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Abstract

This paper considers the sliding mode control of uncertain systems with single or
multiple, constant or time-varying state-delays, submitted to additive perturbations.
The sliding surface is designed so to maximize the calculable set of admissible delays.
The conditions for the existence of the sliding regime are studied by using Lyapunov-
Krasovskii functionals and Lyapunov-Razumikhin functions. LMIs are used for the
optimization procedure. Two examples illustrate the proposed method.
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1 Introduction

Time delays commonly occur in many dynamical systems and are a source
of instability and poor performances even in a linear model [28]. For the
last decade, several works have proposed criteria for the robust stabilization
of time delay systems: for linear models with parameter uncertainties, see
[4,13,18,21,25,26] (Lyapunov-Krasovskii approach leading to LMIs) and [10]
(comparison approach). The resulting control laws are of continuous, often
memoryless, feedback type (see [11,30] for surveys). The results concerning
robustness with respect to external disturbances rely on either H∞ design (see
[20,26] and references therein), also leading to Riccati equations and LMIs, or
structural approaches, such as disturbance decoupling using models over rings
(see [7,8,29] and references therein).

The sliding mode control approach [35], based on the use of discontinuous con-
trol laws (relays), is known to be an efficient alternative way to tackle many
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challenging problems of robust stabilization. For instance, an appropriate slid-
ing mode strategy can achieve stabilization by “dominating” nonlinear terms
and additive disturbances, provided some appropriate “matching conditions”
hold (roughly speaking, the disturbances must belong to the space spanned
by the input function). However, the combination of delay phenomenon with
relay actuators makes the situation much more complex (see for instance [12]
and the survey paper [31]) : designing a sliding controller without taking delays
into account may lead to unstable or chaotic behaviors or, at least, results in
highly chattering behaviors [9,12]. Even if the general framework of differential
inclusions has been proposed in this case [17], the concrete control results are
not so numerous [1,2,6,9,14,15,19,23,33,34]. Some others, that are relying on
the Razumikhin’s approach for the reaching phase analysis, are even needing
complementary proofs [32] : the finite-time convergence of the sliding manifold
is not ensured by this way and such combination with Filipov’s theory has not
been deeply studied. In [3], the considered systems have output delays and re-
lay actuators. In [6,33], as here, results are considering delayed state variables,
but they are independent of the delay value and, consequently, may be more
conservative than delay-dependent results. In [34], relay is involved in the only
identification procedure, then replaced by a finite spectrum assignment control
[24].

The present paper considers uncertain systems with single / multiple, con-
stant or time-varying state-delays and additive perturbations which may be
nonvanishing. It aims at designing the sliding surface in such a way that the
calculable set of admissible delays is maximized where “admissible” means
here those that don’t destabilize the closed-loop, relay-delay system.

The paper is organized as follows: after some notations, Section 3 is devoted to
preliminary results (transformation of the original system into regular form).
Then, in Section 4, a sliding mode controller is developed by means of an LMI
approach. The reduced system is proven to be asymptotically stable for any
value of the delay less than a bound which is obtained by solving a convex
optimization problem. This result is generalized to multiple delays. Section 5
presents a sliding mode controller for time-varying delays. Lastly, in Section
6, two illustrative examples show the effectiveness of the method.

Among the original results, note that taking varying delays into considera-
tion (Section 5) allows us to deal with a large class of uncertainties on the
delay value. This is achieved by using a function of Lyapunov-Razumikhin’s
[17] for the stability study of the reduced system (the system on the surface).
This makes the difference with the Lyapunov-Krasovskii’s functionals (used
in Section 4 for a constant delay h), since this last approach generally needs

additional assumptions on the delay derivative (i.e.,
.

h(t) ≤ d < 1) [27]. More-
over, in Section 5, the implemented controller involves the upperbound of the
delay: then, its law of variation has not to be known, which is convenient for
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robustness issues. The same approach could have been followed in Section 4.
But, in order to avoid an unwieldly presentation, we prefered to restrict Sec-
tion 4 to the case of a known, constant delay, which of course allows for less
conservative results.

