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Abstract. In this paper, the study of the global orbit pattern (gopifed by all the periodic orbits
of discrete dynamical systems on a finite Xetllows us to describe precisely the behaviour of such
systems. We can predict by means of closed formulas, the eumflgop of the set of all the function
from X to itself. We also explore, using the brute force of commytsome subsets of locally rigid
functions onX, for which interesting patterns of periodic orbits are fdun
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INTRODUCTION

In some engineering applications such as chaotic encryptbaotic maps have to
exhibit required statistical and spectral propertiesetoghose of random signals. There
is a growing industrial interest to consider and study thgidy the property of such map
[10, 11, 12].

Very often, dynamical systems in several dimensions araidd coupling 1-
dimension ones and their properties are strongly linked [5]

Quasi-periodic or chaotic motion is frequently present amplicated dynamical
systems whereas simple dynamical systems often involwe meriodic motion. The
most famous theorem in this field of research is the Sharkisygkeorem, which
addresses the existence of periodic orbits of continuoyssrofthe real line into itself.
This theorem was once proved toward the year 1962 and peblishly two years after
[4].

Mathematical results concerning periodic orbits are ofibtained for functions on
real intervals. However, most of the time, as the complexabielur of chaotic dynami-
cal systems is not explicitly tractable, mathematiciansghacourse to computer simu-
lations. The main question which arises then is: does thes®rncal computations are
reliable ?

As an example we report the results of some computer expetinan the orbit
structure of the discrete maps on a finite set which arise wheelogistic map is iterated
"naively” on the computer.



Due to the discrete nature of floating points used by computbere is a huge gap
between these results and the theoretical results obtathed this map is considered
on a real interval. This gap can be narrowed in some sensayo&ling the collapse of
periodic orbits) in higher dimensions when ultra weak coupis used [6, 7].

Nowadays the claim is to understand precisely which petiodbit can be observed
numerically in such systems. In a first attempt we study implaiper the orbits generated
by the iterations of a one-dimensional system on a finiteXgewith a cardinalN. The
final goal of a good understanding of the actual behaviouyohdical systems acting
on floating numbers (i.e. the numbers used by computerspwitinly reached after this
first step will be achieved.

On finite set, only periodic orbits can exist. For a given timtwe can compute all
the orbits, all together they form a global orbit pattern. fenalise such a gop as the
ordered set of periods when the initial value thumbs thesfigdt in the increasing order.
We are able to predict, using closed formulas, the numbeppffgr the set#y of all
the functions onX. We also explore by computer experiments special subse#&of
such as sets of locally "rigid" functions which presentgiasting patterns of gop.

This article is organized as follows : in the section "Conapioinal divergences" we
display some examples of such computational divergencéisddogistic map in various
ways of discretization. In the section "Pattern defined Ibyha orbits of a dynamical
system" we introduce a new mathematical tool: the globait grattern, in order to
describe more precisely the behaviour of dynamical systenimite sets. In the section
"Cardinal of classes" we give some closed formulas relaiede cardinal of classes of
gop of #y. In the section "Functions with local properties” we stuigly tase of sets of
functions with a kind of local "rigidity" versus their gom order to show the usefulness
of these new tools.

COMPUTATIONAL DIVERGENCES

Discretized logistic map

As an example of collapsing effects which happen when usingpeiters in numerical
experiments, we presents the results of a sampling studyoirbld precision of a
discretization of the logistic mafy : [0,1] — [0, 1] (see Fig. 1)

f4(X) = 4x(1—x) (1)
and its associated dynamical system

Xn+1 = Xn(1—Xn) (2)
which has excellent ergodic properties on the real interval
There exists an unstable fixed point O.

The set{ 5/, 545/ 1 — {0.34549150.9045084 is the period-2 orbit.

In fact there exist an infinity of periodic orbits and an infynof periods. This dynamical
system possesses an invariant measure (see Fig. 2):
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Graph of the mag (x) = 4x(1—x) on [0, 1]
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However, in numerical computations using ordinary (IEEE7double precision
numbers - so that the working interval contains of the ordéi0&° representable points
- out of 1,000 randomly chosen initial points (see Table 1),

+ 596, i.e., the majority, converged to the fixed point coroggpng to the unstable
fixed point{0} in equation 2,
+ 404 converged to a cycle of period 15,784,521.

Thus, in this case at least, the very long-term behaviouwuaiferical orbits is, for a
substantial fraction of initial points, in flagrant disagneent with the true behaviour of
typical orbits of the original smooth logistic map.

In others numerical experiments we have performed, the atenpvorking with fixed
finite precision is able to represent finitely many pointsha interval in question. It is



probably good, for purposes of orientation, to think of theewhere the representable
points are uniformly spaced in the interval. The true lagistap is therapproximated
by a discretized map, sending the finite set of represenpaliiés in the interval to itself.
Describing the discretized mapping exactly is usually clicaped, but it isroughly
the mapping obtained by applying the exact smooth mappirepth of the discrete
representable points and "rounding"” the result to the seaepresentable point. In our
experiments uniformly spaced points in the interval witkiesal order of discretiza-

tion (ranging from 9 to 2,001 points) are involved. In eaclpexkment the questions
addressed are:

« how many periodic cycles are there and what are their peflods

« how large are their respective basins of attraction, i@. eéch periodic cycle, how
many initial points give orbits with eventually land on thele in question ?

