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In this paper, the study of the global orbit pattern (gop) formed by all the periodic orbits of discrete dynamical systems on a finite set X allows us to describe precisely the behaviour of such systems. We can predict by means of closed formulas, the number of gop of the set of all the function from X to itself. We also explore, using the brute force of computers, some subsets of locally rigid functions on X, for which interesting patterns of periodic orbits are found.

INTRODUCTION

In some engineering applications such as chaotic encryption, chaotic maps have to exhibit required statistical and spectral properties close to those of random signals. There is a growing industrial interest to consider and study thoroughly the property of such map [10,[START_REF]US Patent 6,999,445 -Multiple access communication system using chaotic signals and method for generating and extracting chaotic signal[END_REF]12].

Very often, dynamical systems in several dimensions are obtained coupling 1dimension ones and their properties are strongly linked [START_REF] Lozi | The importance of strange attractors for industrial mathematics[END_REF].

Quasi-periodic or chaotic motion is frequently present in complicated dynamical systems whereas simple dynamical systems often involve only periodic motion. The most famous theorem in this field of research is the Sharkovskii's theorem, which addresses the existence of periodic orbits of continuous maps of the real line into itself. This theorem was once proved toward the year 1962 and published only two years after [START_REF] Sharkovskii | Coexistence of cycles of continuous mapping of the line into itself[END_REF].

Mathematical results concerning periodic orbits are often obtained for functions on real intervals. However, most of the time, as the complex behaviour of chaotic dynamical systems is not explicitly tractable, mathematicians have recourse to computer simulations. The main question which arises then is: does these numerical computations are reliable ?

As an example we report the results of some computer experiments on the orbit structure of the discrete maps on a finite set which arise when the logistic map is iterated "naively" on the computer.

Due to the discrete nature of floating points used by computers, there is a huge gap between these results and the theoretical results obtained when this map is considered on a real interval. This gap can be narrowed in some sense (i.e. avoiding the collapse of periodic orbits) in higher dimensions when ultra weak coupling is used [START_REF] Lozi | Giga-periodic Orbits for Weakly Coupled tent and Logistic Discretized Maps, Modern Mathematical Models, Methods and Algorithms for Real World Systems[END_REF][START_REF] Lozi | New Enhanced Chaotic Number Generators[END_REF].

Nowadays the claim is to understand precisely which periodic orbit can be observed numerically in such systems. In a first attempt we study in this paper the orbits generated by the iterations of a one-dimensional system on a finite set X N with a cardinal N. The final goal of a good understanding of the actual behaviour of dynamical systems acting on floating numbers (i.e. the numbers used by computers) will be only reached after this first step will be achieved.

On finite set, only periodic orbits can exist. For a given function we can compute all the orbits, all together they form a global orbit pattern. We formalise such a gop as the ordered set of periods when the initial value thumbs the finite set in the increasing order. We are able to predict, using closed formulas, the number of gop for the set F N of all the functions on X . We also explore by computer experiments special subsets of F N , such as sets of locally "rigid" functions which presents interesting patterns of gop.

This article is organized as follows : in the section "Computational divergences" we display some examples of such computational divergences for the logistic map in various ways of discretization. In the section "Pattern defined by all the orbits of a dynamical system" we introduce a new mathematical tool: the global orbit pattern, in order to describe more precisely the behaviour of dynamical systems on finite sets. In the section "Cardinal of classes" we give some closed formulas related to the cardinal of classes of gop of F N . In the section "Functions with local properties" we study the case of sets of functions with a kind of local "rigidity" versus their gop, in order to show the usefulness of these new tools.

COMPUTATIONAL DIVERGENCES

Discretized logistic map

As an example of collapsing effects which happen when using computers in numerical experiments, we presents the results of a sampling study in double precision of a discretization of the logistic map f 4 : [0, 1] → [0, 1] (see Fig. 1)

f 4 (x) = 4x(1 -x)
(1) and its associated dynamical system

x n+1 = 4x n (1 -x n )
(2) which has excellent ergodic properties on the real interval. There exists an unstable fixed point 0. The set 5- 

P(x) = 1 π x(1 -x) (3)
However, in numerical computations using ordinary (IEEE-754) double precision numbers -so that the working interval contains of the order of 10 16 representable points -out of 1,000 randomly chosen initial points (see Table 1),

• 596, i.e., the majority, converged to the fixed point corresponding to the unstable fixed point {0} in equation 2, • 404 converged to a cycle of period 15,784,521. Thus, in this case at least, the very long-term behaviour of numerical orbits is, for a substantial fraction of initial points, in flagrant disagreement with the true behaviour of typical orbits of the original smooth logistic map.

In others numerical experiments we have performed, the computer working with fixed finite precision is able to represent finitely many points in the interval in question. It is probably good, for purposes of orientation, to think of the case where the representable points are uniformly spaced in the interval. The true logistic map is then approximated by a discretized map, sending the finite set of representable points in the interval to itself.

Describing the discretized mapping exactly is usually complicated, but it is roughly the mapping obtained by applying the exact smooth mapping to each of the discrete representable points and "rounding" the result to the nearest representable point. In our experiments uniformly spaced points in the interval with several order of discretization (ranging from 9 to 2,001 points) are involved. In each experiment the questions addressed are:

• how many periodic cycles are there and what are their periods ?

• how large are their respective basins of attraction, i.e. , for each periodic cycle, how many initial points give orbits with eventually land on the cycle in question ? On an another hand, for relatively coarse discretizations the orbit structure is determined completely, i.e., all the periodic cycles and the exact sizes of their basins of attraction are found. Some representative results are given in Tables 2 to 4. In theses tables, N denotes the order of the discretization, i.e., the representable points are the numbers, j N , with 0 ≤ j < N.

The Table 2 shows coexisting periodic orbits for the discretization with regular meshes of N = 9, 10 and 11 points. There are exactly 3, 2 and 2 cycles. The Table 3 shows coexisting periodic orbits for the discretization with regular meshes of N = 99, 100 and 101 points. There are exactly 2, 4 and 3 cycles. The Table 4 shows coexisting periodic orbits for the discretization with regular meshes of N = 1, 999, N = 2, 000 and N = 2, 001 points.

It seems that the computation of numerical approximations of the periodic orbits leads to unpredictable results.

Statistical properties

Many others examples could be given, but those given may serve to illustrate the intriguing character of the results: the outcomes proves to be extremely sensitive to the details of the experiment, but the results all have a similar flavour : a relatively small number of cycles attract near all orbits, and the lengths of these significant cycles are much larger than one but much smaller than the number of representable points.

In [START_REF] Diamond | Statistical laws for computational collapse of discretized chaotic mappings[END_REF], P. Diamond and A. Pokrovskii, suggest that statistical properties of the phenomenon of computational collapse of discretized chaotic mapping can be modelled by random mappings with an absorbing centre. The model gives results which are very much in line with computational experiments and there appears to be a type of universality summarised by an Arcsine law. The effects are discussed with special reference to the family of mappings

x n+1 = 1 -|1 -2x n | ℓ 0 ≤ x ≤ 1 1 ≤ ℓ ≤ 2 (4) 
Computer experiments show close agreement with prediction of the model.