2 Notations and assumptions

In this paper, the following system, with possibly time-varying delay h =
h(t) ≥ 0, will be considered:





.
x(t) = Ax(t) + Adx(t − h) + Bu(t) + f1(t, xt), t > 0,

x(t) = φ(t), for t ∈ [−hsup, 0] , hsup = supt≥0 h(t), .
(2.1)

The following notations are used: x(t) ∈ IR n; A and Ad are constant n × n

matrices; B is a n × m matrix, u ∈ IR m is the input vector; f1 is a term
representing the neglected dynamics and external disturbances. The state at
time t is the function xt defined by: xt : [−h, 0] → IR n, xt(θ) = x(t + θ), for
θ ∈ [−h, 0]. φ = xt=0 is the initial function defined over [−hsup, 0] , bounded
but possibly eventually discontinuous.

‖e‖ denotes the Euclidean norm of the n-vector e, and ‖M‖ = sup
‖e‖=1

‖Me‖ is

the spectral norm of the n × n matrix M . Finally, M̃ denotes an orthogonal
complement of M (i.e., M̃T M = 0).

We will use the following assumptions:

A1) The pair (A + Ad, B) is controllable.
A2) The perturbation term f1 satisfies the classical matching conditions, i.e.

f1(xt, t) = Bf(xt, t), (2.2)

and is bounded, as follows, by a known functional Ψ of xt :

‖f‖ < Ψ(xt). (2.3)

A3) B is full-rank: rank(B) = m.

3 Regular form

The aim is to design a sliding mode controller for (2.1). We first transform
the original system into a special form, appropriate for sliding mode control
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(classically called regular form [22]). Let us choose the following sliding surface,
based on some matrix X to be chosen later (via some optimization):

s(x) = Sx = BT X−1x = 0,

where S ∈ R
(m)×n. We also define a nonsingular transformation

z(t) = Mx(t), det M 6= 0, (3.1)

where

M =




B̃T

S


 . (3.2)

Lemma 1 The original system (2.1) is equivalent to

ż(t) = Âz(t) + Âdz(t − h) + B̂(u(t) + f), (3.3)

where

Â =




Â11 Â12

Â21 Â22


 =




B̃T AXB̃(B̃T XB̃)−1 B̃T AB(SB)−1

SAXB̃(B̃T XB̃)−1 SAB(SB)−1


 ,

Âd =




Âd11 Âd12

Âd21 Âd22


 =




B̃T AdXB̃(B̃T XB̃)−1 B̃T AdB(SB)−1

SAdXB̃(B̃T XB̃)−1 SAdB(SB)−1


 ,

B̂ =




0

SB


 . (3.4)

Proof. The complete proof can be found in [5] as well as [14,15].

In the following, we first present a sliding mode control for a system with one
constant delay (Section 4) , then the result is extended to the case of systems
with several delays and, later on, to a time-varying delay (Section 5).

4 Sliding mode control synthesis: case of a constant delay

In this section, we consider that the delay h is constant and known (see the
last paragraph of the introduction).

Theorem 1 Let Λ ∈ R
n×n be a Hurwitz matrix, P the solution of the Lya-

punov equation
ΛT P + PΛ = −I,
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and m1 > 0 a real number. Assume that conditions (A1) − (A2) − (A3) hold.
Then, with the control law

u(t) = −(SB)−1

(
SAx(t) + SAdx(t − h) − Λs + m

Ps

‖Ps‖

)
, (4.1)

where m = m1 + ‖SB‖Ψ(xt), system (2.1) exhibits an asymptotically stable
sliding mode for any value of the delay h such that 0 ≤ h < hmax, where hmax

is the solution of the optimization problem:

h−1
max = min(h−1) (4.2)

subject to the constraints (with σ ∈ IR ):




h−1
[
X(A + Ad)

T + (A + Ad)X
]

XAT
d X(A + Ad)

T

AdX −X 0

(A + Ad)X 0 −X




−σ




BBT 0 0

0 BBT 0

0 0 BBT




< 0,

X > 0.

(4.3)

Remark 1 In practice, the stable matrix Λ allows for choosing the dynamics
of s when the solution of the system is far from the manifold s(x) = 0.