TABLE 1. Coexisting periodic orbits found using 1,000 random
initial points for double precision numbers

Period Orbit Relative Basin size
1 {0} (unstable fixed point) 596 over 1,000
15,784,521 Scattered over the interval 404 over 1,000

TABLE 2. Coexisting periodic orbits
for the discretization with regular meshes
of N=9, 10 and 11 points

N Period Orbit Basin size

9 1 {0} 3over9
9 1 {6} 2 over9
9 1 {3,7} 4 over9
10 1 {0} 2 over 10
10 2 {3,8} 8 over 10
11 1 {0} 3overll
11 4 {3,8,6,9} 8overil

TABLE 3. Coexisting periodic orbits for the discretization with
regular meshes df = 99, 100 and 101 points

N Period Orbit Basin size
99 1 {0} 3 over 99
99 10 {3,11,39,9318,58 94,1550,97} 96 over 99

100 1 {0} 2 over 100
100 1 {74} 2 over 100
100 6 {11,39,94,18,58,96} 72 over 100
100 7 {7,26,76,70,82,56,97} 24 over 100
101 1 {0} 3over101
101 1 {75} 2 over 101
101 1 {16,61,95} 96 over 101

On an another hand, for relatively coarse discretizatibesorbit structure is deter-
mined completely, i.e., all the periodic cycles and the eg&es of their basins of attrac-
tion are found. Some representative results are given ile$a&oto 4. In theses tablés,



TABLE 4. Coexisting periodic orbits for the discretization with uégr meshes
of N =1,999;2 000 and 2001 points

N Period Orbit Basin size
1,999 1 {0} 3 over 1,999
1,999 4 {554;1,601;1272;1848} 990 over 1,999
1,999 8 {3;11,;43;168;615;1702;1,008;1,997; 1,006 over 1,999
2,000 1 {0} 2 over 2,000
2,000 1 {1,499} 14 over 2,000
2,000 2 {691;1,808} 138 over 2,000
2,000 3 {276;1221;1,900} 6 over 2,000
2,000 8 {3;11,43;168;615;1703;1,008;1,998 1,840 over 2,000
2,001 1 {0} 5 over 2,001
2,001 1 {1,500} 34 over 2,001
2,001 2 {691;1 809} 92 over 2,001
2,001 8 {3;11,43;168;615;1703;1,011;1 999} 608 over 2,001
2,001 18 {35;137;510;1519;1461;1574;...} 263 over 2,001
2,001 25  {27;106;401;1282;1,840;588;..} 1,262 over 2,001

denotes the order of the discretization, i.e., the reptabémpoints are the numbeﬁ,
with 0 < j < N.

The Table 2 shows coexisting periodic orbits for the diszagion with regular meshes
of N =9, 10 and 11 points. There are exactly 3, 2 and 2 cycles.
The Table 3 shows coexisting periodic orbits for the diszagion with regular meshes
of N =99, 100 and 101 points. There are exactly 2, 4 and 3 cycles.
The Table 4 shows coexisting periodic orbits for the diszagion with regular meshes
of N =1,999,N = 2,000 andN = 2,001 points.

It seems that the computation of numerical approximatidtiseperiodic orbits leads
to unpredictable results.

Statistical properties

Many others examples could be given, but those given mayederdlustrate the
intriguing character of the results: the outcomes provdsetextremely sensitive to the
details of the experiment, but the results all have a sinfiiéaour : a relatively small
number of cycles attract near all orbits, and the lengthse$¢ significant cycles are
much larger than one but much smaller than the number ofseptable points.

In [1], P. Diamond and A. Pokrovskii, suggest that statadtjgroperties of the phe-
nomenon of computational collapse of discretized chaotippmg can be modelled by
random mappings with an absorbing centre. The model givadtsewhich are very
much in line with computational experiments and there apgptabe a type of univer-
sality summarised by an Arcsine law. The effects are diszlgsth special reference to
the family of mappings

X1 =1—[1-2%" 0<x<1 1</(<2 (4)

Computer experiments show close agreement with prediofitime model.



However these results are of statistical nature, they dgwetaccurate information
on the exact nature of the orbits (e.g. length of the shodest of the greater one,
size of their basin of attraction ...). It is why we consideg problem of computational
discrepancies in an original way in the next section.

PATTERN DEFINED BY ALL THE ORBITS OF A DYNAMICAL
SYSTEM

In this section in order to describe more precisely whichdkif behaviour occurs in
discretized dynamical systems on finite sets we conceivevanmethematical tool: the
global orbit pattern of a function that is the set of the pasiof every different orbits
of the dynamical system associated to the function whenrtitialipoints are took in
increasing order.

General definitions

For everyxp € X, let {x;} be the sequence of the orbit of the dynamical system
associated to the functiohwhich mapsx ontoX defined by

Xir1 = f(x) for i>0. (5)
For convenienc&xg € X we denote
t0(x0) = Xo (6)
and
Vp>1Wxoe X, fP(xg)="fofo...of(x). (7)
N———
p times
Hence .
% = f'(x0). (8)

The orbit ofxg underf is the set of pointg (xo, f) = { f'(Xo),i > 0} = {x;,i > 0}.
The starting poinkg for the orbit is called the initial value of the orbit.
A pointx is a fixed point of the map if f(x) = x.
A point x is a periodic point with periogh if fP(x) = x and f(x) = x for all k such that
0<k< p, pis called the order of.
If xis periodic of ordep, then the orbit ok underf is the finite set
{x, f(x), f2(x),..., fP~1(x)}. We will call this set the periodic orbit of ordgy or a
p-cycle.
A fixed point is then a 1-cycle.
The pointx is an eventually periodic point df with order p if there existK > 0 such
thatvk > K f*P(x) = fK(x).
Vx € X, we denotew(x, f) the order ofx under f or simply w(x) when the mapf
involved is obvious.



A subsefT of X is invariant underf if f~1(T) = T. That is equivalent to say thatis
invariant underf if and only if f(T) c T andf~1(T) C T.

Notation #X is the cardinal of the finite se.

Map on finite set

Along this paperN is a non-zero integer anfA stands for the cardinal of any
finite setA. In this article, we consideX as an ordered finite set witN elements.
We denote itXy, it is isomorphic to the interva|O,N — 1] C N. ThenfXy = N. Let
f be a map fromXy into Xy. We denote by%y the set of the maps frorXy into
Xn. Clearly, Zy is a finite set ang.%y = NN elements. For alk € Xy, 0(x, f) is
necessarily a finite set with at mostelements. Indeed, let us consider the sequence
{x, f(x), £2(x),..., fN=1(x), fN(x)} of the firstN + 1 iterated points. Thanks to the
Dirichlet’s box principle, two elements are equals becaxgdnas exactlyN different
values. Thus, every initial value ofy leads ultimately to a repeating cycle. More
precisely, ifx is a fixed point&'(x, f) is the unique element and if x is a periodic
point with orderp, &' (x, f) has exactlyp elements. In this case, the orbitofinderf is
the seto'(x, f) = {x, f(x), f?(x),..., fP=1(x)}. If xis an eventually periodic point with
orderp, there exist& > 0 such thatk > K fk+P(x) = fK(x). In this case, the orbit of
underf is the set'(x, f) = {x, f(x), f2(x),..., fK(x), f¥+L(x),..., fKFP=1(x)}.

