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GEOMETRICALLY RATIONAL REAL CONIC BUNDLES
AND VERY TRANSITIVE ACTIONS

JEREMY BLANC AND FREDERIC MANGOLTE

ABSTRACT. We study very transitive groups of automorphisms of real geomet-
rically rational surfaces with applications to the classification of real algebraic
models of compact surfaces. We give an insight into the geometry of real parts
which is a geometry between biregular and birational geometry’s, and show
several surprising facts about it.
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1. INTRODUCTION

The aim of this paper is to study the action of birational maps on the set of
real points of a real algebraic variety. It is worthwhile to point out a common
terminological source of confusion about the meaning of what is a real algebraic
variety, see also the enlightening introduction of . From the point of view
of general algebraic geometry, a real variety X is a variety defined over the real
numbers, and a morphism is understanding to be defined over all the geometric
points. But in most of the texts in real algebraic geometry, the algebraic structure
considered corresponds to the one of a neighbourhood of the real points X (R) in
the whole complex variety, which is rather the structure of a germ of an algebraic
variety defined over R.

From this point of view it is natural to view X(R) as a compact submanifold
of R™ defined by real polynomial equations, where n is some natural integer. Likely,
it is natural to say that a map 1: X(R) — Y(R) is an isomorphism if 1 is induced
by a birational map ¥: X --» Y such that ¥ (respectively ¥~1) is regular at
any point of X (R) (respectively of Y (R)). In particular, ¢: X(R) — Y(R) is a
diffeomorphism. This notion corresponds to the notion of biregular maps defined
in [BCRIY, 3.2.6] for the structure of real algebraic variety commonly used in the
realm of real algebraic geometry.

Conversely, let M be a compact C*°-manifold. According to the Nash-Tognoli’s
theorem , every such M is diffeomorphic to a nonsingular real algebraic
subset of R™ for some m. Taking the Zariski closure in P™ and applying Hironaka’s
resolution of singularities [Hir64], we obtain that M is in fact diffeomorphic to the
set of real points X (R) of a nonsingular projective algebraic variety X defined over
R. Such a variety X is called an algebraic model of M. A natural question is, given
M, to classify the algebraic models of M up to isomorphism.
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2 JEREMY BLANC AND FREDERIC MANGOLTE

There are several recent results about the question of algebraic models and their
automorphism groups [BHO07, HMO07, HMOS|, [KM0§]. For example, when M is 2-
dimensional, and admits a real rational algebraic model, then this rational algebraic
model is unique [ Otherwise speaking, if X and Y are two rational real
algebraic surfaces, then X (R) and Y (R) are isomorphic if and only if there are
homeomorphic. Moreover, in [, the proof has been shortened by showing
that the automorphism group Aut (X (R)) has a very transitive action on X (R) for
any rational real algebraic surface X.

Definition 1.0. Let G be a topological group acting continuously on a topological
space M. We say that two n-tuples of distinct points (p1,...,pn) and (q1,...,Gn)
are compatible if there exists an homeomorphism ¢: M — M such that ¥ (p;) = g;
for each 7. Then the action of G on M is said very transitive if for any pair of
compatible n-tuples of points (p1,...,p,) and (q1,...,qn) of M, there exists an
element g € G such that g(p;) = ¢; for each i.

Recall that a real projective surface is rational if it is birationally equivalent to the
real projective plane, and that it is geometrically rational if its complexification is
birationally equivalent to the complex projective plane. The main goal of this paper
is to complete the classification of real algebraic models of surfaces by dealing with
the case of geometrically rational real projective surfaces which are non-rational.

To distinguish between the Zariski topology and the topology induced by the
embedding of X (R) as a topological submanifold of R™, we will call the later the
FEuclidean topology. In the sequel, topological notions like connectedness or com-
pactness will always refer to the Euclidean topology. We will denote by #M the
number of connected components of a compact manifold M.

The number of connected components is a birational invariant. In particular, if
X is a rational projective surface, X (R) is connected.

There is one case which shares many features with the rational case.

Theorem 1.1. Let X be a nonsingular geometrically rational real projective sur-
face, and assume that #X(R) = 2. Then the action of the group Aut(X(R)) on
X (R) is very transitive.

When #X (R) > 3, the action of the group Aut(X (R)) is in general far from very
transitive except for the case with three components for which a slight weakening
of the definition works.

Let (p1,...,pn) and (g1, ..., ¢n) be two compatible n-tuples of points of M such
that, for each i, p; and ¢; belong to the same connected component of M. We
say that G is very transitive on connected components if for any such a pair, there
exists an element g € G such that g(p;) = ¢; for each i.