The proof is decomposed into two subproblems: firstly, prove the attractivity
of the surface in finite time; secondly, prove the asymptotic stability of the
reduced system (on the surface). Note that, since the system has bounded
initial functions and is linear during the reaching phase, it cannot diverge
during this phase (in finite time). This property would not hold anymore if
the system was nonlinear [35].

4.1 Attractivity of the surface

Theorem 2 Under assumptions (A1)− (A2)− (A3), the control (4.1) makes
the surface s(x) = 0 stable and globally attractive in finite time.

Proof. Let us consider the function

V (t) = sT (x(t))Ps(x(t)). (4.4)

Its derivative along the trajectories of (3.3) with (4.1) is
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V̇ (t) = sT (x)(ΛT P + PΛ)s(x) + 2sT (x)P (SBf − m
Ps

‖Ps‖
).

Then :

V̇ (t) = −sT (x)s(x) + 2sT (x)P (SBf − m
Ps

‖Ps‖
). (4.5)

As f is bounded, we get :

V̇ (t) ≤ 2(‖SB‖Ψ(xt) − m) ‖Ps‖ ,

and then

V̇ (t) ≤ −2m1 ‖Ps‖ . (4.6)

We have the following inequality :

‖Ps‖2 = (P
1

2 s)T (P
1

2 s) ≥ λmin(P )
∥∥∥P

1

2 s
∥∥∥
2
.

As V (t) = sT Ps, then ∥∥∥P
1

2 s
∥∥∥
2

= V (t).

Finally, we get

V̇ (t) ≤ −2m1

√
λmin(P )

√
V (t).

This last inequality is known to prove the finite time convergence of the system
(3.3) towards the surface [35].

4.2 Asymptotic stability of the reduced system

The vector z appearing in the regular form (3.3) is partitioned into z = [z1

z2]
T , where z1 ∈ IR n−m, z2 ∈ IR m.

Once in sliding mode, the equations s(x) = ṡ(x) = 0 lead to the reduced
system:

ż1(t) = Â11z1(t) + Âd11z1(t − h). (4.7)

Theorem 3 Under assumptions (A1) − (A2), the reduced system (4.7) is
asymptotically stable for all delays h < hmax, where hmax is solution of the
following generalized eigenvalue problem

h−1
max = min

X,σ
(h−1) (4.8)

subject to the constraints (4.3).
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Proof. Consider the Lyapunov-Krasovskii functional

V (t) = yT (t)Py(t) +
∫ t

t−h

∫ t

s
zT
1 (w)ÂT

d11PQ−1PÂd11z1(w) dw ds, (4.9)

where y(t) = z1(t) +
∫ t
t−h Âd11z1(w) dw, P,Q ∈ IR n×nare two positive-definite

matrices. Note that

ẏ(t) = B̃T (A + Ad)XB̃(B̃T XB̃)−1z1(t),

= (Âd11 + Â11)z1(t). (4.10)

Let us denote Z = Âd11 + Â11. Then, the time-derivative of V (t) is

V̇ (t) = z1(t)(Z
T P + PZ + hÂT

d11PQ−1PÂd11)z1(t)

+ 2
∫ t

t−h
zT
1 (w)ÂT

d11PZz1(t) dw (4.11)

−
∫ t

t−h
zT
1 (w)ÂT

d11PQ−1PÂd11z1(w) dw.

By using the inequality (see lemma 3 in the appendix)

2
∫ t

t−h
zT
1 (w)ÂT

d11PZz1(t)dw ≤
∫ t

t−h
zT
1 (w)ÂT

d11PQ−1PÂd11z1(w) dw

+ hz1(t)Z
T QZz1(t),

the following estimate is derived:

V̇ (t) ≤ z1(t)Mz1(t), (4.12)

where M = ZT P + PZ + h(ÂT
d11PQ−1PÂd11 + ZT QZ).

We can conclude that, if there exists h∗ a positive real number and three
positive definite matrices X,P,Q such that M < 0, then the reduced system
is asymptotically stable for any value of the delay h such that 0 ≤ h ≤ h∗.