Equivalence classes

Components

Let f € .ZN. We consider orXy the relation~ defined by vx, X' € XN, X~ X &
Jk € N such thatfX(x) € (X, ). The relation~ is an equivalence relation oXy.
N/ ~ is the collection of the equivalence classes that we will@ainponents oKXy
under f which constitute a partition oKy. The number of components are given in
[3]. Asymptotic properties of the number of cycles and congauds are studied in [8].
For each component, we take as class representative eltimeclgtast element of the
component. The components will be writt&(xo, f),..., Tn(Xp, 5, f) Wherex; is the
least element ofy(x;, f).

By analogy with real dynamical systems, we can define atba@nd repulsive
components in discretized dynamical systems as follows.

Definition 1 A component is repulsive when it is a cycle. Otherwise, thegonent
IS attractive.



Remark In other words, a component is attractive when the compocmamtiins at
least an eventually periodic element. The correspondingay strictly contained in an
attractive component.

Examples are given in Tables 5, 6 and 7.

For instance, in Table 6, the fonctidnhas{2, 7} as period-2 orbit an¢l1,2,7,9} as
component which is attractive because 1 and 2 are evenpeilydic elements.

TABLE 5. Orbits and components of a function belonging&g; with gop

(2,2,1,3]11.
Function orbit/component/nature
0O — 6
1 —- 3
2 - 2 period-2 orbit :{6,9} {0,6,9} attractive
3 —- 5
4 — 8 period-2 orbit :{5,10}  {1,3,5,10} attractive
5 — 10
6 — 9 fixed point : {2} {2} repulsive
7 — 4
8 — 7 period-3 orbit :{4,8,7} {4,8,7} repulsive
9 — 6
10 —- 5

TABLE 6. Orbits and components of a function belonging&e; with gop

[2,2,1,3]11.

Function orbit/component/nature
0O — 4
1 - 2
2 - 7 period-2 orbit :{4,8} {0,4,8}  attractive
3 —- 3
4 — 8 period-2 orbit :{2,7} {1,2,7,9} attractive
5 — 10
6 — 5 fixed point : {3} {3} repulsive
7 - 2
8 — 4 period-3 orbit :{5,10,6}  {5,10,6} repulsive
9 —» 1
10 — 6

Order of elements
Here are some remarks on the order of elements of components.

Remark The order of every element of a component is the length ohitsii cycle.



TABLE 7. Orbits and components of a function belonging&e; with gop

[27 27 17 3]11'
Function orbit/component/nature

0O — 9

1 —- 6

2 — 4 period-2 orbit :{0,9} {0,9} repulsive
3 - 7

4 — 10 period-2 orbit :{1,6} {1,6} repulsive
5 —- 3

6 — 1 fixed point :{10} {2,4,8,10} attractive
7 — 5

8 — 2 period-3 orbit :{3,7,5} {3,7,5} repulsive
9 —- O

10 — 10

Definition 2 For all x € Xy, there exists € [0, ps n]] such thatx belongs to the
componenily(x;, f). Thenw(x, f) is equal to the ordem(x;, f).

Remark For alli € [0, ps n], Tn(Xi, T) is an invariant subset ofy underf.

In the example given in Table 5, the order of the element 0 ih&,order of the
element 1is 2, the order of the element 4 is 3. The elementd B Aave the same order.

Definition of global orbit pattern

For eachf € .#y, we can determine the components@funderf. For each compo-
nent, we determine the order of any element. Thus, for dagh¥y, we have a set of
orders that we will denot@(f,N). Be givenf, there existps n components ang
representative elements such kgt x; <... < Xp -

For eachf € Zy, the sequencéw(xp), w(X1),...,w(Xpy); ]z, With Xo < X1 <
... < Xp;y Will design the global orbit pattern dfe .Zn.

We will write gop(f) = [w(X0), W(X1), - - -, W(Xpsp); Fl.7y-

When the reference tb € .%y is obvious, we will write shortly
gop(f) = [w(X0), W(X1), - .-, W(Xps ) In OF gOP(f) = [w(X0), W(X1), ..., W(Xp )] -

For example, the same gop associated to the functions giv&allles 5, 6 and 7 is
(2,2,1,3]11.

Another example is given in Table 8. In that example, we ha@) = 2, w(3) =1,
w(4) =4.



TABLE 8. Orbits and components of a function belonging%g with

gop(2,1,4ls.

Function orbit/component/nature
0O —- 1
1 —- 0 period-2 orbit :{0,1} {0,1,2} attractive
2 —- 0
3 - 3 fixed point : {3} {3} repulsive
4 — 5
5 —- 6 period-4 orbit :{4,5,6,7} {4,5,6,7} repulsive
6 — 7
7 — 4

Definition 3 The set of all the global orbit patterns &y is called¥ (7).
For example, foN = 5, the set/(.%s) is
{1]:[1,2];[1,1,1);[1,2];[1,1,1,1];(1,1,2];[1,3]; [1,1,1,1,1];[1,1,1,2];[1,1,2,1];
1[1,2,1,1]3(1,2,2];[1,3,1);[1,4];;(2,1];[2,1,1];(2,2];[2,1,1,1];[2,1,2]; |
(3] [3,1]:13,1,1];[3,2J; [4]; [4, 1]; [S]}-
Class of gop

We give the following definitions :

Definition 4 Let beA = [wy, ..., wp]n @ gop. Then the class @& written A, is the
set of all the functions € .%\ such that the global orbit pattern associated te A.

For example, foN = 11, the class of the ggg, 2,1, 3];; contains the following few
of many functions defined in Tables 5, 6 and 7. The periodit wiich are encountered
have the same length nevertheless there are different.

Definition 5 Let beA = [wx, ..., wp|N @ gop.
P
Then the modulus AAis |A|= Y .
k=1

Remark |[w, ..., wp]n| < N.

Notation [w]n meangw, ..., w|n and[ay, Vmln meangw, ..., w, Vv, ..., VIN.

k times ktimes mtimes



Threshold functions

Ordering the discrete maps
Theorem1 The setsZy and[[1,NN] are isomorphic.