However these results are of statistical nature, they do not give accurate information on the exact nature of the orbits (e.g. length of the shortest one, of the greater one, size of their basin of attraction ...). It is why we consider the problem of computational discrepancies in an original way in the next section.

PATTERN DEFINED BY ALL THE ORBITS OF A DYNAMICAL SYSTEM

In this section in order to describe more precisely which kind of behaviour occurs in discretized dynamical systems on finite sets we conceive a new mathematical tool: the global orbit pattern of a function that is the set of the periods of every different orbits of the dynamical system associated to the function when the initial points are took in increasing order.

General definitions

For every x 0 ∈ X , let {x i } be the sequence of the orbit of the dynamical system associated to the function f which maps X onto X defined by

x i+1 = f (x i ) for i ≥ 0. ( 5 
)
For convenience ∀x 0 ∈ X we denote

f 0 (x 0 ) = x 0 (6) and ∀p ≥ 1, ∀x 0 ∈ X , f p (x 0 ) = f • f • . . . • f p times (x 0 ). (7) 
Hence

x i = f i (x 0 ). (8) 
The orbit of x 0 under f is the set of points O(x 0 , f ) = { f i (x 0 ), i ≥ 0} = {x i , i ≥ 0}. The starting point x 0 for the orbit is called the initial value of the orbit. A point x is a fixed point of the map f if f (x) = x. A point x is a periodic point with period p if f p (x) = x and f k (x) = x for all k such that 0 ≤ k < p, p is called the order of x. If x is periodic of order p, then the orbit of x under f is the finite set {x, f (x), f 2 (x), . . ., f p-1 (x)}. We will call this set the periodic orbit of order p or a p-cycle. A fixed point is then a 1-cycle. The point x is an eventually periodic point of f with order p if there exists K > 0 such that ∀k ≥ K f k+p (x) = f k (x). ∀x ∈ X , we denote ω(x, f ) the order of x under f or simply ω(x) when the map f involved is obvious.

A subset T of X is invariant under f if f -1 (T ) = T . That is equivalent to say that T is invariant under f if and only if f (T ) ⊂ T and f -1 (T ) ⊂ T .
Notation ♯X is the cardinal of the finite set X .

Map on finite set

Along this paper, N is a non-zero integer and ♯A stands for the cardinal of any finite set A. In this article, we consider X as an ordered finite set with N elements. We denote it X N , it is isomorphic to the interval [[0, N -1]] ⊂ N. Then ♯X N = N. Let f be a map from X N into X N . We denote by F N the set of the maps from X N into X N . Clearly, F N is a finite set and ♯F N = N N elements. For all x ∈ X N , O(x, f ) is necessarily a finite set with at most N elements. Indeed, let us consider the sequence {x, f (x), f 2 (x), . . ., f N-1 (x), f N (x)} of the first N + 1 iterated points. Thanks to the Dirichlet's box principle, two elements are equals because X N has exactly N different values. Thus, every initial value of X N leads ultimately to a repeating cycle. More precisely, if x is a fixed point O(x, f ) is the unique element x and if x is a periodic point with order p, O(x, f ) has exactly p elements. In this case, the orbit of

x under f is the set O(x, f ) = {x, f (x), f 2 (x), . . . , f p-1 (x)}. If x is an eventually periodic point with order p, there exists K > 0 such that ∀k ≥ K f k+p (x) = f k (x). In this case, the orbit of x under f is the set O(x, f ) = {x, f (x), f 2 (x), . . . , f K (x), f K+1 (x), . . ., f K+p-1 (x)}.

Equivalence classes

Components

Let f ∈ F N . We consider on X N the relation ∼ defined by : ∀x,

x ′ ∈ X N , x ∼ x ′ ⇔ ∃k ∈ N such that f k (x) ∈ O(x ′ , f ). The relation ∼ is an equivalence relation on X N .
S N / ∼ is the collection of the equivalence classes that we will call components of X N under f which constitute a partition of X N . The number of components are given in [START_REF] Kruskal | The expected number of components under a random mapping function[END_REF]. Asymptotic properties of the number of cycles and components are studied in [START_REF] Ljuben | Limit theorem concerning random mapping patterns[END_REF]. For each component, we take as class representative element the least element of the component. The components will be written

T N (x 0 , f ), . . ., T N (x p f ,N , f ) where x i is the least element of T N (x i , f ).
By analogy with real dynamical systems, we can define attractive and repulsive components in discretized dynamical systems as follows.

Definition 1 A component is repulsive when it is a cycle. Otherwise, the component is attractive.

Remark

In other words, a component is attractive when the component contains at least an eventually periodic element. The corresponding cycle is strictly contained in an attractive component.

Examples are given in Tables 5, 6 and7. For instance, in Table 6, the fonction f has {2, 7} as period-2 orbit and {1, 2, 7, 9} as component which is attractive because 1 and 2 are eventually periodic elements. 

Order of elements

Here are some remarks on the order of elements of components.

Remark

The order of every element of a component is the length of its inner cycle. 

Definition 2 For all x ∈ X N , there exists i ∈ [[0, p f ,N ]] such that x belongs to the component T N (x i , f ). Then ω(x, f ) is equal to the order ω(x i , f ). Remark For all i ∈ [[0, p f ,N ]], T N (x i , f ) is an invariant subset of X N under f .
In the example given in Table 5, the order of the element 0 is 2, the order of the element 1 is 2, the order of the element 4 is 3. The elements 1 and 3 have the same order.

Definition of global orbit pattern

For each f ∈ F N , we can determine the components of X N under f . For each component, we determine the order of any element. Thus, for each f ∈ F N , we have a set of orders that we will denote Ω( f , N). Be given f , there exist p f ,N components and p f ,N representative elements such that x 0 < x 1 < . . . < x p f ,N .

For each f ∈ F N , the sequence [ω(x 0 ), ω(x 1 ), . . . , ω(x p f ,N ); f ] F N with x 0 < x 1 < . . . < x p f ,N will design the global orbit pattern of f ∈ F N .

We will write gop

( f ) = [ω(x 0 ), ω(x 1 ), . . ., ω(x p f ,N ); f ] F N .
When the reference to f ∈ F N is obvious, we will write shortly

gop( f ) = [ω(x 0 ), ω(x 1 ), . . ., ω(x p f ,N )] N or gop( f ) = [ω(x 0 ), ω(x 1 ), . . ., ω(x p f ,N )] .
For example, the same gop associated to the functions given in Tables 5, 6 and7 

is [2, 2, 1, 3] 11 .
Another example is given in Table 8. In that example, we have ω(0 

) = 2, ω(3) = 1, ω(4) = 4.
F N is called G (F N ).
For example, for N = 5, the set

G (F 5 ) is {[1]; [1, 1]; [1, 1, 1]; [1, 2]; [1, 1, 1, 1]; [1, 1, 2]; [1, 3]; [1, 1, 1, 1, 1]; [1, 1, 1, 2]; [1, 1, 2, 1]; ; [1, 2, 1, 1]; [1, 2, 2]; [1, 3, 1]; [1, 4]; ; [2, 1]; [2, 1, 1]; [2, 2]; [2, 1, 1, 1]; [2, 1, 2]; [2, 2, 1] ; [3]; [3, 1]; [3, 1, 1]; [3, 2]; [4]; [4, 1]; [5]}.