Theorem 1.2. Let X be a nonsingular geometrically rational real projective sur-
face, and assume that #X (R) = 3. Then Aut (X (R)) 1s very transitive on connected
components.

When #X(R) > 3, cither any element of Aut(X(R)) preserves a conic bun-
dle structure (Theorem [6.1), or Aut(X(R)) is countable (Corollary B.9); thus
Aut (X (R)) is not even 1-transitive on connected components. Indeed, we prove
the following result in Section E
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Corollary 1.3. Let X be a nonsingular real projective surface. Then Aut (X(R))
has a very transitive action on X(R) if and only if the following two conditions

hold:

(1) X is geometrically rational, and

(2) #X(R) <2 or #X(R) = 3 for a few particular X .
Theses results apply to the classification of algebraic models of real surfaces.

Theorem 1.4. Let X,Y be two nonsingular geometrically rational real projective
surfaces, and assume that #X(R) < 2. Then X (R) is isomorphic to Y (R) if and
only if X is birational to Y and X (R) is homeomorphic to Y(R). This is false in
general when #X (R) > 3.

Recall that a nonsingular projective surface is minimal if any birational mor-
phism to a nonsingular surface is an isomorphism. We have the following rigidity
result about minimal geometrically rational real surfaces.

Theorem 1.5. Let X and Y be two minimal geometrically rational real surfaces,
and assume that either X orY is non-rational. Then, the following are equivalent:

(1) X and Y are birational.
(2) X(R) and Y(R) are isomorphic.

In the course of this work, we have classified the birational classes of real conic
bundles and corrected an error contained in the literature (Theorem p.1). As a
consequence, we get that the only geometrically rational surfaces X (R) for which
equivalence by homeomorphism implies equivalence by isomorphism are the con-
nected ones. In particular, this gives a converse statement to , Corollary 8.1].

Corollary 1.6. Let M be a compact C*°-surface. Then M admits a unique geo-
metrically rational model if and only if the following two conditions hold:

(1) M is connected, and
(2) M is non-orientable or M is orientable with genus g(M) < 1.

For M orientable with g(M) > 1, there is no result close to some unicity. Thus
we can ask what should be the simplest algebraic model for such an M. This
question is studied in the forthcoming paper [EMO0J].

Let us cite some recent works concerning automorphisms of real projective sur-
faces.

In [RV0]], it is proved that Aut (P?(R)) is generated by linear automorphisms
and certain real algebraic automorphisms of degree 5.

In it is proved that for any rational surface X, Aut(X (R)) C Diff (X (R))
is dense for the strong topology. For non geometrically rational surfaces, the group
Aut (X (R)) cannot be dense; as for most of the non-rational geometrically rational
surfaces. The cited paper left open the question of density only for some geomet-
rically rational surfaces with 2, 3, 4 or 5 connected components. One by-product
of our results is the non-density for most of the surfaces with at least 3 connected
components, see Proposition @

The paper [HMO0g] is devoted to the study of very transitive actions and unicity
of models for some kind of singular rational surfaces.
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Outline of the article. After giving some notation that will be used in the arti-
cle in Section E, we recall in Section E the classification of minimal geometrically
rational real surfaces.

Section E, which constitutes the technical heart of the paper, is devoted to conic
bundles, and especially to the minimal ones. We provide representative elements
of isomorphism classes, and explain the links between the conic bundles.

In Section ﬂ, we investigate real surfaces which admit two conic bundles. We
show in particular that these are del Pezzo surfaces, and give some description of
the possible conic bundles on these surfaces. Section ﬂ is devoted to the proof of
Theorem @ We firstly correct an existing inaccuracy in the literature, by proving
that if two surfaces admitting a conic bundle structure are birational, the birational
map may be chosen so that it preserves the conic bundle structures. Then, we
strengthen this result to isomorphisms between real parts when the surfaces are
minimal, before proving Theorem @

In Section ﬂ, we prove that if the real part of a minimal geometrically rational
has 2 or 3 connected components, its automorphism group is very transitive on con-
nected components. In Section E, we do the same work with non-minimal surfaces.
We show how to separate infinitely near points, which is certainly one of the most
counter-intuitive behaviour of our geometry, and was first observed in for
rational surfaces. We also obtain the unicity of models in many cases.

Then, in Section 97 we use all the results of the previous sections, to give the
proof of the main results stated in the introduction (except Theorem E, proved
in Section [).

2. NOTATION

In the sequel, by a variety we will mean an algebraic variety, which may be real
or complex (i.e. defined over R or C). If the converse is not expressively stated
all our varieties will be projective and all our surfaces will be nonsingular and
geometrically rational (i.e. rational over C).