Proof We define the functiokp from .y to [1,NN] by : for eachf € .Zy, @(f) is
N-1
the integen such than= 5 f(K)NN-17k4 1,
k=0

Theng is well defined becausec [[1,NN].
Let n be a given integer between 1 amdN. We convertn — 1 in baseN : there

exists a uniqueN-tuple (an_10;@8n-11;---;8-1N-1) € [O,N — 1N such that

o N-1 .

n—1 = Y a,-1n-1-iNN"71. We can thus define the mafy with : Vi € Xy,
i<0

fn(i) = an—1N—i—1. Thengis one to one.

Remark This implies.%y is totally ordered.

Definition 6 Let f € .%#N. Then

N—-1
=V f(kNN-1k 1 9
n k; (k) 9)

is called the rank of.

Threshold functions
Be given a global orbit patterh, we are exploring the clags

Theorem2 For everyA € 4(.%y), the classA has a unique function with minimal
rank.

Definition 7  For every classA € 4(%y), the function defined by the previous
theorem will be called the threshold function for the cldsand will be denoted by

Tr(A) orTr(A).
To prove the theorem, we need the following definition :

Definition 8 Let f € %\ be a function. Letp a non zero integer smaller thah
Let bexy, ..., Xp p consecutive elements &f. Thenxy, ..., Xp is a canonicap-cycle in
relation tof if Vj € [1,p—1], f(Xj) = Xj4+1 and f(xp) = x1.



Proof Let[wy,...,wp| be a global orbit pattern &% (.#n). We construct a specific

function f belonging to the clasgv, ..., wp] and we prove that the function so obtained
is the smallest with respect to the order.@R. With the firstay elements of0,N — 1],
that is the set of integeff0, wy — 1]|, we construct the canonicak-cycle : if w = 1,
we definef(0) =0, elsef (0) =1,f(1)=2,..., f(an—2)=w—1, f(ann — 1) =0.
ThenVj € [[w — 1, w1 + N —s— 1], we definef (j) = 0.

Then with the nexiw, integersw; + N — s, + N — s+ w, — 1]] we construct the
canonicalap-cycle. We keep going on constructing for glle [[3, p] the canonical
wj-cycle.

In consequence, we have found a functiobelonging to the clasgvy, ..., wp].

Assume there exists a functigne %N belonging to the class of such thatg < f.
Let | = {i € [O,N —1]] suchthatf(i) # 0}. As g < f, there existdg € | such that
g(ip) < f(ig). There exists alsgo such thatip € wj,. If f(ig) = io, then wj, = 1,
g(io) < ip and theng(ig) ¢ wj,- Then the global orbit pattern af doesn't contain
anymore 1 as cycle. The global orbit patterngofs different from the global orbit
pattern off. If f(ig) =io+ 1, theng(ig) < io. Eitherg(ip) = ip and then the global orbit
pattern ofg is changed, og(ip) < igp and we are in the same situation as previously.
Thus, in any case, the smallest function belonging to thes¢tay, ..., @] is the one
constructed in the first part of the proof.

The proof of the theorem gives an algorithm of constructibtie threshold function
associated to a given gop.
The threshold function associated to the ¢&p1,3]1; is explained in Table 9. Its rank
isn=25938474637.

TABLE 9. Algorithm for the threshold function construction for thep_:{zé, 1,311

First step Second step Third step Fourth step Fifth step

Construction of Construction of Construction of Construction of Filling the re-
the first canoni- thelastcanonical the canonical 1- the canonical 2- maining images

cal 2-cycle 3-cycle cycle cycle with 0
0O — 1 o —- 1 o — 1 o — 1 0 —- 1
1 —- 0 1 —- 0 1 —- 0 1 —- 0 1 - 0
2 - 2 = 2 - 2 - 2 — 0
3 — 3 - 3 — 3 — 3 —- 0
4 = 4 — 4 — 4 — 4 — 0
5 — 5 — 5 — 5 —- 6 5 — 6
6 — 6 — 6 — 6 — b5 6 — 5
7 — 7 — 7 - 7 7 - 7 7T - 7
8 — 8 — 9 8 —- 9 8 — 9 8 — 9
9 — 9 — 10 9 — 10 9 — 10 9 — 10
10 — 10 —» 8 10 — 8 10 —» 8 10 — 8

Theorem3 There are exactly"®— 1 different global orbit patterns iy

That is



17 (Fn) =2N - 1. (10)

For example, foN = 4, §4(.%,) = 2* — 1= 15.

Proof Let p an integer between 1 ard. Consider the set(p,N) of p-tuples
(ay,...,0p) € (N*)P such thatry + ... +ap <N.

We wrlte L( ) = {L(p,N),p=1...N}. L(N) and¥9(.#n) have the same elements.
Then

NN
19 (Fn) = ZttLp, _Z(p>:2'\'—1.
p=1

Ordering the global orbit patterns
We define an order relation ¢fi(.-#n).

Propositionl Let A andB be two global orbit patterns & (.#n).
We define the relatior on the set/(.#n) by

A< B iff Tr(A) <Tr(B)
Then the set¥(.#n), <) is totally ordered.

Proof As the order< refers to the natural order &F, the proof is obvious.

Letr > 1, p> 1 be two integers. Lgtua, . .., wp] and[wy, ..., «f] be two global orbit
patterns of¢ (.%n). For example, ifp < r, in order to compare them, we admit that we
can fill ey, . .., wp] with r — p zeros and writgcw, . .., wp] = [, ..., Wp,0,...,0].

Proposition2 Letr > 1, p > 1 be two integers such that<r. LetA = [wx, ..., Wy
andB = [y, ..., f] be two global orbit patterns.

« If r=p=1andw; < wj thenA < B.
« If r >2then
* I wl<w1thenA< B.
« If an = ) then there exist& € [[2;r] such thatuk # wf; andVi < K,

o .
e If |A| < |BJ, thenA < B.
e If |A| = |B|, then ifax < «f; thenA < B.

For example, foN = 5, the global orbit patterns are in increasing ordér < [1;] <
[15] <11,2] < [1;1] < [15,2] <11,2,1) < [1,3] < [15] < [15,2] < [15,2, 1] < [15,3 <



1,2,15] < [1,25] < [1,3,1] < [L4] < [2] < [2 < [2 5] <[] < [2 5] < [2,1,2] <
25,1 < [2,3] < [3] = [3,1] < [3,15] < [3,2] < [4] < [4,1] < [5].