Class of gop

We give the following definitions :

Definition 4 Let be A = [ω 1 , . . . , ω p ] N a gop.
Then the class of A, written A, is the set of all the functions f ∈ F N such that the global orbit pattern associated to f is A. 

Then the modulus of

A is |A| = p ∑ k=1 ω k . Remark [ω 1 , . . . , ω p ] N ≤ N. Notation [ω k ] N means [ω, . . ., ω k times ] N and [ω k , ν m ] N means [ω, . . . , ω k times , ν, . . . , ν m times ] N .

Threshold functions

Ordering the discrete maps

Theorem 1 The sets F N and [[1, N N ]] are isomorphic. Proof We define the function φ from F N to [[1, N N ]] by : for each f ∈ F N , φ ( f ) is the integer n such that n = N-1 ∑ k=0 f (k)N N-1-k + 1. Then φ is well defined because n ∈ [[1, N N ]].
Let n be a given integer between 1 and N N . We convert n -1 in base N : there exists a unique N-tuple (a n-1,0 ; a n-1,1 ; . . .

; a n-1,N-1 ) ∈ [[0, N -1]] N such that n -1 N = N-1 ∑ i=0 a n-1,N-1-i N N-i-1
. We can thus define the map f n with : ∀i ∈ X N ,

f n (i) = a n-1,N-i-1 .
Then φ is one to one.

Remark This implies F N is totally ordered.

Definition 6 Let f ∈ F N . Then n = N-1 ∑ k=0 f (k)N N-1-k + 1 (9)
is called the rank of f .

Threshold functions

Be given a global orbit pattern A, we are exploring the class A.

Theorem 2 For every A ∈ G (F N ), the class A has a unique function with minimal rank.

Definition 7 For every class A ∈ G (F N ), the function defined by the previous theorem will be called the threshold function for the class A and will be denoted by

Tr(A) or Tr(A).

To prove the theorem, we need the following definition :

Definition 8 Let f ∈ F N be a function. Let p a non zero integer smaller than N. Let be x 1 , . . . , x p p consecutive elements of X N . Then x 1 , . . . , x p is a canonical p-cycle in relation to f if ∀ j ∈ [[1, p -1]] , f (x j ) = x j+1 and f (x p ) = x 1 .
Proof Let [ω 1 , . . . , ω p ] be a global orbit pattern of G (F N ). We construct a specific function f belonging to the class [ω 1 , . . . , ω p ] and we prove that the function so obtained is the smallest with respect to the order on F N . With the first ω 1 elements of

[[0, N -1]], that is the set of integers [[0, ω 1 -1]], we construct the canonical ω 1 -cycle : if ω 1 = 1, we define f (0) = 0, else f (0) = 1, f (1) = 2, . . ., f (ω 1 -2) = ω 1 -1, f (ω 1 -1) = 0. Then ∀ j ∈ [[ω 1 -1, ω 1 + N -s -1]], we define f ( j) = 0. Then with the next ω 2 integers [[ω 1 + N -s, ω 1 + N -s + ω 2 -1]
] we construct the canonical ω 2 -cycle. We keep going on constructing for all j ∈ [ [3, p]] the canonical ω j -cycle.

In consequence, we have found a function f belonging to the class [ω 1 , . . ., ω p ]. Assume there exists a function g ∈ F N belonging to the class of f such that g < f . Let I = {i ∈ [[0, N -1]] such that f (i) = 0}. As g < f , there exists i 0 ∈ I such that g(i 0 ) < f (i 0 ). There exists also j 0 such that i 0 ∈ ω j 0 . If f (i 0 ) = i 0 , then ω j 0 = 1, g(i 0 ) < i 0 and then g(i 0 ) / ∈ ω j 0 . Then the global orbit pattern of g doesn't contain anymore 1 as cycle. The global orbit pattern of g is different from the global orbit pattern of f . If f (i 0 ) = i 0 + 1, then g(i 0 ) ≤ i 0 . Either g(i 0 ) = i 0 and then the global orbit pattern of g is changed, or g(i 0 ) < i 0 and we are in the same situation as previously. Thus, in any case, the smallest function belonging to the class [ω 1 , . . ., ω p ] is the one constructed in the first part of the proof.

The proof of the theorem gives an algorithm of construction of the threshold function associated to a given gop. The threshold function associated to the gop [2 2 , 1, 3] 11 is explained in Table 9. Its rank is n = 25, 938, 474, 637. 

cal 2-cycle 0 → 1 1 → 0 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → Construction of the last canonical 3-cycle 0 → 1 1 → 0 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 9 → 10 10 → 8 Construction of the canonical 1- cycle 0 → 1 1 → 0 2 → 3 → 4 → 5 → 6 → 7 → 7 8 → 9 9 → 10 10 → 8 Construction of the canonical 2- cycle 0 → 1 1 → 0 2 → 3 → 4 → 5 → 6 6 → 5 7 → 7 8 → 9 9 → 10 10 → 8
Filling the remaining images with 0

0 → 1 1 → 0 2 → 0 3 → 0 4 → 0 5 → 6 6 → 5 7 → 7 8 → 9 9 → 10 10 → 8
Theorem 3 There are exactly 2 N -1 different global orbit patterns in F N .

That is

♯G (F N ) = 2 N -1. (10) 
For example, for N = 4, ♯G (F 4 ) = 2 4 -1 = 15.

Proof

Let p an integer between 1 and N. Consider the set L(p, N) of p-tuples (α 1 , . . ., α p ) ∈ (N * ) p such that α 1 + . . . + α p ≤ N. We write L(N) = {L(p, N), p = 1 . . .N}. L(N) and G (F N ) have the same elements. Then

♯G (F N ) = p=N ∑ p=1 ♯L(p, N) = p=N ∑ p=1 N p = 2 N -1.

Ordering the global orbit patterns

We define an order relation on G (F N ).

Proposition 1 Let A and B be two global orbit patterns of G (F N ). We define the relation ≺ on the set G (F N ) by

A ≺ B iff Tr(A) < Tr(B)
Then the set (G (F N ), ≺) is totally ordered.

Proof As the order ≺ refers to the natural order of N, the proof is obvious.

Let r ≥ 1, p ≥ 1 be two integers. Let [ω 1 , . . ., ω p ] and [ω ′ 1 , . . . , ω ′ r ] be two global orbit patterns of G (F N ). For example, if p < r, in order to compare them, we admit that we can fill [ω 1 , . . . , ω p ] with r -p zeros and write [ω 1 , . . . , ω p ] = [ω 1 , . . . , ω p , 0, . . ., 0].