Nevertheless, choosing the parameters (P,Q,X) so as to optimize the upper-
bound h∗ can be a very hard task. In the following, we propose to use a more
particular form of (4.9), taking P = Q = (B̃T XB̃)−1. By this way, the op-
timization problem is transformed into a convex one: indeed, by post- and
pre-multiplying M by P−1 (which is positive definite), the inequality M < 0
is transformed into the following one:

h−1(B̃T X(A + Ad)
T B̃ + B̃T (A + Ad)XB̃)

+B̃T X(A + Ad)
T B̃(B̃T XB̃)−1B̃T (A + Ad)XB̃

+B̃T XAT
d B̃(B̃T XB̃)−1B̃T AdXB̃ < 0.

(4.13)
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By using the Schur’s complement, the last inequality is shown to be equivalent
to

LT




h−1(H + HT ) XAT
d HT

AdX −X 0

H 0 −X




L < 0,

with L =




B̃ 0 0

0 B̃ 0

0 0 B̃




, and H = (A + Ad)X

(4.14)

which is also equivalent to (4.3). This last inequality is an LMI in X and σ

and can be solved very efficiently by convex optimization algorithms.

Remark 2 If we consider the particular case h = 0, the LMI formulation
(4.3) is not convenient anymore but its equivalent equation (4.12) reduces to
the simple Lyapunov equation M = ZT P +PZ < 0 with Z = Âd11 + Â11. This
is a classical result for systems without delay [35].

4.3 Extension to the multiple delay case

Consider now the more general system with k constant delays hi, h = maxi(hi),





.
x(t) = Ax(t) +

∑k
i=1 Adix(t − hi) + Bu(t) + f1, for t > 0,

x(t) = φ(t), for t ∈ [−h, 0] ,
(4.15)

where Adi are k constant n×n matrices, the other notations being unchanged.
The assumptions (A1) and (A2) will be replaced by:

(A′1) (A +
∑k

i=1 Ad, B) is controllable.

(A′2) ‖f‖ < Ψ(xt).

Theorem 4 Let Λ ∈ R
n×n be a Hurwitz matrix, P the solution of the Lya-

punov equation

ΛT P + PΛ = −I,

and m1 > 0 a real number. Assume that conditions (A
′

1)− (A
′

2)− (A3) hold.
Then, with the control law

u(t) = −(SB)−1(−Λs(x) + SAx(t) +
k∑

i=1

SAdix(t − hi) + m
Ps

‖Ps‖
), (4.16)
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where m = m1 + ‖SB‖Ψ(xt), system (4.15) exhibits an asymptotically stable
sliding mode for any values of the delays hi such that 0 ≤ hi < hi max (i =
1, . . . , k), where the parameters hi max satisfy the following LMIs:




JT + J h1maxXAT
d1 ... hkmaxXAT

dk

∑k
i=0 himaxJ

T

h1maxAdX −h1maxX 0 0 0
... 0

. . . 0 0

hkmaxAdkX 0 0 −hkmaxX 0
∑k

i=0 himaxJ 0 0 0 −
∑k

i=0 himaxX




−σ




BBT 0 0 0 0

0 BBT 0 0 0

0 0
. . . 0 0

0 0 0 BBT 0

0 0 0 0 BBT




< 0

X > 0

(4.17)

where J = (A +
∑k

i=0 Adi)X, σ ∈ IR .

Proof. The proof is similar to the proof of Theorem 1.

5 Sliding mode control synthesis: case of a time-varying delay.

In this section, we consider that the delay h = h(t) is varying. Its variation
law can be unknown, but it is supposed to remain uniformly bounded by some
constant hmax. The system is then defined by





.
x(t) = Ax(t) + Adx(t − h(t)) + Bu(t) + f1, t > 0,

x(t) = φ(t), for t ∈ [−hmax, 0] ,

0 ≤ h(t) ≤ hmax for t ∈ [−hmax, +∞[.