Algorithm for ordering the global orbit patterns : a pseudecimal order

The Table 10 gives a method for ordering the gop : indeed, wsider each gop as if
each one represents a decimal number : we begin to order theamsidering the first
orderw,. Considering two gopé = [w, ..., wp] andA’ = [y, ..., of], if w1 < @, then
A< A Forexample[2,1,2] < [4,1]. If wy = w and|A| —wy < |A'| — wy, thenA < A
For example to compare the g@h 2] and the gofd1;], we say that the first orden,
stands for the unit digit - which iey = 1 here, then the decimal digits are respectively
0.2 and 0111. We calculate for each of them the moduus: we find |[1,2]| -1 =2
and [[1;]| — 1 = 3, thus[1,2] < [1;]. Finally, if @ = wj and [A] —w = |A'] — wy,
then also we use the order of the decimal part. For exaniple [1,2,1; because
1.1111< 1.211. Applying this process, we have the sequence of the eddgop for
N = 4 given in the previous paragraph.

TABLE 10. Ordered gop foN = 5 with modulus and moduluey

Gop Modulus  Modulusw, || Gop Modulus  Modulusw
1] 1 0 2] 2 0
[15] 2 1 2,1] 3 1
[13] 3 2 2,15] 4 2
[1,2] 3 2 2] 4 2
1] 4 3 2,13] 5 3
[1,2] 4 3 2,1,2] 5 3
[1,2,1] 4 3 [25,1] 5 3
1,3 4 3 23] 5 3
1] 5 4
[15,2] 5 4 [3] 3 0
[15,2,1] 5 4 3,1] 4 1
(15,3 5 4 3,15 5 2
1,2,15] 5 4 3,2] 5 2
[1,2;] 5 4
[1,3,1] 5 4 4] 4 0
[1,4] 5 4 4,1] 5 1
5] 5 1

For example, foN = 5, we construct one branch of a tree with = 1 (see Fig. 3) :
each vertex is an ordered orbit, the modulus of the gop igemridn the last edge.
However, the sequence of ordered gop differs from the nladiokanward lecture of the
tree and has to be done following the algorithm.



4[1,1,1,1]
1 1
11 1
5[1,1,1,1,1]
2
L 5[1,1,1,2)
4[1,1,2]
2
1
5[1,1,2,1]
3
5[1,1,3)
3[1,2)
4[1,2,1]
2 1
2
5[1,2,1,1]
2
51,2,2]
4[1,3]
3
1
51,3,1]
/]
5[1,4]

FIGURE 3. Branch of the tree for the construction of the gop with= 1 on¥(%s)

CARDINAL OF CLASSES

In this section we emphasize some closed formulas giving:éndinal of classes of
gop. Recalling first the already known formula for the cl{iﬁgaN for which we give a
detailed proof, we consider the case were the class possesaetly onek-cycle, the



case with only two cycles belonging to the class and finakyrttain general formula of
any cycles with any length. We give rigorous proof of all. Tgeneral formula is very
interesting in the sense that even using computer netw@kntpossible to check every
function of %y whenN is larger than 100.

Discrete maps with 1-cycle only

The theorem 4 gives the number of discrete map%giwvhich have only fixed points
and no cycles of length greater than one. This formula isiexph [2] and [9]. A
complete proof is given here in detail.

Theorem4 Letk be an integer between 1 ahld The number of functions whose

global orbit pattern i$1;]y (i.e. belonging to the cla.d{ﬂ; IN) IS ( H:& ) NN-K,

That is
= (N )N 1)

Proof Letk be a non-zero integer. Ldtbe a function of#y. There are( IE

possibilities to choos& fixed points. There remaiN — k points. Letp be an integer

between 1 andN — k. We assume thgp points are directly connected to tlefixed

points. For each of them, there dcenanners to choose one fixed point. There kdte

ways to connect directlp points tok fixed points. There remaind — k — p points that

we must connect to thp points. There aré[15|n_k functions. Finally, the number of
N—k

functions withk fixed points is(l:) Z kP #[15]n—k. We now prove recursively oN

for every 0< k < N thatf[I]n = ( H i)NN K. We havet[1]; = 1. The formula is
true.

N—1 Tk
We suppose thatk < N f[I;]n = N — K NNk,

Let X be a set withN 4+ 1 elements. We look for the functions gf\.1 which havek
fixed points. Thanks to the previous reasoning, we have

N+1-k
BN = ( N+1) Z kP 4[15]N-+1—k-

fne = ( ) Z kP §[1p
We use the recursion assumptlon
N+1-k
Ij[l_E]N_i_l _ (N+1) z kp(N k) N _k+1)ka+lfp'



— N+ 1\ N2k /N —K ke
k(" )pzo( S
ﬁ[l_p]NH:k(N:l)(N+1>N—k
Ij[l_R]N—i-l = (kT:L)(N—f—l)NkJrl'

BN = (N —’\li+ 1) (N+ DN 1 g.ed.

Discrete maps withk-cycle
We look now for the number of functions with exactly dkeycle.

Theorem5 Letk be an integer between 1 aid The number of functions whose
global orbit pattern igk]y is f[1;]n x (k—1)!.

i.e.
#1Kln = #[Tn x (k= 1), (12)

Proof There are(ﬁ) ways of choosing elements among\. Then, there are
(k—1)! choices for the image of thode elements in order to constitute kacycle
by f. We must now count the number of ways of connecting directinat the re-

maining N — k elements to thé-cycle. We established already this number which is
N—k

equal toz kP #[I5]n_k- Finally, we havekly = (k—1)!(}) Z kpjj[ pIN—k. That is,

4KIn = [ ]Nx(k 1)1 g.e.d.

Discrete maps with only two cycles
We give the number of functions with only two cycles.