Recall that a real variety X may be identified with a pair (S,0), where S is a
complex variety and o is an anti-holomorphic involution on S; by abuse of notation
we will write X = (S,0). Then, S(C) = X(C) denotes the set of complex points
of the variety, and X (R) = S(C)? is the set of real points. A point p € X may be
real (if it belongs to X (R)), or imaginary (if it belongs to X (C)\X (R)). If X(R)
is non empty (which will be the case for all our surfaces), then Pic(X) 2 Pic(5)?,
[Sil89, I.(4.5)]. As we work only with regular surfaces (i.e. ¢(X) = ¢(S) = 0),
the Picard group is isomorphic to the Néron-Severi group, and p(S) and p(X) will
denote respectively the rank of Pic(S) and Pic(X). Recall that p(X) < p(S). We
denote by Kx € Pic(X) the canonical class, which may be identified with Kg.
The intersection of two divisors of Pic(S) or Pic(X) will always denote the usual
intersection in Pic(S5).

We will use the classical notions of morphisms, rational maps, isomorphisms and
automorphisms between real or complex varieties. Moreover, if X; and X5 are two

real varieties, an isomorphism between real parts X;(R) KA X2(R) is a birational
map 9: X1 --+» Xy such that ¢ (respectively ¢»~!) is regular at any point of X;(IR)
(respectively of X3(R)). This endows X5 (R) with a structure of a germ of algebraic

variety defined over R (as in [BCR9Y, 3.2.6]), whereas the structure of X is those
of an algebraic variety.
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Considering geometry’s on algebraic variety defined over R, this notion of isomor-
phism between real parts gives an intermediate geometry in between the biregular
geometry and the birational geometry. For example, let a: X1 (R) — X5(R) be an
isomorphism, and €: Y7 --» X1, n: Yo --» X5 be two birational maps. Then the
map ¥ := e 'an is a well-defined birational map. Then ¢ can be an isomorphism
Y1(R) — Y2(R) even if nor €, nor 5 is an isomorphism between real parts. In the
same vein, let a: X;(R) — X3(R) be an isomorphism, and let 7;: Y7 — X; and
72: Yo — X5 be two birational morphisms which are the blow-ups of only real points
(which may be proper or infinitely near points of X7 and X5z). If o sends the points
blown-up by 7y on the points blown-up by 72, then 8 = (72) "tam; : Y1(R) — Y2(R)
is an isomorphism.

Using Aut and Bir to denote respectively the group of automorphisms and bi-
rational self-maps of a variety, we have the following inclusions for the groups
associated to X = (S, 0):

Aut(S) C Bir(S)
U U
Aut(X) C Aut(X(R)) C Bir(X).

By P™ we mean the projective n-space, which may be complex or real depending
on the context. It is unique as a complex variety — written P¢. However, as a
real variety, P" may either be P¢ endowed with the standard anti-holomorphic
involution, written Py, or only when n is odd, P¢ with a special involution with no
real points , written (P™, ). To lighten notation, and since we never speak about
(P, 0)(R) we write P}(R) for PL(R).

3. MINIMAL SURFACES AND MINIMAL CONIC BUNDLES

The aim of this section is to reduce our study of geometrically rational surfaces
to surfaces which admits a minimal conic bundle structure.

Definition 3.1. A surface X is said to be minimal if any birational morphism
from X to a (nonsingular) surface is an isomorphism.

If X is real, this is equivalent to say that there is no real (—1)-curve and no pair
of disjoint conjugate imaginary (—1)-curves on X.

Let us precise the notion of conic bundle. Since we only deal with geometrically
rational surfaces, the basis of our conic bundles is always geometrically rational.

Definition 3.2. A conic bundle is a pair (X, 7) where X is a surface and 7 is a
morphism X — P!, where any fibre of 7 is isomorphic to a plane conic.

Note that if (X,7) is complex, a general fibre of 7 is isomorphic to P{, and a
singular fibre consists of the union of two intersecting lines which are (—1)-curves
of X (the double line is not allowed, the surface X being nonsingular). If (X, 7) is
real, a fibre over a real point of P! may be isomorphic to PL or to (P!, (), or to a
singular fibre with two irreducible components which can be two real components,
or two conjugated imaginary components intersecting in 1 real point.

We will assume in the sequel that if X is real, then the basis is P} (and not
(P1,0)). This avoids certain conic bundles with no real points.