(5.1)

Theorem 5 Let Λ be a Hurwitz matrix, P the solution of the Lyapunov equa-
tion ΛT P + PΛ = −I, and m1 > 0 a real number. Assume that conditions
(A1) − (A3) hold. Then, with the control law
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u(t) =−(SB)−1

(
SAx(t) − Λs + m

Ps

‖Ps‖

)
,

m = m1 + ‖SB‖ sup
s∈[−hmax,0]

(Ψ(xt(s)))

+ ‖SAd‖ sup
s∈[−hmax,0]

(‖x(t + s)‖), (5.2)

system (5.1) exhibits an asymptotically stable sliding mode for any delay h(t)
such that h(t) ∈ [0, hmax], where hmax is the solution of the following optimiza-
tion problem

h−1
max = min(h−1) (5.3)

with the LMI-constraints




αX AX

XAT X


 − γ1




BBT 0

0 BBT


 > 0, (5.4)




αX AdX

XAT
d X


 − γ2




BBT 0

0 BBT


 > 0, (5.5)




h−1(HT + H + (α + β)X AdX

XAT
d −1

2
X


 − σ




BBT 0

0 BBT


 < 0, (5.6)

X > 0, (5.7)

where H = (A + Ad)X, γ1, γ2, σ ∈ IR , α, β ∈ IR +.

Note that if α, β ∈ IR + is fixed, then we have to deal with a generalized
eigenvalue problem (GEVP). Then, a relaxation-type theorem to α, β can be
used so to to improve the upperbound of hmax.

Proof. As previously, the proof is achieved in two parts: attractivity of the
surface s(x) = 0 and stability of the reduced system. The Proof of the first
part can be done as previously, so we won’t repeat it here. The proof of the
second part is the following:

Once in sliding mode, the equations s(x) = ṡ(x) = 0 lead to the reduced
system:

ż1(t) = Â11z1(t) + Âd11z1(t − h). (5.8)

By using the Leibnitz-Newton formula, we have:

.
z1(t) = (Â11 + Âd11)z1(t) −

∫ t

t−h
Âd11ż1(v)dv. (5.9)
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So, the reduced system can be rewritten in the form

ż1(t) = (Â11 + Âd11)z1(t) −
∫ t

t−h
Âd11Â11z1(v)dv

−
∫ t

t−h
Âd11Âd11z1(v − h)dv. (5.10)

Consider the following function

V (t) = zT
1 (t)Pz1(t), (5.11)

where P is a symmetric, positive-definite matrix of appropriate dimension.
Following Razumikhin’s approach, we assume that the inequality

V (x(t + θ)) < qV (x(t)), (5.12)

with q > 1 holds for any θ ∈ [−hmax, 0]. The time-derivative of V is

V̇ = zT
1 (t)(ZT P + PZ)z1(t) − 2

∫ t

t−h
zT
1 (t)PÂd11Â11z1(v)dv

− 2
∫ t

t−h
zT
1 (t)PÂ2

d11z1(v − h)dv,

where, again, Z = Â11 + Âd11.

Using Lemma 3 and inequality (5.12), we derive the following upperbounding
of V̇ (t):

V̇ (t) < zT
1 (t)Nz1(t), (5.13)

where N = ZT P+PZ+hα−1PÂd11Â11SÂT
11Â

T
d11P+qh(α+β)P+hβ−1PÂ2

d11SÂ2T
d11P.

We can conclude that if there exist h∗ and q such that N is negative-definite,
then the reduced system is uniformly asymptotically stable.

By post- and pre-multiplying by S, and fixing S = (B̃T XB̃), N < 0 becomes:

SZT +ZS+hα−1Âd11Â11SÂT
11Â

T
d11+qh(α+β)S+hβ−1Â2

d11SÂ2T
d11 < 0. (5.14)

Let us assume that (5.4) and (5.5) hold. Using Lemma 2, these inequalities
can be reformulated as, respectively,

B̃T AXB̃(B̃T XB̃)−1B̃T XAT B̃ < α(B̃T XB̃),

and

B̃T AdXB̃(B̃T XB̃)−1B̃T XAT
d B̃ < β(B̃T XB̃).
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From these two inequalities and (5.14), we prove that

(B̃T X(A + Ad)
T B̃ + B̃T (A + Ad)XB̃) + qh(α + β)(B̃T XB̃)

