of non-modulated and continuously modulated cases are quite similar and follow very
well the closed streamlines observed in Figure 5 (f). Moreover, these closed streamlines define
a barrier for the evolution of the scalar towards the interior of the cylinder tank. Indeed, if
the temperature difference is confined in a relatively large boundary along each wall, both the
temperature gradient normal to the wall and the heat flux will decrease. Thus, the efficiency
of the whole heat exchange will be reduced. In the case of non-continuous modulation, four
parabolic points appear along the wall when the tank is stopped (see Figure 5(b)). It is from
these parabolic points that strips of hot fluid will be pulled out from the wall. In Figure 7(c),
it is evident that two of these points are diametrically opposed on the wall of the tank. At
this time (t = 120 s), the tank has been at rest since 15 s.

This phenomenon of heat extraction from the walls for non-continuous stirring protocols
is also clearly evident from Figure 8, which present simultaneous portraits of streamlines asso-
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Figure 7: Dimensionless temperature field at t = 120 s for stirring configuration 3 and different flow modula-
tions: (a) non-modulated, (b) continuous modulation and (c) non-continuous modulation (period of modulation
τ = 30 s).

ciated with the corresponding temperature field. The hot heat fluid strips extracted from the
tank (at 120 and 132 s) and rod walls (at 140 s) towards the interior of the mixer are clearly
identifiable. Streamline portraits taken at different instants of the same period of modulation
show crossings when superimposed. These conditions are generic for chaotic flow. As a conse-
quence, the temperature field exhibits varied complex patterns. Recently Hertzsch et al. [36]
have shown for a pulse source-sink chaotic system that the need to have a great transversality
in streamline crossing is not always an optimal condition to improve global mixing. Hence,
more theoretical studies are required to clearly understand the complex mechanism of the
scalar gradient orientation with the strain axes in response to a disturbance of the velocity
field imposed by the walls. This hovewer, is beyond the scope of the present work. In the
following sections, only the condition of non-continuous modulation is investigated.

5.1.1. Effect of wall rotation direction and period length

In Figure 9, the three stirring configurations are compared over time for a modulation
period of 15 s. We observe that the standard deviation of temperature decreases exponentially
in each case. The relatively high standard deviation for stirring configuration 3 indicates the
formation of large KAM islands in the mixer; the mixing is nevertheless good outside of these
KAM regions.

In order to quantify the role of the modulation period length on mixing for the three
stirring configurations, we plotted the composite indicator ATσ defined in section 4 for four
modulation periods 15, 30, 60 and 100 s. We can observe in Figure 10 that this indicator
reveals differences between stirring configurations mainly for low periods of modulation. An
optimum seems to be a modulation period of 30 s for stirring configurations 1 and 2 and 60 s
for stirring configuration 3. The latter combination is best even though configuration 3 gives,
by far, the worst result at τ = 15 s. Thus, no clear preferential configuration can be deduced,
but we can conclude that:

• short periods of modulation (about 15 s) should be avoided to achieve thermal mixing;
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Figure 8: Evolution of flow patterns for stirring configuration 1 and non-continuous modulation of the wall
velocities at different times during one period of the mixing process. Upper half streamlines. Lower half:
dimensionless temperature fields. (Period of modulation τ = 30 s).
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Figure 9: Standard deviation of temperature for the three stirring configurations of Table 2. The modulation
period is τ = 15 s.

• configuration 1 does not give the best performance regardless of the period length;

• for a period length τ = 100 s, none of the configurations give optimum results.

Some explanations of these observations can be proposed by the examination of the evo-
lution of the temperature field as the onepresented in Figure 8. For configuration 3 with a
low period, the extracted hot fluid strips from the tank boundary during the rotation of the
rods are not sufficiently long; therefore, these strips are brought back to the tank when the
tank begins to rotate in the opposite direction. On the other hand, a period that is generally
too long reduces the frequency of flow pattern alternation as well as that of stretching and
folding operations.

5.2. Temperature Probability Distribution Functions (PDFs)

We focus here on the probability distribution functions of the dimensionless temperature
T ∗ for the whole section filled by the fluid. Examples of such T ∗ fields are shown in Figures
7 and 8.

Figure 11 displays the PDFs at two different times for the three stirring configurations
given in Table 2. For stirring configurations 1 and 2, which exhibit good mixing performances,
a peak located is observed near the lowest temperatures. This peak moves in time to the
right while its height increases. The shift of the PDF towards the right illustrates that the
cold temperature disappears during the mixing process (and does so completely for good
stirring configurations (configurations 1 and 2)). For stirring configuration 3, the PDF of the
dimensionless temperature field remains quite flat even if the range of temperature is reduced.
This result confirms the one observe in Figure 7 for the same stirring configuration.
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Figure 10: Composite mixing indicator ATσ as a function of the modulation period for a total mixing time of
1600 s.