Theorem6 LetN > 2. Let p andq be two non-zero integers such that q < N.
Then,
(p+d—1)! _ (N—1)! NN-(pta)

q ~ (N=(p+aQ)'q’ (13)

2lpyaln = #15gIn

Proof We consider a functiori which belongs to the claétﬂ;N]N We search the
number of functions constructed frofrwhose gop i$p, gn. From thep fixed points of



f, we construct g-cycle. Thus, there arn ;ﬂ;l) ways to choos@ — 1 integers among
the p+ q— 1 fixed points. Counting the first given fixed point bf we havep points
which allow to constructp — 1)! functions with ap-cycle. Then there remaigppoints

which give(q— 1)! different functions with aj-cycle. Finally, the number of functions
p+g-1

whose gop igp, g is : (p”' Y(p—1)!1(q-1)! thatis the formula(T)

Remark  We notice that for allk non-zero integer such that < N — 1,

General case : discrete maps with cycles of any length

We introduce now the main theorem of the section which gikkesiumber of gop of
discrete maps thanks to a closed formula.

Given a global orbit patterr, the next theorem gives a formula which gives the
number of functions which belong .

Theorem7 Let p > 2 be an integer. Lgtoy, ..., wp]n be a gop of7(#N). Then,

(w1 +...+wp—1)!
Wp X (Wp—1+ wp) X ... X (Wp+ ...+ wp)
(N — 1)t NN~ (@t +ap)

fleon, - @Bl = £ T N (14)

floon, ..., wply = (15)

(N= (@ +...+ @)l [(3 @)

k=2 j=k

T+
number of functions constructed frofrwhose gop igw, . . ., wp|n. From thew, fixed
points of f, we construct aw;-cycle. Thus, there ar(a‘*’l*(:)f_‘i’p’l) ways to choose
wy — 1 integers among they + ... + wp — 1 fixed points. Counting the first given fixed
point of f, we havew, points which allow to constructw; — 1)! functions with a
wy-cycle. Then, the first fixed point df which has not be chosen for tl@-cycle, will
belong to thewy-cycle. Thus, there ar(a“’ﬁ(;)';‘fp_l) ways to choosew, — 1 integers
among thew, +. .. + wp — 1 fixed points. So we haws, points which allow to construct
(wp — 1)! functions with awp-cycle. We keep going on that way until there remain
fixed points which allow to constru¢tv, — 1)! functions with awp-cycle. Finally, we
have constructed : )

(78 DU (@ o () (s D = 1!
functions. We simplify and obtain the formula.

Proof = We consider a functiorf which belongs tqlwlep]N. We search the



Corollary 1 Let p be a non-zero integer. Léd, ..., wp|n be a gop of/(%y). We
suppose that there existsuch thatw; > 2. Leth be an integer between 1 ang — 1.
Then

tt[wl,...,wj,...,wp]N:ﬁ[wl,...,wj—h,h,le,...,cop]N><(h+wj+1+...+corz)1.6)

Proof fw,...,wj—hhwj;1,..., 0] X (W+Wj1+...+wp) = ﬁ[lwlifiwp]'\'
(w1 +...+wp— D! (w1 14...+wp)

X wp(Wp—14wp)...(@Wj11+-..4wp) (h+wjy1+..+wp) (W + @) y1+...+Wp) X ... X (Wp+...+wp) *

We simplify and we exactly obtain

flon, ..., 0 —hhwj1,..., 0l X (h+Wj1+. ..+ wp) =@, ..., Wj,..., Wy

Examples :

4[25,1.3],, = 11,180,400.

4]5,2,10,8,15,2, 3]s, = 29,775,702, 147,667,389, 218 762 343 520,975 006,
348 329 578 044, 480,000,000, 000,000, 000.

£[5,2,10,8,15,2, 3], = 2.98 x 10°3 among the 88 x 1034 functions of Zs.

FUNCTIONS WITH LOCAL PROPERTIES

Locally rigid functions

Obviously it is not possible to transpose to the functiongimite sets the notions of
continuity and derivability which play a dramatic role in thamatical analysis since
several centuries. In fact the clasgg(l ) of the continuous functions on the real interval
| is a very small subset of the dét of all the functions orl. Hence by analogy to this
fact and trying to mimic some others properties of contiraifunctions, we introduce
some subsets of particular functions.8f;, which have local properties such as locally
bounded range in a sense we precise further. Limiting thgerari the function in a
neighbourhood of any point of the interval induces a kindrajidity" of the function,
hence we call these functions locally rigid functions. Iegb subsets, the gop are
found to be fully efficient in order to describe very precysile dynamics of the orbits.
We first consider the very simple subs&t#, y of functions for which the difference
betweenf (p) and f(p+ 1) is drastically bounded. In next subsection we consider more



sophisticated subsets.
We consider the set :

L n={tezy such that/p,0 < p<N—2,|f(p) — f(p+1)| < 1}.

Orbits of £ 2,
Theorem8 If f € %,y thenf has only periodic orbits of order 1 or 2.

Proof  We suppose thaf ¢ 2y has a 3-cycle. We denot@; f(a); f%(a))
taking a the smallest value of the 3-cycle. # < f(a) < f?(a) then there exist
two non-zero integers and € such thatf(a) = a-+ e and f?(a) = f(a) + €. Thus,
f2(a) —€ < f3(a) < f?(a) + €. Thatisf(a) < a< f(a) +2€. And finally we have the
relationa+ e < awhich is impossible.

If a < f2(a) < f(a) then there exist two non-zero integeesand € such that
f2(a) = a+e and f(a) = f?(a)+ €. Thus, f(a) —e < f3(a) < f(a) +e That is
fla —e<a< f(a)+e But f(a) —e=a+¢€. And finally we have the relation
a+ € < awhich is impossible.

We can prove in the same way that the functionan’t have either 3-cycle or greater
order cycle than 3.

Numerical results and conjectures

We have done numerical studies of thé.Z %) for N = 1 to 16, using the brute
force of a desktop computer (i.e. checking every functidomging to these sets).

The Tables 11, 12, 13, 14, 15 and 16 show the sequenceg 4oy to £ %; 6.

In theses Tables we display in the first column all the go @t/ #, ) for every
value ofN. For a givenN, there are two columns; the left one displays the cardinal of
every existing class of gop (- stands for non existing gopgtdad the second shows
more regularity, displaying on the row of the gi@)] the sum of the cardinals of all the
classes of the gop of the forfg,2,...... 1 ,...,2] which exist.

7

k+1 orders _
Then we are able to formulate some statements which haveehbegn proved.