+hB̃T AdXB̃(B̃T XB̃)−1B̃T XAT
d B̃ + hB̃T AdXB̃(B̃T XB̃)−1B̃T XAT

d B̃ < 0,

(5.15)
which, by virtue of Lemma 3, is equivalent to




h−1(HT + H + q(α + β)X AdX

XAT
d −1

2
X


 − σ




BBT 0

0 BBT


 < 0. (5.16)

For q = 1, this last inequality is exactly the constraint. So, by continuity, if
we assume that there are parameters X, h, σ, α, β such that (29) holds, then
there exists q1 > 1 such that (5.16) holds also. This completes the proof.

Remark 3 As in the previous Remark 2, the particular case h = 0 reduces
(5.14) to a classical Lyapunov equation concerning the stability of the reduced
system (on the surface) [4].

6 Examples

6.1 Example 1

Consider the following example:

.
z(t) = Az(t) + Adz(t − h) + B(u(t) + f(t)),

A =




2 0 1

1.75 0.25 0.8

−1 0 1




,

Ad =




−1 0 0

−0.1 0.25 0.2

−0.2 4 5




, B =




0

0

1




,

‖f(t)‖ ≤ 2, f(t) = 2 sin(t) for simulation purpose,

z(t) = 1, t ∈ [−h, 0] . (6.1)

Constant delay: By using semi-definite programming, we find that the system
(6.1) with control (4.1) is asymptotically stable for all constant delays h <

0.99. The simulation provided in Figure 1 was obtained with a first-order
integration scheme of step 0.01.
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Varying delay: Now, if we don’t restrict to constant delays, then according to
Theorem 5, the system is asymptotically stabilized by the control law (5.1)
for h(t) < 0.51 which is of course more constraining. The simulation leads to
Figures 2 and 3.

6.2 Example 2

Consider system (2.1) with a constant delay, which stabilization has been
considered in [13,16,21]:

A =




2 0

1.75 0.25


 , Ad =




−1 0

−0.1 −0.25


 , B =




1

1


 . (6.2)

As the pair (A,Ad) is not controllable, the system cannot be stabilized inde-
pendently of the delay. By applying Theorem 1, we find the results summarized
in Table 1.

Table 1
Results for Example 2

delay upperbound parameters

Theorem 1 1.65 s(x) = 4.4610−4x1(t) + 1.39210−4x2(t)

Ivanescu et al.[16] 1.46

Fu et al.[13] 0.984

Li and De Souza[21] 0.51

7 Conclusion

The contribution of this paper lays on the following, original points:

- Concerning the design of linear sliding surface, the extension of the method
[6] to the case of a delay-dependent stabilization (then, conditions are less
conservative). The gain of the surface is expressed as a solution of an LMI
problem which allows for easy computations.

- The consideration of multiple, constant delays.

- The consideration of a time-varying delay. This point is probably the most
important for robustness issues (with regard to bad delay identification). The
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proposed controller (30) does not refer to the variation law of the delay h(t),
but to its maximum value.

- The results of Section 4 can be extended to unknown constant delay, as well
as those of Section 5 to multiple delay: however, the presentation would then
turn to be cumbersome.

Lastly note that the sliding mode strategy is straightforward, easy to im-
plement and of reduced complexity since the stabilization problem has been
reduced to two subproblems of lower dimensions. This explains why the result
obtained on Example 2 improves previous ones.

8 Appendix

The following result.is used in the proofs of Theorems 3, 4, 5.

Lemma 2 (see [4] p. 33) The inequality

ŨT GŨ > 0 (8.1)

is equivalent, for some σ ∈ IR , to

G − σUT U > 0. (8.2)

Lemma 3 For two vectors x, y of R
n and a positive-definite matrix X ∈ R

n×n,

the following inequality holds:

xT y ≤ xT X−1x + yT Xy. (8.3)
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Fig. 1. Response of (6.1) with control (4.1) and h = 0.9.
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Fig. 2. Response of (6.1) with control (4.1) and h(t) < hmax = 0.51.
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Fig. 3. Implemented time-varying delay
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