Proposition 2 Let r ≥ 1, p ≥ 1 be two integers such that p ≤ r. Let A = [ω 1 , . . . , ω p ] and B = [ω ′ 1 , . . . , ω ′ r ] be two global orbit patterns. • If r = p = 1 and ω 1 < ω ′ 1 then A ≺ B. • If r ≥ 2 then * If ω 1 < ω ′ 1 then A ≺ B. * If ω 1 = ω ′ 1 then there exists K ∈ [[2; r]] such that ω K = ω ′ K and ∀i < K, ω i = ω ′ i . • If |A| < |B|, then A ≺ B. • If |A| = |B|, then if ω K < ω ′ K then A ≺ B.
For example, for N = 5, the global orbit patterns are in increasing order :

[1] ≺ [1 2 ] ≺ [1 3 ] ≺ [1, 2] ≺ [1 4 ] ≺ [1 2 , 2] ≺ [1, 2, 1] ≺ [1, 3] ≺ [1 5 ] ≺ [1 3 , 2] ≺ [1 2 , 2, 1] ≺ [1 2 , 3] ≺ [1, 2, 1 2 ] ≺ [1, 2 2 ] ≺ [1, 3, 1] ≺ [1, 4] ≺ [2] ≺ [2, 1] ≺ [2, 1 2 ] ≺ [2 2 ] ≺ [2, 1 3 ] ≺ [2, 1, 2] ≺ [2 2 , 1] ≺ [2, 3] ≺ [3] ≺ [3, 1] ≺ [3, 1 2 ] ≺ [3, 2] ≺ [4] ≺ [4, 1] ≺ [5].

Algorithm for ordering the global orbit patterns : a pseudo-decimal order

The Table 10 gives a method for ordering the gop : indeed, we consider each gop as if each one represents a decimal number : we begin to order them in considering the first order ω 1 . Considering two gops A = [ω 1 , ..., ω p ] and

A ′ = [ω ′ 1 , ..., ω ′ r ], if ω 1 < ω ′ 1 , then A ≺ A ′ . For example, [2, 1, 2] ≺ [4, 1]. If ω 1 = ω ′ 1 and |A| -ω 1 < |A ′ | -ω ′ 1 , then A ≺ A ′ .
For example to compare the gop [START_REF] Diamond | Statistical laws for computational collapse of discretized chaotic mappings[END_REF][START_REF] Knuth | The Art Of Computer Programming[END_REF] and the gop [1 4 ], we say that the first order ω 1 stands for the unit digit -which is ω 1 = 1 here, then the decimal digits are respectively 0.2 and 0.111. We calculate for each of them the modulus-ω 1 : we find

|[1, 2]| -1 = 2 and |[1 4 ]| -1 = 3, thus [1, 2] ≺ [1 4 ]. Finally, if ω 1 = ω ′ 1 and |A| -ω 1 = |A ′ | -ω ′
1 , then also we use the order of the decimal part. For example, [1 5 ] ≺ [1, 2, 1 2 because 1.1111 < 1.211. Applying this process, we have the sequence of the ordered gop for N = 4 given in the previous paragraph. 

Gop

Modulus Modulus-ω 1 Gop Modulus Modulus-ω 1

[1] 1 0 [2] 2 0 [1 2 ] 2 1 [2, 1] 3 1 [1 3 ] 3 2 [2, 1 2 ] 4 2 [1, 2] 3 2 [2 2 ] 4 2 [1 4 ] 4 3 [2, 1 3 ] 5 3 [1 2 , 2] 4 3 [2, 1, 2] 5 3 [1, 2, 1] 4 3 [2 2 , 1] 5 3 [1, 3] 4 3 [2, 3] 5 3 [1 5 ] 5 4 [1 3 , 2] 5 4 [3] 3 0 [1 2 , 2, 1] 5 4 [3, 1] 4 1 [1 2 , 3] 5 4 [3, 1 2 ] 5 2 [1, 2, 1 2 ] 5 4 [3, 2] 5 2 [1, 2 2 ] 5 4 [1, 3, 1] 5 4 [4] 4 0 [1, 4] 5 4 [4, 1] 5 1 [5] 5 1
For example, for N = 5, we construct one branch of a tree with ω 1 = 1 (see Fig. 3) : each vertex is an ordered orbit, the modulus of the gop is written on the last edge. However, the sequence of ordered gop differs from the natural downward lecture of the tree and has to be done following the algorithm. 

1 1[1] 1 2[1, 1] 1 3[1, 1, 1] 1 4[1, 1, 1, 1] 1 5[1, 1, 1, 1, 1] 2 5[1, 1, 1, 2] 2 4[1, 1, 2] 1 5[1, 1, 2, 1] 3 5[1, 1, 3] 2 3[1, 2] 1 4[1, 2, 1] 2 5[1, 2, 1, 1] 

CARDINAL OF CLASSES

In this section we emphasize some closed formulas giving the cardinal of classes of gop. Recalling first the already known formula for the class [1 k ] N for which we give a detailed proof, we consider the case were the class possesses exactly one k-cycle, the case with only two cycles belonging to the class and finally the main general formula of any cycles with any length. We give rigorous proof of all. The general formula is very interesting in the sense that even using computer network it is impossible to check every function of F N when N is larger than 100.

Discrete maps with 1-cycle only

The theorem 4 gives the number of discrete maps of F N which have only fixed points and no cycles of length greater than one. This formula is explicit in [START_REF] Knuth | The Art Of Computer Programming[END_REF] and [START_REF] Purdom | Cycle length in a random function[END_REF]. A complete proof is given here in detail.

Theorem 4 Let k be an integer between 1 and N. The number of functions whose

global orbit pattern is [1 k ] N (i.e. belonging to the class [1 k ] N ) is N -1 N -k N N-k . That is ♯[1 k ] N = N -1 N -k N N-k . ( 11 
)

Proof

Let k be a non-zero integer. Let f be a function of F N . There are N k possibilities to choose k fixed points. There remain Nk points. Let p be an integer between 1 and Nk. We assume that p points are directly connected to the k fixed points. For each of them, there are k manners to choose one fixed point. There are k p ways to connect directly p points to k fixed points. There remains Nkp points that we must connect to the p points. There are ♯[1 p ] N-k functions. Finally, the number of functions with k fixed points is

N k N-k ∑ p=1 k p ♯[1 p ] N-k
. We now prove recursively on N

for every 0 ≤ k ≤ N that ♯[1 k ] N = N -1 N -k N N-k . We have ♯[1] 1 = 1. The formula is true. We suppose that ∀k ≤ N ♯[1 k ] N = N -1 N -k N N-k .
Let X be a set with N + 1 elements. We look for the functions of F N+1 which have k fixed points. Thanks to the previous reasoning, we have

♯[1 k ] N+1 = N + 1 k N+1-k ∑ p=1 k p ♯[1 p ] N+1-k . ♯[1 k ] N+1 = N + 1 k N+1-k ∑ p=1 k p ♯[1 p ] N-(k-1) .
We use the recursion assumption.

♯[1 k ] N+1 = N + 1 k N+1-k ∑ p=1 k p N -k p -1 (N -k + 1) N-k+1-p . ♯[1 k ] N+1 = k N + 1 k N-k ∑ p=0 N -k p k p (N -k + 1) N-k-p . ♯[1 k ] N+1 = k N + 1 k (N + 1) N-k . ♯[1 k ] N+1 = N k -1 (N + 1) N-k+1 . ♯[1 k ] N+1 = N N -k + 1 (N + 1) N-k+1 . q.e.d.