Statementl
1= T N+1
1Tz = gl 2y, fork < ——. (17)



TABLE 11. Numbering the locally rigid functions fof € £#,, f €
LIt € L3, T € LRy
g.0.p. N=1 N=1 N=2 N=2 N=3 N=3 N=4 N=4
Total number 1 4 17 68
(1) 1 + 2 + 7 + 26 +
(15] - + 1 + 4 + 14 +
[15] - + + 1 + 4 +
[12] - + - + - + 1 +
2] - + 1 1 4 4 18 18
[2,1] - + + 1 1 3 4
[1,2] - + - + - + 1 +
(25] - + - + - + 1 1
TABLE 12. Numbering the locally rigid functions fof €
Lans, T € Lae, T € L%
g.o.p. N=5 N=5 N=6 N=6 N=7 N=7
Total number 259 950 387
[1] 95 + 340 + 1,193 +
[15] 50 + 174 + 600 +
[13] 16 + 58 + 204 +
(1] 4 + 16 + 60 +
(1] 1 + 4 + 16 +
(1] - + 1 + 4 +
[17] - + - + 1 +
[2] 70 70 264 264 952 952
[2,1] 12 18 45 70 166 264
[1,2] 6 + 25 + 98 +
[25] 4 4 18 18 70 70
(25,1] 1 1 4 4 17 18
(1,25 - + - + 1 +
2,12 S
(23] - + 1 1 4 4
[25,1] - + - + 1 1
Statemen® N
12 zann = H2g) 2., fork < . (18)
StatemenB
ﬁ[zﬁ]fﬁlN = ﬁ[ZR, lL%QLNH for 2k <N < 3k—1. (29)



TABLE 13. Numbering the locally rigid functions fof € Lz, f €
L9, T € L% 10

N=8 N=8 N=9 N=9 N=10 N=10

g.0.p.
Total number 11,814 40,503 13,6946
(1] 4,116 + 14,001 + 47,064 +
(15] 2,038 + 6,852 + 22,806 +
[15] 700 + 2,366 + 7,896 +
(1] 214 + 742 + 2,520 +
(1] 60 + 216 + 754 +
[15] 16 + 60 + 216 +
[15] 4 + 16 + 60 +
[15] 1 + 4 + 16 +
[15] - + 1 + 4 +
[1TO] - + - + 1 +
2] 3,356 3,356 11,580 11,580 39,364 39,364
[2,1] 590 952 2,062 3,356 7,072 11,580
(1,2] 362 + 1,294 + 4,508 +
[25] 264 264 952 952 3,356 3,356
(25,1] 62 70 222 264 770 952
[1,2;] 6 + 28 + 113 +
[2,1,2] 2 + 14 + 69 +
(23] 18 18 70 70 264 264
[25,1] 4 4 18 18 69 70
[1,25] - + - + 1 +
(2,1,25) - + - + - +
[25,1,2] - + - + - +
(23] 1 1 4 4 18 18
(2,1 + 1 1 4 4
[1,22] - + - + - +
[2,1,25] - + - + - +
[2»2,1,25] - + - + - +
[25,1,2] - + - + - +
(2] - + - + 1 1
Statemen#
o k+1
2] emy = iZW’Z’ ...... ,\1{(,...,2].3%‘N for 2k+1<N
= 1
|

- -

k+1 orders

k+1r



TABLE 14. Numbering the locally rigid functions fof € Z#, 1., f € L%110, T €

L% 13.
g.0.p. N=11 N=11 N=12 N=12 N=13 N=13
Total number 457,795 1,515,926 4,979,777
(1] 156,629 + 516,844 + 1,693,073 +
(15] 75,292 + 246,762 + 803,706 +
[15] 26,098 + 85,556 + 278,580 +
(1] 8,434 + 27,904 + 91,488 +
(1] 2,756 + 8,658 + 28,738 +
[15] 756 + 2,590 + 8,730 +
[15] 216 + 756 + 2,592 +
[15] 60 + 216 + 756 +
[15] 16 + 60 + 216 +
[110) 4 + 16 + 60 +
(1] 1 + 4 + 16 +
(155 - + 1 + 4 +
[11~3«J - + - + 1 +
2] 132,104 132,104 438,846 438,846 1,445,258 1,445,258
[2,1] 23,941 39,364 80,108 132,104 265,548 438,846
(1,2] 15,423 + 51,996 + 173,298 +
[25] 11,580 11,580 39,364 39,364 132,104 132,104
(25,1] 2,634 3,356 8,883 11,580 29,659 39,364
[1,2;] 429 + 1,555 + 5,478 +
[2,1,2] 293 + 1,142 + 4,227 +
(23] 952 952 3,356 3,356 11,580 11,580
[25,1] 255 264 899 952 3,098 3,356
[1,25] 7 + 35 + 152 +
(2,1,25) 2 + 16 + 86 +
(25,1,2] - + 2 + 20 +
(23] 70 70 264 264 952 952
(2,1] 18 18 70 70 263 264
[1,2] - + - + 1 +
(2,1,25 - + - + - +
(25,1, 25] - + - + - +
[25,1,2] - + - + - +
(2] 4 4 18 18 70 70
[2,1] 1 1 4 4 18 18
1, 25] - + - + - +
[25] - + 1 1 4 4
(25, 1] - + - + 1 1
Statemenb
if k=1
if k=2 (21)

Tz =

~—~N PP

%) (k+1)x 3¢ for 3<k<

N+1
2



Numbering the locally rigid functions fof € Z%; 1.,

TABLE 15.
f e L% s
g.0.p. N=14 N=14 N=15 N=15
Total number 16,246,924 52,694,573
(1] 5,511,218 + 17,841,247 +
[15] 2,603,258 + 8,391,360 +
(15] 901,802 + 2,904,592 +
(13] 297,728 + 962,888 +
(L] 94,440 + 307,848 +
[15] 29,050 + 95,676 +
[15] 8,746 + 29,140 +
[15] 2,592 + 8,748 +
[15] 756 + 2,592 +
(15 216 + 756 +
(1] 60 + 216 +
(15] 16 + 60 +
[153] 4 + 16 +
(1] 1 + 4 +
(1] - + 1 +
2] 4,725,220 4,725,220 15,352,392 15,352,392
[2,1] 873,149 1,445,258 2,851,350 +
[1,2] 572,109 + 1,873,870 +
(23] 438,846 438,846 1,445,258 1,445,258
(25,1] 98,135 132,104 322,310 438,846
[1,2] 18,873 + 63,967 +
[2,1,2] 15,096 + 52,569 +
(23] 39,364 39,364 132,104 132,104
[25,1] 10,460 11,580 34,845 39,364
[1,2] 605 + 2,282 +
(2,1,25 389 + 1,596 +
(25,1,2] 126 + 641 +
(23] 3,356 3,356 11,580 11,580
(2,1 942 952 3,292 3,356
[1,2;] 8 + 44 +
(2,1,25] 2 + 18 +
[25, 1, 25] - + 2 +
(25,1,2] - + - +
(2] 264 264 952 952
[2,1] 70 70 264 264
1, 25] - + - +
(2] 18 18 70 70
(25, 1] 4 4 18 18
[25] 1 1 4 4
[27, 1] - + 1 1