Definition 3.3. If (X, 7) and (X', 7’) are two conic bundles, a birational map of
conic bundles 1: (X, m) --» (X', 7’) is a birational map ¢: X --» X’ such that
there exist an automorphism « of P! with 7/ 0 ¢ = 7 o av.
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This notion specialises to birational morphisms and to automorphisms of conic
bundles. We denote by Aut(X,n) (respectively Bir(X,r)) the group of automor-
phisms (respectively birational self-maps) of the conic bundle (X,7). Observe
that Aut(X,7) = Aut(X) N Bir(X, 7). Similarly, when (X, ) is real we define
by Aut(X (R), ) the group Aut(X(R)) N Bir(X, ).

Definition 3.4. A conic bundle (X, ) is said to be minimal if any birational
morphism of conic bundles (X, 7) — (X', #’) is an isomorphism.

Note that a real conic bundle (X, ) is minimal if and only if the two irreducible
components of any real singular fibre of 7 are imaginary. Compare to the complex
case where (X, 7) is minimal if and only if there is no singular fibre.

Any geometrically rational real surface Y is obtained by a finite sequence of
blow-ups (centred at a real point or at a pair of conjugate imaginary points) from a
minimal real surface X. The following classical theorem describes the possibilities
for the surface X.

Recall that a surface X is a del Pezzo surface if the anti-canonical divisor — K x
is ample. The same definition applies for X real or complex.

Theorem 3.5. If X is a minimal geometrically rational real surface such that
X (R) # 0, then one and exactly one of the following holds:
(1) X is rational: it is isomorphic to P%, to the quadric Qo :={(x:y:2:t) €
P2 | 22 4+ y? + 22 = t?}, or to a real Hirzebruch surface Fy,, n # 1;
(2) X is a del Pezzo surface of degree 1 or 2 with p(X) = 1;
(3) there exists a minimal conic bundle structure m: X — P! with an even
number of singular fibres 2r > 4. Moreover, p(X) = 2.

Remark 3.6. If (S,0) is a minimal geometrically rational real surface such that
59 = (), then S is an Hirzebruch surface of even index.

Proof. Follows from the work of Comessatti [ComIJ], (see also [Mani67, [[sk79,
89, Chap. V1, or [KolTd). O

Proposition 3.7 (Topology of the real part). In each case of the former theorem,
we have:

(1) X is rational if and only if X (R) is connected. When X is moreover mini-
mal, then X (R) is homeomorphic to one of the following: the real projective
plane, the sphere, the torus, or the Klein bottle.

(2) When X is a minimal del Pezzo surface of degree 1, it satisfies p(X) =1,
and X (R) is the disjoint union of one real projective plane and 4 spheres.
If X is a minimal del Pezzo surface of degree 2 with p(X) =1, then X(R)
is the disjoint union of 4 spheres.

(3) If X is non-rational and is endowed with a minimal conic bundle with 2r
singular fibres, then X (R) is the disjoint union of v spheres, r > 2.

Proof. For the first assertion, see , Corollary VI(6.5)], for the other ones, see
e.g. [Bil8Y, Chap. V] or [Kol97. O

The proofs of Corollary E and of Theorem [L.5 will split into the cases listed in
Theorem B.5§. The rational case is treated in [[IMO07]. The next proposition states

the case when X is a minimal del Pezzo surface with p = 1. The remaining part
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of the paper is mainly devoted to the case when X is endowed with a minimal real
conic bundle.

Proposition 3.8. Let X,Y be two minimal geometrically rational real surfaces.
Assume that X s not rational and satisfy p(X) = 1 (but p(Y) may be equal to 1
or 2).
(1) If X is a del Pezzo surface of degree 1, then any birational map X --+Y
is an tsomorphism. In particular,

Aut(X) = Aut(X(R)) = Bir(X) .

(2) If X is a del Pezzo surface of degree 2, X is birational to'Y if and only X
is isomorphic to' Y. Moreover, all the base-points of the elements of Bir(X)
are real, and

Aut(X) = Aut(X(R)) € Bir(X) .

Proof. Assume the existence of a birational map ¢: X --» Y. If ¢ is not an
isomorphism, we decompose 1 into elementary links

X =X, R X, RN X, 1 Yn, X,=Y
as in [[sk96, Theorem 2.5]. Tt follows from the description of the links of [[sk96,
Theorem 2.6] that for any link ¢;: X;_1 --» X;, X;_1 and X, are isomorphic del
Pezzo surfaces of degree 2, and that v; is equal to Bnan~!, where 7 is the blow-
up X’ — X; 1 of a real point of X; 1, X’ is a del Pezzo surface of degree 1,
a € Aut(X'’) is the Bertini involution of the surface, and 8: X;41 — X; is an
isomorphism.