Discrete maps with k-cycle

We look now for the number of functions with exactly one k-cycle.

Theorem 5 Let k be an integer between 1 and N. The number of functions whose

global orbit pattern is [k] N is ♯[1 k ] N × (k -1)!. i.e. ♯[k] N = ♯[1 k ] N × (k -1)!. ( 12 
)

Proof

There are N k ways of choosing k elements among N. Then, there are (k -1)! choices for the image of those k elements in order to constitute a k-cycle by f . We must now count the number of ways of connecting directly or not the remaining Nk elements to the k-cycle. We established already this number which is equal to

N-k ∑ p=1 k p ♯[1 p ] N-k . Finally, we have ♯[k] N = (k -1)! N k N-k ∑ p=1 k p ♯[1 p ] N-k . That is, ♯[k] N = ♯[1 k ] N × (k -1)!. q.e.d.

Discrete maps with only two cycles

We give the number of functions with only two cycles.

Theorem 6 Let N ≥ 2. Let p and q be two non-zero integers such that p + q ≤ N. Then,

♯[p, q] N = ♯[1 p+q ] N (p + q -1)! q = (N -1)! N N-(p+q) (N -(p + q))! q . ( 13 
)
Proof We consider a function f which belongs to the class [1 p+q ] N . We search the number of functions constructed from f whose gop is [p, q] N . From the p fixed points of f , we construct a p-cycle. Thus, there are p+q-1 p-1 ways to choose p -1 integers among the p + q -1 fixed points. Counting the first given fixed point of f , we have p points which allow to construct (p -1)! functions with a p-cycle. Then there remain q points which give (q -1)! different functions with a q-cycle. Finally, the number of functions whose gop is [p, q] N is : p+q-1 p-1 (p -1)!(q -1)! that is the formula (p+q-1)! q .

Remark

We notice that for all k non-zero integer such that k

≤ N -1, ♯[k, 1] N = ♯[k + 1] N .

General case : discrete maps with cycles of any length

We introduce now the main theorem of the section which gives the number of gop of discrete maps thanks to a closed formula.

Given a global orbit pattern α, the next theorem gives a formula which gives the number of functions which belong to α. Theorem 7 Let p ≥ 2 be an integer. Let [ω 1 , . . . , ω p ] N be a gop of G (F N ). Then,

♯[ω 1 , . . . , ω p ] N = ♯[1 ω 1 +...+ω p ] N (ω 1 + . . . + ω p -1)! ω p × (ω p-1 + ω p ) × . . . × (ω 2 + . . . + ω p ) (14) ♯[ω 1 , . . ., ω p ] N = (N -1)! N N-(ω 1 +...+ω p ) (N -(ω 1 + . . . + ω p ))! p ∏ k=2 ( p ∑ j=k ω j ) (15) 

Proof

We consider a function f which belongs to [1 ω 1 +...+ω p ] N . We search the number of functions constructed from f whose gop is [ω 1 , . . . , ω p ] N . From the ω 1 fixed points of f , we construct a ω 1 -cycle. Thus, there are ω 1 +...+ω p -1 ω 1 -1 ways to choose ω 1 -1 integers among the ω 1 + . . . + ω p -1 fixed points. Counting the first given fixed point of f , we have ω 1 points which allow to construct (ω 1 -1)! functions with a ω 1 -cycle. Then, the first fixed point of f which has not be chosen for the ω 1 -cycle, will belong to the ω 2 -cycle. Thus, there are ω 2 +...+ω p -1 ω 2 -1 ways to choose ω 2 -1 integers among the ω 2 + . . . + ω p -1 fixed points. So we have ω 2 points which allow to construct (ω 2 -1)! functions with a ω 2 -cycle. We keep going on that way until there remain ω p fixed points which allow to construct (ω p -1)! functions with a ω p -cycle. Finally, we have constructed :

ω 1 +...+ω p -1 ω 1 -1 (ω 1 -1)! ω 2 +...+ω p -1 ω 2 -1 (ω 2 -1)! × . . . × ω p-1 +ω p -1 ω p-1 -1
(ω p-1 -1)!(ω p -1)! functions. We simplify and obtain the formula.

Corollary 1 Let p be a non-zero integer. Let [ω 1 , . . ., ω p ] N be a gop of G (F N ). We suppose that there exists j such that ω j ≥ 2. Let h be an integer between 1 and ω j -1. Then

♯[ω 1 , . . . , ω j , . . ., ω p ] N = ♯[ω 1 , . . . , ω j -h, h, ω j+1 , . . . , ω p ] N × (h + ω j+1 + . . . + ω p ). ( 16 
) Proof ♯[ω 1 , . . . , ω j -h, h, ω j+1 , . . . , ω p ] N × (h + ω j+1 + . . . + ω p ) = ♯[1 ω 1 +...+ω p ] N × (ω 1 +...+ω p -1)!(h+ω j+1 +...+ω p )
ω p (ω p-1 +ω p )...(ω j+1 +...+ω p )(h+ω j+1 +...+ω p )(ω j +ω j+1 +...+ω p )×...×(ω 2 +...+ω p ) .

We simplify and we exactly obtain

♯[ω 1 , . . . , ω j -h, h, ω j+1 , . . ., ω p ] N × (h + ω j+1 + . . . + ω p ) = ♯[ω 1 , . . . , ω j , . . ., ω p ] N .
Examples : 

♯[2 2 , 1, 3] 11 = 11, 180, 400. ♯[5, 2, 10, 8, 15, 2, 3 

FUNCTIONS WITH LOCAL PROPERTIES

Locally rigid functions

Obviously it is not possible to transpose to the functions on finite sets the notions of continuity and derivability which play a dramatic role in mathematical analysis since several centuries. In fact the class C 0 (I) of the continuous functions on the real interval I is a very small subset of the set I R of all the functions on I. Hence by analogy to this fact and trying to mimic some others properties of continuous functions, we introduce some subsets of particular functions of F N , which have local properties such as locally bounded range in a sense we precise further. Limiting the range of the function in a neighbourhood of any point of the interval induces a kind of "rigidity" of the function, hence we call these functions locally rigid functions. In these subsets, the gop are found to be fully efficient in order to describe very precisely the dynamics of the orbits. We first consider the very simple subset L R 1,N of functions for which the difference between f (p) and f (p + 1) is drastically bounded. In next subsection we consider more sophisticated subsets.

We consider the set :

L R 1,N ={ f ∈F N such that ∀p, 0 ≤ p ≤ N -2, | f (p) -f (p + 1)| ≤ 1}. Orbits of L R 1,N Theorem 8 If f ∈ L R 1,N
then f has only periodic orbits of order 1 or 2.

Proof

We suppose that f ∈ L R 1,N has a 3-cycle. We denote (a; f (a); f 2 (a)) taking a the smallest value of the 3-cycle. If a < f (a) < f 2 (a) then there exist two non-zero integers e and e ′ such that f (a) = a + e and f 2 (a) = f (a) + e ′ . Thus, We can prove in the same way that the function f can't have either 3-cycle or greater order cycle than 3.

f 2 (a) -e ′ ≤ f 3 (a) ≤ f 2 (a) + e ′ . That is f (a) ≤ a ≤ f (a) + 2e ′ .