Remark We calluy = ﬁ[leEl]ff%N' Fork > 2, thenu is the sequence A120926
On-line Encyclopedia of integer Sequences : it is the numbsequences where 0 is
isolated in ternary words of lengtth written with {0, 1, 2}.



These statements show that first the 8&#,  is an interesting set to be considered
for dynamical systems and secondly the gop are fruitful is $tudy. However the set

ZLan={feznsuchthap,0 < p<N-2,|f(p)— f(p+1)| <2}

is too much large to give comparable results. Then we intednore sophisticated sets
we call sets with locally bounded range which more or lessespond to an analogue
of the discrete convolution product of the local variatidnfowith a compact support
function .

Orbits and patterns of locally rigid function sets

Consider now the set : -
fﬂﬁ{qN:{fegZN suchthat’p,0< p<N-r—1, Y o/[f(p)— f(p+r)|<qgtN{fe
r=1

r=t

N such thatvp,t < p<N-1, 5 ar|f(p)— f(p—r)| < g} for the vectora; =
r=1

(ag,q,...,0¢) €N, forge N,

TABLE 17. Numerical study of the set/#; .y for N = 10,t =5,
o, =20,02,=9,a3=5,04=2andas =1, forq=20,...,142

g maximal period modulus gopnumber functions number

20 1 1 1 10

26 2 2 3 82

44 2 3 6 21,764

49 3 3 7 48,112

50 3 3 7 53,210

56 3 4 9 208,692
59 4 4 15 330,800
63 4 5 19 626,890
66 4 10 37 952,228
67 4 10 46 1,064,316
72 5 10 50 1,630,018
74 6 10 60 1,816,826
76 6 10 61 2,152,450
77 6 10 88 2,416,368
78 6 10 91 2,762,434
79 6 10 97 3,188,080
80 6 10 99 3,735,666
84 6 10 100 5,876,324
85 6 10 103 6,473,288
87 6 10 105 7,851,728
88 7 10 121 8,644,178
89 8 10 129 9,521,920
91 8 10 136 11,414,556
92 8 10 165 12,454,440
94 8 10 175 14,756,058

Following next page




TABLE 17. (Next)
g maximal period modulus gopnumber functions number

95 8 10 177 16,077,780

96 8 10 184 17,208,654

97 8 10 185 18,369,854

98 8 10 188 19,585,746
100 8 10 192 22,083,852
101 8 10 199 23,584,452
102 8 10 204 25,513,892
103 8 10 244 27,912,772
104 8 10 304 30,560,238
105 9 10 333 33,516,466
106 9 10 380 36,682,960
107 9 10 424 40,004,280
108 10 10 491 43,685,352
109 10 10 517 47,655,856
110 10 10 529 51,785,410
111 10 10 562 55,907,120
112 10 10 583 60,341,276
113 10 10 612 64,930,790
114 10 10 647 69,766,178
115 10 10 706 74,989,752
116 10 10 747 80,087,120
117 10 10 791 85,570,272
118 10 10 820 91,206,218
119 10 10 836 97,040,288
120 10 10 852 103,121,916
121 10 10 872 109,650,464
122 10 10 896 116,345,296
123 10 10 919 123,241,156
124 10 10 924 130,360,938
125 10 10 928 137,636,628
126 10 10 930 145,536,068
127 10 10 932 154,370,862
128 10 10 938 164,145,928
129 10 10 960 174,942,026
130 10 10 986 186,438,038
131 10 10 1,006 198,594,118
132 10 10 1,013 211,550,402
133 10 10 1,015 225,324,700
134 10 10 1,021 239,976,118
135 10 10 1,022 255,106,866
137 10 10 1,023 286,726,234
142 10 10 1,023 374,355,356

The functions belonging to these sets show a kind of "rigidthe less ig), the more
"rigid" is the function, this "rigidity" being modulated e vectora;. Furthermore,
the maximal length of a periodic orbit increases withand so the number of gop
h%(.ﬁﬂ%mw) and the maximal modulus of the gop.



Remark  Using this generalized notation, one hasZ#in = Z%11n and
g%Zn - D%QLZJ’].

As an example, we explore numerically the cadé= 10,t =5, a; = 20,0, = 9,
a3 =05,a4=2andas =1, forqg = 20,...,142. The results are displayed in Table 17.
In this Table "modulus™ means the maximal modulus of the gelpriging to this set

for the corresponding value dfin the row, "gop number" stands fdﬂ?(iﬂgfﬁ{ qN) and

"functions number" fort{.i%zagqN. One can point out that for the particulaf function
a; of the example; it is possi'ble to find 10 intervdlsly,...,l1o0 C N such that if

g € Iy then there is no periodic orbit whose period is strictly ¢gedahanr, (e.g.,
le = [74,87])). Furthermore it is possible to split these intervals inibiatervalsl; s in

which (¥ (XﬁzﬁmN) is constant when thumbsl, s. This is not the case fqu&”‘%ﬁ{ﬂq“.

CONCLUSION

A discrete dynamical system associated to a function orefmitlered set X can only
exhibit periodic orbits. However the number of the perioadd the length of each are not
easily predictable. We formalise such a gop as the ordeted periods when the initial
value thumbsX in the increasing order. We can predict by means of closedutas,
the number of gop of the set of all the function frofrto itself. We also explore, using
the brute force of computers, some subsets of locally rigretfions onX, for which
interesting patterns of periodic orbits are found. Furstady is needed to understand
the behaviour of dynamical systems associated to funchelmging to these sets.
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