Therefore, Y is isomorphic to X. Moreover, if X has degree 1, ¢ is an iso-
morphism. If X has degree 2, v is decomposed into conjugates of Bertini involu-
tions, so each of its base-points is real. This proves that if ¢ € Aut (X(R)) then
1 € Aut(X). Furthermore, conjugates of Bertini involutions belong to Bir(X) but
not to Aut(X) = Aut(X(R)). O

Corollary 3.9. Let Xy be a minimal non-rational geometrically rational real sur-
face with p(Xo) =1, and let n: X — Xq be a birational morphism.

Then, Aut (X(R)) is countable. Moreover, if X is a del Pezzo surface of de-
gree 1, then Aut(X(R)) is finite.

Proof. Without changing the isomorphism class of X (R) we may assume that 7 is
the blow-up of only real points (which may belong to X as proper or infinitely near
points). Since any base-point of any element of Bir(Xj) is real (Proposition B.§),
the same is true for any element of Bir(X). In particular, Aut(X(R)) = Aut(X).
The group Aut(X) acts on Pic(X) = Z", where n = p(X) > 1. This action gives
rise to an homomorphism 6: Aut(X) — GL(n,Z). Let us prove that 6 is injective.
Indeed, if o € Ker (), then « is conjugate by 1 to an element of g € Aut(Xy) which
acts trivially on Pic(Xp). Writing Sy the complex surface obtaining by forgetting
the real structure of Xy, S is the blow-up of 7 or 8 points in general position of
PZ. Thus ap € Aut(Xo) C Aut(Sp) is the lift of an automorphism of P which fixes
7 or 8 points, no 3 collinear, hence is the identity.

The morphism 6 is injective, and this shows that Aut(X (R)) = Aut(X) is count-
able. Moreover, if X is a del Pezzo surface of degree 1, then Bir(Xy) = Aut(Xy) (by
Proposition B.g). Since Aut(Xy) is finite, Aut (X(R)) C Bir(X) is also finite. O
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4. EXCEPTIONAL CONIC BUNDLES

Definition 4.1. If (X, 7) is a real conic bundle, I(X,7) C P!(R) denotes the image
by 7 of the set X (R) of real points of X.

It is well-known that I(X,7) is the union of a finite number of intervals (which
may be () or P1(R)), and that it determines the birational class of (X, 7). (In the
next section, we will prove that in fact I(X,7) determines the birational class of
X, and thus that I(X) is well-defined.)

In this section, we study the real conic bundles, and especially the minimal ones.
We prove that I(X, ) also determines the equivalence class of (X (R),n) among
the minimal conic bundles, and give the proof of Theorem @ in the case of conic
bundles (Corollary [l.17). Doing this, we will give proofs of the well-known facts on
I(X, ) cited above.

The following lemma gives some useful information about sections of real conic
bundles. It is strongly inspired from the complex analogue, that can be found for

example in [Bla07, Section 3].

Lemma 4.2. Let (X, m) be a minimal real conic bundle.
Then, the number of singular fibres of 7 is even, and is equal to 8 — (Kx)2.
Denoting by 2r > 0 this number, the following hold:

(1) if r > 0, then m admits no real section;
(2) if s is a section distinct from its conjugate 3, then s> > —r and -5 = s> +r.

Proof. Let m be the number of singular fibres of m and denote by (.5, 7) the complex
conic bundle obtained from (X, ) by forgetting the real structure of X.

If m > 0, any section of 7 intersects exactly one component of each singular
fibre. Since (X, ) is minimal, no such component can be real, thus there is no real
section.

Let s be a section, and § be its conjugate, and assume that s # 5§ (which is
always true if m > 0). Let us denote by 7 the birational morphism that contracts
one component in any singular fibre of 7, which is the one which intersects 5. Then,
7 is defined over R if and only if m = 0 (and in this case it is an isomorphism).
Moreover, n: (S,m7) — F,, is a birational morphism of conic bundles, for some
integer n € N. Denote by E € Pic(FF,,) the divisor of a section with self-intersection
—n (which is unique if n # 0), and by f the divisor of a general fibre, the curves
n(s) and 7(3) are respectively equivalent to E + af and E + bf, for some integers
a and b.

We compute

n(s)? = (E+af)? = —n+2a,
n(5)? = (E+bf)? = —n+2b,
n(s)-ni) = (E+af) - (E+bf) = —-n+a+b,

and find that n(s) - n(8) = 1/2- (n(s)? + n(5)?).

Because the m irreducible curves contracted by 7 intersect 5 transversally and do
not intersect s, we have 1(s)? = s2, 7(5)? = 52 +m and 7(s) - 7(5) = s - 5. Observe
that 52 = 52,80 s-5 = 1/2-(2s%> +m). This implies that m is even, equal to 2r for
some non-negative integer 7 and that s -5 = s + r. Since s # 3, the number s - §
is non-negative, so s2 > —r.