Numerical results and conjectures

We have done numerical studies of the G (L R 1,N ) for N = 1 to 16, using the brute force of a desktop computer (i.e. checking every function belonging to these sets).

The Tables 11,12, 13, 14, 15 and 16 show the sequences for L R 1,1 to L R 1,16 .

In theses Tables we display in the first column all the gop of G (L R 1,N ) for every value of N. For a given N, there are two columns; the left one displays the cardinal of every existing class of gop (-stands for non existing gop). Instead the second shows more regularity, displaying on the row of the gop Then we are able to formulate some statements which have not yet been proved. 

Statement 1 ♯[1 k ] L R 1,N = ♯[1 k+1 ] L R 1,N+1 for k ≤ N + 1 2 . ( 17 
)
f ∈ L R 1,1 , f ∈ L R 1,2 , f ∈ L R 1,3 , f ∈ L R
] - + - + 1 + [2, 1, 2] - + - + - + [2 3 ] - + 1 1 4 4 [2 3 , 1] - + - + 1 1 Statement 2 ♯[2 k ] L R 1,N = ♯[2 k+1 ] L R 1,N+2 for k ≤ N 2 . ( 18 
) Statement 3 ♯[2 k ] L R 1,N = ♯[2 k , 1] L R 1,N+1 for 2k ≤ N ≤ 3k -1. ( 19 
)
+ - + 1 + [2, 1, 2 2 ] - + - + - + [2 2 , 1, 2] - + - + - + [2 4 ] 1 1 4 4 18 18 [2 4 , 1] - + 1 1 4 4 [1, 2 4 ] - + - + - + [2, 1, 2 3 ] - + - + - + [2 2 , 1, 2 2 ] - + - + - + [2 3 , 1, 2] - + - + - + [2 5 ] - + - + 1 1 Statement 4 ♯[2 k ] L R 1,N = k+1 ∑ i=1 ♯[2, 2, . . .. . . , 1 i th , . . . , 2 k+1 orders ] L R 1,N for 2k + 1 ≤ N = k+1 ∑ i=1 ♯[2 i-1 , 1, 2 k-i+1 ] L R 1,N for 2k + 1 ≤ N ( 20 
)
] - + - + - + [2 6 ] - + 1 1 4 4 [2 6 , 1] - + - + 1 1 Statement ♯[1 N-k+1 ] L R 1,N =    1 if k = 1 2 if k = 2 4 27 (k + 1) × 3 k for 3 ≤ k ≤ N+1 2 ( 21 
)
[2 7 ] 1 1 4 4 [2 7 , 1] - + 1 1 Remark We call u k = ♯[1 N-k+1 ] L R 1,N .
For k > 2, then u k is the sequence A120926 On-line Encyclopedia of integer Sequences : it is the number of sequences where 0 is isolated in ternary words of length N written with {0, 1, 2}.

These statements show that first the set L R 1,N is an interesting set to be considered for dynamical systems and secondly the gop are fruitful in this study. However the set

L R 2,N ={ f ∈F N such that ∀p, 0 ≤ p ≤ N -2, | f (p) -f (p + 1)| ≤ 2}
is too much large to give comparable results. Then we introduce more sophisticated sets we call sets with locally bounded range which more or less correspond to an analogue of the discrete convolution product of the local variation of f with a compact support function -→ α t .

Orbits and patterns of locally rigid function sets

Consider now the set :

L R -→ α t ,q,N ={ f ∈F N such that ∀p, 0 ≤ p ≤ N -r -1, r=t ∑ r=1 α r | f (p) -f (p + r)| ≤ q} { f ∈ F N such that ∀p,t ≤ p ≤ N -1, r=t ∑ r=1 α r | f (p) -f (p -r)| ≤ q} for the vector -→ α t = (α 1 , α 2 , . . ., α t ) ∈ N t , for q ∈ N.
TABLE 17. Numerical study of the set L R α t ,q,N for N = 10, t = 5, α 1 = 20, α 2 = 9, α 3 = 5, α 4 = 2 and α 5 = 1, for q = 20, .. The functions belonging to these sets show a kind of "rigidity": the less is q, the more "rigid" is the function, this "rigidity" being modulated by the vector -→ α t . Furthermore, the maximal length of a periodic orbit increases with q, and so the number of gop ♯G (L R -→ α t ,q,N ) and the maximal modulus of the gop.

Remark

Using this generalized notation, one has : L R 1,n = L R 1,1,n and L R 2,n = L R 1,2,n .

As an example, we explore numerically the case : N = 10, t = 5, α 1 = 20, α 2 = 9, α 3 = 5, α 4 = 2 and α 5 = 1, for q = 20, . . ., 142. The results are displayed in Table 17. In this Table "modulus" means the maximal modulus of the gop belonging to this set for the corresponding value of q in the row, "gop number" stands for ♯G (L R -→ α t ,q,N ) and "functions number" for ♯L R -→ α t ,q,N . One can point out that for the particular function -→ α t of the example; it is possible to find 10 intervals I 1 , I 2 , . . . , I 10 ⊂ N such that if q ∈ I r then there is no periodic orbit whose period is strictly greater than r, (e.g., I 6 = [[74, 87]]). Furthermore it is possible to split these intervals into subintervals I r,s in which ♯G L R -→ α t ,q,N is constant when q thumbs I r,s . This is not the case for ♯L R -→ α t ,q,N .

CONCLUSION

A discrete dynamical system associated to a function on finite ordered set X can only exhibit periodic orbits. However the number of the periods and the length of each are not easily predictable. We formalise such a gop as the ordered set of periods when the initial value thumbs X in the increasing order. We can predict by means of closed formulas, the number of gop of the set of all the function from X to itself. We also explore, using the brute force of computers, some subsets of locally rigid functions on X , for which interesting patterns of periodic orbits are found. Further study is needed to understand the behaviour of dynamical systems associated to functions belonging to these sets. 
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 1 FIGURE 1. Graph of the map f (x) = 4x(1x) on [0, 1]

FIGURE 2 .

 2 FIGURE 2. Invariant measure of the logistic map

Definition 5

 5 For example, for N = 11, the class of the gop [2, 2, 1, 3] 11 contains the following few of many functions defined in Tables 5, 6 and 7. The periodic orbit which are encountered have the same length nevertheless there are different. Let be A = [ω 1 , . . ., ω p ] N a gop.

FIGURE 3 .

 3 FIGURE 3. Branch of the tree for the construction of the gop with ω 1 = 1 on G (F 5 )

  And finally we have the relation a + e ≤ a which is impossible. If a < f 2 (a) < f (a) then there exist two non-zero integers e and e ′ such that f 2 (a) = a + e and f (a) = f 2 (a) + e ′ . Thus, f (a)e ≤ f 3 (a) ≤ f (a) + e. That is f (a)e ≤ a ≤ f (a) + e. But f (a)e = a + e ′ . And finally we have the relation a + e ′ ≤ a which is impossible.