An important feature of this thermal chaotic flow can be shown in Figure 12 by the PDFs
of the rescaled dimensionless temperature:

X =
T ∗ − T ∗

m

σ
(17)

The PDFs, which are plotted for different times during the mixing process but at the same
phase of the period, are superimposed; this is the signature of a strange eigenmode, which is
characterized by the production of persistent patterns in the flow. These patterns arise from
a combination of stretching, folding and thermal diffusion. The mechanism of their apparition
and persistence will be detailed in the next section.

5.3. Thermal strange eigenmodes

The mechanism we investigate here is the spreading of temperature strips emerging from
the walls in the bulk fluid. The flow has been chosen to produce chaotic mixing without
the appearance of unmixed island (stirring protocol 2 and non-continuous modulation). The
width s of a hot strip is imposed by an equilibrium between the stretching and folding and
thermal diffusion. This width defines a length scale which is given by [26]:

s =
(α

λ

)1/2

(18)

where λ is a typical rate at which the equilibrium operates and represents a stretching
rate. In our flow the stretching is not constant over the whole fluid domain, thus the widths
of the hot strips evolve following local stretching rates. The effect of thermal diffusion can
be understood by taking into account the average characteristic size s of a computational cell
(near 0.7 mm) and the thermal diffusivity coefficient (see section 2.2). The thickness of a

17



 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

PD
F(

T
* )

T*

t/τ=40

Stirring configuration 1
Stirring configuration 2
Stirring configuration 3

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

PD
F(

T
* )

t/τ=10

Figure 11: Probability distribution functions (PDFs) of T
∗ at two different times for τ = 15 s.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

-1 -0.5  0  0.5  1  1.5  2  2.5  3

PD
F(

X
)

X

t/τ = 20
t/τ = 40
t/τ = 60
t/τ = 80

Figure 12: PDFs of the rescaled dimensionless temperature X for stirring configuration 2 at different times for
τ = 15 s.

18



scalar strip that falls below this size will cease to be visible after a time
1

λ
=

s2

α
≈ 3 s that

corresponds, for example, to a tenth of a period if τ = 30 s. Thus, the diffusive boundaries
of the tracer strip interpenetrate rapidly to avoid the creation of very thin striations. The
spatial structure of the temperature field is then smooth, which is due to the relatively high
value of the thermal diffusivity and is also the reason why only relatively large temperature
striations are observed. By comparison, the spatial structures of the concentration patterns
generally present more lamellar structures due to a lowest value of mass diffusivity. This also
is responsible for the nature of the pattern of the thermal strange eigenmode shown in the
snapshots of Figure 13. The pattern is the same at each periodic time but the amplitude of
the dimensionless temperature tends towards 1; this is also confirmed on the vertical cut-lines
shown in Figure 14, where the temperature gradients correspondingly decrease. These curves
were obtained by plotting the values of T ∗ along the vertical symmetry axis of the mixer.

Figure 13: Snapshots showing the evolution of the temperature field towards a strange eigenmode for stirring
configuration 2 and modulation period τ = 30 s.

In Figure 15, the temperature values for three of the snapshots of Figure 13 are rescaled
between the T ∗

min and T ∗
max of each snapshot. With this scaling we observe that the patterns

of the thermal eigenmode are exactly the same, which was not clearly obvious in Figure 13.
Normalized vertical cut-lines of dimensionless temperature X (Eq. 17) are shown in Figure
16 for the same cases as those of Figure 14. The convergence to a thermal strange eigenmode
is confirmed. The asymptotic transport properties of the time periodic flow are governed by
this eigenmode.
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Figure 15: Snapshots showing the pattern of the strange thermal eigenmode for stirring configuration 2 and a
modulation period τ = 30 s. In these plots, the temperature scalars are rescaled between T
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5.4. Effect of eccentricity

Figure 17 shows the difference of efficiency when changing the eccentricity. The largest
eccentricity configuration (ε = 30 mm) gives the highest most probable value for the mean
temperature but at the same time presents a broad tail at the left of the peak that extends
towards the lower temperatures. This left tail is due to the persistence of non-heated zones,
as clearly seen in Figure 18 (c).

The smallest eccentricity (ε = 17.5 mm) condition does not show a left tail (see Figure
17) but presents the lowest most probable value for the mean temperature. The interme-
diate rod eccentricity condition (ε = 25 mm) provides the best heating and temperature
homogenization. This choice is a good compromise amongst the three cases.