Since 7 contracts exactly m curves and (K, )*> = 8, m equals 8 — (Kx)?. O
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Denoting by —n the minimal self-intersection of the sections in a minimal real
conic bundle with 2r singular fibres, the above lemma shows that n < r. According
to [, Lemma 3.3], we also have 1 < n, and S is obtained by blowing up some
points on Fy or Fy. The simplest cases of conic bundles, which are the most general,
are those for which n is equal to 1 (in particular when X is a del Pezzo surface).
The most special cases are when n = r, which are interesting as for any given union
of a finite number of intervals V', there is only one such conic bundle (X, 7) such
that I(X,n) =V (this will be proved in Lemma [L.§ below).

Definition 4.3. A conic bundle (X, ) is called an exzceptional conic bundle if =
admits a section of self-intersection —r where 2r is the number of singular fibres.

This definition was already introduced in [DI0f] and [Bla0g]. If (S, ) is a min-
imal exceptional complex conic bundle with at least 4 singular fibres, Aut(S,7) =
Aut(S) is a maximal algebraic subgroup of Bir(S) ([Bla0g]).

Lemma 4.4. Let (X, ) be a minimal real conic bundle. Then, (X, ) is exceptional
if and only if there exist two conjugate sections s and § which do not intersect.

Proof. Denote by 2r the number of singular fibres of 7. According to Lemma @,
for any imaginary section s, s -5 =0 < s2 = —r.
If s and 5 do not intersect then s> = —r, whence (X, ) is exceptional.
Conversely, assume that s is a section of self-intersection —r. If s is imaginary,
then s - § = 0. Otherwise, 7 = 0 (Lemma [L.2) and therefore X = (P} x PL, o) for
a certain anti-holomorphic involution . We may thus choose another section s’
which is imaginary and which has self-intersection 0. O

Lemma 4.5. Let (X,m) be a real conic bundle. Then, there exists a minimal
exceptional real conic bundle (X', 7") and a birational map of conic bundles

(X,7) --» (X', 7).

Proof. We may assume that (X, 7) is minimal. Take a section s of 7. If s intersects
its conjugate s into a real point p (respectively into a pair of imaginary points g
and ¢2), then blow-up the point p (respectively ¢; and g2), and contract the strict
transform of the fibre of the points blown-up. Continuing this way, we obtain a
birational map of conic bundles ¢: (X, 7) --+ (X', 7') such that (X’,#’) is minimal
and ¢(s) does not intersect its conjugate. Applying Lemma [£4, (X’,7’) is an
exceptional conic bundle. ([

The following construction gives a normal form for the exceptional conic bundles
associated to a given finite union of intervals bounded by an even number of points.
Lemma [£.7 asserts the existence, and Lemma [t.§ provides the unicity.

Construction 4.6. Let J = (J1,J2) be a pair of two disjoint finite subsets of R
with the same number of elements (i.e. Ji,Jo CR, JyNJ2 =0 and #J; = #.J5).

We associate to J three homogeneous polynomials Py, P>, P, a set V; C P1(R),
three maps 7, o, aj, a complex conic bundle (S;,7;) and a real conic bundle
(X, 7). The polynomials are the following:

Pi(z1,22) = [luey, (@1 —ax2),
Py (1, 22) [ac, (@1 —az2),
P(z1,22) = Pi(z1,22) - Pa(xy,22).
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The set V; equals {(z1 : x2) | P(x1,22) <0} C P(R), the map ny: Sy — PL x PL,
is the blow-up of the points

{((z:1),(0:1)) ‘ zeJi}u{((z:1),(1:0)) |x€J2},

the morphism 7 is pr; ony. The maps a; and o are self-maps of S, which are
the lifts by 7, of the following self-maps of P{ x PZ.

oyt ((21:@2), (y1 0 y2)) = ((21: 22), (=92 - Pu(wr, 2) 1 y1 - Pa(1,22)),
oy ((x1 2 22), (12 92)) - (T : T2), (-72 - P1(T1,T2) : T1 - Pa(T1,72)).

The following lemma shows that o; is an anti-holomorphic involution of S;. We
write Xy = (S, 0) the corresponding real surface.

Lemma 4.7. Let us take the notation of Construction @ Then, ay and oy are
respectively an holomorphic and an anti-holomorphic involution of (Sy,7y). The
real conic bundle (X ;,7y) (with X; = (Sy,07)) is minimal and exceptional, and
satisfies [(X j,my) = V. Moreover, the singular fibres of wy are the fibres of (x : 1),
e JiUJs.