  [2 k ] the sum of the cardinals of all the classes of the gop of the form [2, 2, . . .. . . , 1 i th , . . ., 2 k+1 orders ] which exist.

TABLE 1 .

 1 Coexisting

		periodic orbits found using 1,000 random
	initial points for double precision numbers	
	Period	Orbit	Relative Basin size
	1 {0} (unstable fixed point) 15,784,521 Scattered over the interval	596 over 1,000 404 over 1,000

TABLE 2 .

 2 Coexisting periodic orbits for the discretization with regular meshes of N = 9, 10 and 11 points

	N Period	Orbit	Basin size
	9 9 9 10 10 11 11	1 1 1 1 2 1 4 {3, 8, 6, 9} {0} {6} {3, 7} {0} {3, 8} {0}	3 over 9 2 over 9 4 over 9 2 over 10 8 over 10 3 over 11 8 over 11

TABLE 3 .

 3 Coexisting periodic orbits for the discretization with regular meshes of N = 99, 100 and 101 points

	N Period	Orbit	Basin size
	99 99 100 100 100 100 101 101 101	1 10 {3, 11, 39, 93, 18, 58, 94, 15, 50, 97} {0} 1 {0} 1 {74} 6 {11, 39, 94, 18, 58, 96} 7 {7, 26, 76, 70, 82, 56, 97} 1 {0} 1 {75} 1 {16, 61, 95}	3 over 99 96 over 99 2 over 100 2 over 100 72 over 100 24 over 100 3 over 101 2 over 101 96 over 101

TABLE 4 .

 4 Coexisting periodic orbits for the discretization with regular meshes of N = 1, 999;2, 000 and 2, 001 points

	N Period	Orbit	Basin size
	1,999 1,999 1,999 2,000 2,000 2,000 2,000 2,000 2,001 2,001 2,001 2,001 2,001 2,001	1 4 8 {3; 11; 43; 168; 615; 1, 702; 1, 008; 1, 997} 1,006 over 1,999 3 over 1,999 {0} 990 over 1,999 {554; 1, 601; 1, 272; 1, 848} 1 2 over 2,000 {0} 1 14 over 2,000 {1, 499} 2 138 over 2,000 {691; 1, 808} 3 6 over 2,000 {276; 1, 221; 1, 900} 8 {3; 11; 43; 168; 615; 1, 703; 1, 008; 1, 998} 1,840 over 2,000 1 5 over 2,001 {0} 1 34 over 2,001 {1, 500} 2 92 over 2,001 {691; 1, 809} 608 over 2,001 8 {3; 11; 43; 168; 615; 1, 703; 1, 011; 1, 999} 18 263 over 2,001 {35; 137; 510; 1, 519; 1, 461; 1, 574; . . .} 25 {27; 106; 401; 1, 282; 1, 840; 588; . . .} 1,262 over 2,001

TABLE 5 .

 5 Orbits and components of a function belonging to F 11 with gop [2, 2, 1, 3] 11 .

	Function	orbit/component/nature
	→ 6 → 3 → 2 → 5 → 8 → 10 → 9 → 4 → 7 10 → 5 → 6	period-2 orbit : {6, 9} period-2 orbit : {5, 10} {1, 3, 5, 10} attractive attractive {0, 6, 9} fixed point : {2} repulsive {2} period-3 orbit : {4, 8, 7} {4, 8, 7} repulsive

TABLE 6 .

 6 Orbits

	Function	orbit/component/nature
	→ 4 → 2 → 7 → 3 → 8 → 10 → 5 10 → 6 → 1 → 4 → 2	period-2 orbit : {4, 8} period-2 orbit : {2, 7} fixed point : {3}	attractive {1, 2, 7, 9} attractive {0, 4, 8} {3} repulsive

and components of a function belonging to F 11 with gop [2, 2, 1, 3] 11 . period-3 orbit : {5, 10, 6} {5, 10, 6} repulsive

TABLE 7 .

 7 Orbits and components of a function belonging to F 11 with gop [2, 2, 1, 3] 11 .

	Function	orbit/component/nature
	0 → 9 1 → 6 2 → 4 3 → 7 4 → 10 5 → 3 6 → 1 7 → 5 8 → 2 10 → 10 9 → 0	period-2 orbit : {0, 9} period-2 orbit : {1, 6} fixed point : {10} period-3 orbit : {3, 7, 5}	repulsive repulsive {2, 4, 8, 10} attractive {0, 9} {1, 6} {3, 7, 5} repulsive

TABLE 8 .

 8 Orbits and components of a function belonging to F 8 with gop [2, 1, 4] 8 . The set of all the global orbit patterns of

	Function	orbit/component/nature
	0 → 1 1 → 0 2 → 0 3 → 3 4 → 5 5 → 6 7 → 4 6 → 7	period-2 orbit : {0, 1} fixed point : {3} period-4 orbit : {4, 5, 6, 7} {4, 5, 6, 7} repulsive attractive {0, 1, 2} repulsive {3}
	Definition 3	

TABLE 9 .

 9 Algorithm for the threshold function construction for the gop [2 2 , 1, 3] 11 .

	First step	Second step	Third step	Fourth step	Fifth step
	Construction of				
	the first canoni-				

TABLE 10 .

 10 Ordered gop for N = 5 with modulus and modulus-ω 1

  ] 50 = 29, 775, 702, 147, 667, 389, 218, 762, 343, 520, 975, 006, 348, 329, 578, 044, 480, 000, 000, 000, 000, 000. ♯[5, 2, 10, 8, 15, 2, 3] 50 ∼ = 2.98 × 10 63 among the 8.88 × 10 84 functions of F 50 .

TABLE 11 .

 11 Numbering the locally rigid functions for

TABLE 12 .

 12 Numbering the locally rigid functions forf ∈ L R 1,5 , f ∈ L R 1,6 , f ∈ L R 1,7 .

			1,4 .					
	g.o.p.	N=1 N=1 N=2 N=2 N=3 N=3 N=4 N=4
	Total number		1		4		17	68
	[1]	1	+	2	+	7	+	+
	[1 2 ] [1 3 ] [1 4 ] [2]	----	+ + + +	1 --1	+ + + 1	4 1 -4	+ + + 4	+ + + 18
	[2, 1]	-	+	-	+	1	1	4
	[1, 2]	-	+	-	+	-	+	+
	[2 2 ]	-	+	-	+	-	+	1
	g.o.p.		N=5 N=5 N=6 N=6	N=7 N=7
	Total number		259		950		387
	[1]		95	+ 340	+ 1,193	+
	[1 2 ] [1 3 ] [1 4 ] [1 5 ] [1 6 ] [1 7 ] [2]		50 16 4 1 --70	+ 174 + 58 + 16 + 4 + 1 + -70 264 264 + + + + + +	600 204 60 16 4 1 952 952 + + + + + +
	[2, 1]		12	18	45	70	166 264
	[1, 2]		6	+	25	+	98	+
	[2 2 ] [2 2 , 1] [1, 2 2		4 1	4 1	18 4	18 4	70 17	70 18

TABLE 13 .