5.5. Temperature gradient evolutions

In order to study and compare the evolution of the temperature gradients for different
stirring protocols, we followed the temperature scalar dissipation indicator, which was defined
as:

χg =
1

Stot

∫

Stot

‖~∇T ∗‖2 dS =
1

∑

c Ac

(

∑

c

Ac‖~∇T ∗‖2
c

)

(19)

where Stot is the total surface of the fluid in the mixer and Ac is the surface of a mesh
element.

In Figure 19, we present the time evolution of this indicator for different stirring config-
urations. For two stirring protocols (stirring configuration 2 and stirring configuration 3 for
τ = 60 s) we observe perfectly exponential decreases. These cases correspond to the rapid
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Figure 18: Dimensionless temperature fields for increasing mixer eccentricity at t = 220 s for stirring configu-
ration 1. (a) ε = 17.5 mm (b) ε = 25 mm and (c) ε = 30 mm (τ = 30 s).
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convergence of the temperature field to a recurrent spatial pattern characterized by a strange
eigenmode (the patterns described in section 5.3 above). For the two other stirring protocols
(continuous and the low modulation period of stirring configuration 3), the decay rates of the
temperature gradients are slower than exponential. In the case of continuous rotation of the
walls, the temperature gradients near the walls are imposed by the existence of the closed
streamlines parallel to these boundaries. The temperature scalar transport evolves in these
wall regions only by diffusion across streamlines, and the temperature gradient runs perpen-
dicular to the streamlines. This mechanism has as a consequence the inhibition of thermal
chaotic mixing; it is similar, in a certain way, to that observed by Gouillart et al. [25, 26] for
the decay of the concentration of a scalar blob submitted to chaotic flow in a closed vessel
with a no-slip boundary condition at the outer wall. However, in our case, continuous rotation
of the wall is responsible for the non-asymptotic regime of thermal scalar gradient decay.

Contrary to the case of the dissipation of a concentration scalar (a blob of dye for ex-
ample), which shows two consecutive phases, a phase of a creation of the gradients and a
phase of their dissipation [37], only a phase for scalar dissipation exists for temperature scalar
gradients. The main factor responsible for this difference is that thermal diffusion is much
higher by comparison to molecular diffusion. Thus, thermal equilibrium is rapidly reached
and temperature scalar striations are not conserved, contrary to concentration striations that
remains in fluid and are thinner and numerous as well as stretching and folding operates.
Nevertheless, the global structure of this field has a self-similar pattern. While the temper-
ature field presents striations with the same spatial scale, even if their scalar magnitude is
decreasing, the concentration field exhibits striations of decreasing spatial scale before the
diffusion makes them disappear. Thus, there is a first phase of scalar gradient creation in the
case of concentration mixing that is not present in the case of thermal mixing.
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Figure 19: Evolution of the scalar temperature dissipation indicator for different stirring configurations.
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6. Conclusion

We have numerically investigated the coupled mixing and heating performances induced
by chaotic advection in a 2D two-rod mixer. Specific geometrical (eccentricity) and dynam-
ical (stirring protocols, period length) parameters have been identified that promote a high
degree of thermal mixing. We have shown the importance of the near wall flow topology for
the development of efficient scalar temperature transport inside the mixer. For better un-
derstanding of the enhancement mechanism, different statistical tools and mixing and energy
indicators have been used. A new composite indicator has been defined as the ratio of the
mean temperature of the fluid (which represents the energy extracted from the walls) to the
standard deviation of the fluid temperature (which corresponds to the level of homogenization
of the scalar). We have also found that chaotic thermal mixing gives rise to singular recurrent
spatial structures of the normalized non-dimensional temperature, while the mixing contrast
tends to decay slowly with time. The main conclusion of our work is that maximizing heat
transfer from the wall boundaries requires that the walls (i.e., tank or rods here) move alter-
nately. In this way, one avoids the development of closed streamlines near the wall, which
reduce the temperature gradients at the wall-fluid interfaces, and prevents the build-up of a
wall-confined hot fluid zone. Continuous modulation of the wall is not sufficient; to produce
effective chaotic mixing, the existence of stagnation points on the walls is necessary to create
separatrices from which heteroclinic tangling can develop. Thus, the main advice to retain for
industrial applications is the imperative to alternate the rotation of the stirring rods and the
cylinder tank with non-continuous modulation (the rods are stopped when the cylinder tank
rotates and vice-versa). Further studies will explore the constant wall heat flux boundary
condition to study the influence of the thermodependence of the fluid physical properties on
the thermal chaotic mixing. We will also address the problem of scalar temperature transport
for rheologically complex fluids inside this thermal chaotic mixer.
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