Proof. Denote by r the number of elements of J; (which is also the number of
elements of J2). The map «/; is a birational involution of P{ x P{, which is defined
over R, and whose base-points are precisely the 2r points {((z : 1),(0: 1)) | z €
JiU{((z :1),(1:0)) | z € Jo} blown-up by ns. Since o/; is an involution and
77 is the blow-up of all of its base-points, oy = n~'a/;n is an automorphism of S,
which belongs to Aut(S, 7).

The conic bundle (S, 7 ) is exceptional, since the strict transform of the sections
P! x (0:1) and P! x (1 :0) have self-intersection —r. Moreover, its singular fibres
correspond to the fibres of the points blown-up by 7, so the fibres of the points
(z:1) € Pk, x € Jy N Jo. Denote by 7 the lift by 1, of the usual anti-holomorphic
involution ((z1 : @2), (Y1 : ¥2)) — ((T1 : T2), (W1 : ¥2)). Since ay € Aut(S, )
commutes with 7, the map o5 = aj7 = Tay is an anti-holomorphic involution
of S. Since X; = (Sy,07) and o; exchanges the two components of any singular
fibre, the real conic bundle (X, ;) is minimal, and is exceptional as (S, ) is.

By construction, o is the lift by n; of the map o/, described in Construction @
Let (z1 : x2) be a point of Pk; we want to prove that the fibre f = 77! ((z1 : x2))
contains a real point (i. e. a point fixed by o) if and only if (x; : 3) € V, which
is equivalent to say that P(z1,22) < 0. If (21 : 22) = (a; : 1) € V for some 4,
then f is singular, and its unique singular point is real. Otherwise, 7 restricts to an
isomorphism from f to n(f). It follows that f has a real point if and only if there
exists (y1 : y2) € P& such that (y1 : y2) = (—y2Pi(21,22) : Y1 Pa(x1,22)), which
is equivalent to y191 Pa(21,22) = —y2y2P1(x1,22). This is possible if and only if
P(xz1,22) = Pi(x1,22) - Po(x1,22) < 0, which means that (21 : 23) € V. This
achieves to prove the equality I(X,7) = V. O

In the following, Assertion (1) is well-known, whereas the other assertions (and
in particular (4)) are new, and are one of the basic ingredients in the proof of the
remaining results of the section.

Lemma 4.8. Let (Y, my) be a minimal exceptional real conic bundle.

(1) I(Y,7my) is the union of a finite union of closed intervals. The boundary
points of the intervals correspond to the singular fibres of my .
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(2) If my has no singular fibre, (Y, 7y) is either isomorphic to (P} x Pk, pry)
or to (Pg x (P*,0),pry).

(3) If my has at least one singular fibre, it is isomorphic to (X j,my), for some
J = (J1,J2), as in Construction [I.g.

(4) If (Z,7z) is a minimal exceptional real conic bundle with I(Z,7nz) = I(Y, 7y ),
there exists an isomorphism ¢ : (Z,7z) — (Y, 7y) satisfying w7z = wy 0 ¢
(i.e. ¢ acts trivially on the basis).

Proof. Denote by 2r the number of singular fibres of 7y (which is even, since (Y, 7y)
is minimal, see Lemma [£.3).

Assume first that 7 = 0, which implies that (Y,7y) is a real form of (P§ x
PL, pry), hence is isomorphic to (P4 x Py, pry) or to (Pg x (P!, 0), pry); this proves
Assertion (1) and (2).

Assume now that r > 0, and denote by s and § two conjugate imaginary sections
of my of self-intersection —r. Let us write 7 = 7 o my, for some v € Aut(P}),
such that 771((1 : 0)) is not a singular fibre. The singular fibres of 7 are above
the points (a1 : 1),..., (a2, : 1), where the a; are distinct real numbers. Let
J = (J1,J2) be a partition of {a1,...,as,} into two sets of r points. Let ny be
the birational morphism (not defined over R) which contracts the component of
77 ((a; : 1)) which intersects s if a; € J; and which intersects 5 if a; € Jo. Then,
the images of s and § are two sections of self-intersection 0. Thus we may assume
that 7y is a birational morphism of conic bundles (S,7) — (P{ x P&, pry), where
S is the complex surface obtained by forgetting the real structure of Y, pr; is the
projection on the first factor, and where 1y (s) and ny (5) are equal to P{ x (0: 1)
and P§ x (1:0).

Using the notation of Construction [L.g associated to J = (Jy,J2), ny is the
blow-up of the 2r points of PL x PL, which are exactly the points blown-up by
ny: Sy — ]P’(lC X Rlc. We may therefore assume that Y = (S;,0y), for some anti-
holomorphic involution oy on Sy, and that # = w; and ny = n;.