 13 Numbering the locally rigid functions forf ∈ L R 1,8 , f ∈ L R 1,9 , f ∈ L R 1,10 .

	g.o.p.	N=8	N=8	N=9	N=9	N=10	N=10
	Total number		11,814		40,503		13,6946
	[1]	4,116	+ 14,001	+ 47,064	+
	[1 2 ] [1 3 ] [1 4 ] [1 5 ] [1 6 ] [1 7 ] [1 8 ] [1 9 ] [1 10 ] [2]	2,038 700 214 60 16 4 1 --3,356	+ + + + + + + + + 3,356 11,580 11,580 39,364 6,852 + 22,806 2,366 + 7,896 742 + 2,520 216 + 754 60 + 216 16 + 60 4 + 16 1 + 4 -+ 1	+ + + + + + + + + 39,364
	[2, 1]	590	952	2,062	3,356	7,072	11,580
	[1, 2]	362	+	1,294	+	4,508	+
	[2 2 ] [2 2 , 1] [1, 2 2 ] [2, 1, 2]	264 62 6 2	264 70 + +	952 222 28 14	952 264 + +	3,356 770 113 69	3,356 952 + +
	[2 3 ] [2 3 , 1] [1, 2 3 ]	18 4 -	18 4	70 18	70 18	264 69	264 70

TABLE 14 .

 14 Numbering the locally rigid functions forf ∈ L R 1,11 , f ∈ L R 1,12 , f ∈ L R 1,13 .

	g.o.p.	N=11	N=11	N=12	N=12	N=13	N=13
	Total number		457,795		1,515,926		4,979,777
	[1]	156,629	+ 516,844	+ 1,693,073	+
	[1 2 ] [1 3 ] [1 4 ] [1 5 ] [1 6 ] [1 7 ] [1 8 ] [1 9 ] [1 10 ] [1 11 ] [1 12 ] [1 13 ] [2]	75,292 26,098 8,434 2,756 756 216 60 16 4 1 --132,104 132,104 438,846 + 246,762 + 85,556 + 27,904 + 8,658 + 2,590 + 756 + 216 + 60 + 16 + 4 + 1 + -	+ + + + + + + + + + + + 438,846 1,445,258 1,445,258 803,706 + 278,580 + 91,488 + 28,738 + 8,730 + 2,592 + 756 + 216 + 60 + 16 + 4 + 1 +
	[2, 1]	23,941	39,364	80,108	132,104	265,548	438,846
	[1, 2]	15,423	+	51,996	+	173,298	+
	[2 2 ] [2 2 , 1] [1, 2 2 ] [2, 1, 2]	11,580 2,634 429 293	11,580 3,356 + +	39,364 8,883 1,555 1,142	39,364 11,580 + +	132,104 29,659 5,478 4,227	132,104 39,364 + +
	[2 3 ] [2 3 , 1] [1, 2 3 ] [2, 1, ]	952 255 7 2	952 264 + +	3,356 899 35 16	3,356 952 + +	11,580 3,098 152 86	11,580 3,356 + +
	[2 2 , 1, 2] [2 4 ] [2 4 , 1] [1, 2 4 ] [2, 1, ]	-70 18 --	+ 70 18 + +	2 264 70 --	+ 264 70 + +	20 952 263 1 -	+ 952 264 + +
	[2 2 , 1, 2 ] [2 3 , 1, 2] [2 5 ] [2 5 , 1] [1, 2 5	--4 1	+ + 4 1	--18 4	+ + 18 4	--70 18	+ + 70 18

TABLE 15 .

 15 Numbering the locally rigid functions for f ∈ L R 1,14 , f ∈ L R 1,15 .

	g.o.p.	N=14	N=14	N=15	N=15
	Total number		16,246,924		52,694,573
	[1]	5,511,218	+ 17,841,247	+
	[1 2 ] [1 3 ] [1 4 ] [1 5 ] [1 6 ] [1 7 ] [1 8 ] [1 9 ] [1 10 ] [1 11 ] [1 12 ] [1 13 ] [1 14 ] [1 15 ] [2]	2,603,258 901,802 297,728 94,440 29,050 8,746 2,592 756 216 60 16 4 1 -4,725,220	+ + + + + + + + + + + + + + 4,725,220 15,352,392 15,352,392 8,391,360 + 2,904,592 + 962,888 + 307,848 + 95,676 + 29,140 + 8,748 + 2,592 + 756 + 216 + 60 + 16 + 4 + 1 +
	[2, 1]	873,149	1,445,258	2,851,350	+
	[1, 2]	572,109	+	1,873,870	+
	[2 2 ] [2 2 , 1] [1, 2 2 ] [2, 1, 2]	438,846 98,135 18,873 15,096	438,846 132,104 + +	1,445,258 322,310 63,967 52,569	1,445,258 438,846 + +
	[2 3 ] [2 3 , 1] [1, 2 3 ] [2, 1, ]	39,364 10,460 605 389	39,364 11,580 + +	132,104 34,845 2,282 1,596	132,104 39,364 + +
	[2 2 , 1, 2] [2 4 ] [2 4 , 1] [1, 2 4 ] [2, 1, ]	126 3,356 942 8 2	+ 3,356 952 + +	641 11,580 3,292 44 18	+ 11,580 3,356 + +
	[2 2 , 1, 2 ] [2 3 , 1, 2] [2 5 ] [2 5 , 1] [1, 2 5 ] [2 6 ] [2 6 , 1]	--264 70 -18 4	+ + 264 70 + 18 4	2 -952 264 -70 18	+ + 952 264 + 70 18

TABLE 16 .

 16 Numbering the locally rigid functions for f ∈ L R 1,16 .

	g.o.p.	N=16	N=16
	Total number		170,028,792
	[1]	57,477,542	+
	[1 2 ] [1 3 ] [1 4 ] [1 5 ] [1 6 ] [1 7 ] [1 8 ] [1 9 ] [1 10 ] [1 11 ] [1 12 ] [1 13 ] [1 14 ] [1 15 ] [1 16 ] [2]	26,932,398 9,314,088 3,097,650 996,764 312,456 96,096 29,158 8,748 2,592 756 216 60 16 4 1 49,610,818	+ + + + + + + + + + + + + + + 49,610,818
	[2, 1]	9,255,822	15,352,392
	[1, 2]	6,096,570	+
	[2 2 ] [2 2 , 1] [1, 2 2 ] [2, 1, 2]	4,725,220 1,051,686 213,975 179,597	4,725,220 1,445,258 + +
	[2 3 ] [2 3 , 1] [1, 2 3 ] [2, 1, ]	438,846 114,798 8,284 6,146	438,846 132,104 + +
	[2 2 , 1, 2] [2 4 ] [2 4 , 1] [1, 2 4 ] [2, 1, ]	2,876 39,364 11,246 204 106	+ 39,364 11,580 + +
	[2 2 , 1, 2 ] [2 3 , 1, 2] [2 5 ] [2 5 , 1] [1, 2 5 ] [2 6 ] [2 6 , 1] [2 7 ] [2 7 , 1] [2 8 ]	22 2 3,356 951 1 264 70 18 4 1	+ + 3,356 952 + 264 70 18 4 1