The map oy o 0;1 belongs to Aut(Sy, ;) and acts trivially on the basis, since
oy and oy have the same action on the basis. Moreover, oy o a}l preserves any
curve contracted by 7, and is therefore the lift by n; of B: ((z1 : z2), (y1 : y2)) —
((#1 : @2), (py1 : y2)) for some p € C*. It follows that ;o oy o n;' = Boo’ is the
map

((1:22), (1 : 92)) — (@1 : T2), (—p P (T1, T2) : 1 P (T1, T2))).-

Since oy is an involution, u belongs to R. Then, for any point (z; : z2) € P4,
the fibre 771((z1 : x2)) contains points fixed by oy if and only if there exist
(y1 @ y2) € ]P’%: such that y177Ps(21,22) = —y2Uz - nPi(x1,22). Consequently,
I(Y,m) is equal to V; if u > 0 and to the adherence of Pi\Vy if u < 0. This
proves (1).

Moreover, this also shows that I(Y,n) is not the whole P!(R). We could thus
have chosen from the beginning the map + so that (0 : 1) ¢ I(Y,w). This implies
that I(Y,7) = Vy and p > 0. Choosing A\ € C* with A - X = p and writing
v (w12 @2), (1 y2)) — ((z1 2 22), (A\y1 : y2)), we get oo’y =voo oyt Tt
follows that 7' oy on; € Aut(S, 7) conjugates oy to oy ="' o (B0,;) oy, and
therefore induces an isomorphism of real conic bundles (X j,7y) — (Y, 7), which is
the identity on the basis.
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In particular, (X, 7) is isomorphic to (Y, 7) and thus to (Y, 7y ), and gives
Assertion (3). Moreover, if (Z, 7z) is another conic bundle with I(Z,7z) = I(Y, m),
the above description also yields the existence of an isomorphism (X j,7;) — (Z Yo
7z ) which acts trivially on the basis. Therefore, there exists an isomorphism (Z,yo
mz) — (Y, ) which acts trivially on the basis, and thus the same is true for (Z, 7z)
and (Y, 7y ), so Assertion (4) is proved.

It remains to proves (4) when r = 0. Since I(Z,7z) is equal to (Y, 7), it is equal
to 0 or P}, hence the number of singular fibres of 77 is 0 by (3) (or using (1)). This
means that (Z,77) is a real form of (PL x P{, pry). Either (Y, 7) and (Z,7z) are
both isomorphic to (P x PL, pry) or to (Pg x (P, (), pry). Assertion (4) is obvious
in both cases. O

Lemma 4.9. Let (X, n) be a minimal exceptional real conic bundle. The image
of the homomorphism 0: Aut(X, ) — Aut(Py) given by the action on the base is
equal to

{a e Awt(PL) | a(I(X, 7)) = I(X, w)}.

Proof. Any element of 8 € Aut(X, 7) preserves X (R), thus 6(5) preserves 7(X (R)) =
I(X, 7).

Conversely, let a € Aut(PL) be a non-trivial element such that o(I(X, 7)) =
I(X,m). It remains to prove the existence of § € Aut(X, ) such that 0(8) = a. If
7 has no singular fibre, this is obvious since (X, 7) is a real form of (P x P{, pry).
Otherwise, there are 2r singular fibres, with r > 0, which correspond to the 2r
boundary points of I(X,n) (Lemma @ we denote by F' C I(X, ) this set of
points, which is invariant by «.

Let us prove that we may decompose F' into two sets of r points, each one being
invariant by . There are three kinds of non-trivial elements of Aut(P}):

(1) translations (elements with one fixed point),
(2) rotations (elements with two fixed points, both imaginary), and
(3) symmetries (elements with two real fixed points).

Since « preserves a finite set of at least 2 points, « is not a translation. If « is
a rotation it has finite order n, and all its orbits on P!(R) have order n. Thus, F'
decomposes into m orbits of n points, with mn = 2r. If n is even, we decompose
each orbit in two sets, and if m is even, we decompose the set of orbits into two
sets. The remaining case is when « is a symmetry. In well-chosen coordinates, o
is the map (z : y) — (Az : y) for some A € R*. If A # —1, then « has infinite
order, hence F'= {(0:1),(1:0)}, which decomposes into two sets of one point. If
A= —1, then (0: 1) and (1 : 0) are not boundary points; we decompose F into two
sets, the points (z : y) with z/y > 0 and the others.

Now, F' = F1UF5, where each set Fj is invariant by «. Let us choose v € Aut(Pﬂk)
such that (1 :0) ¢ v(I(X, 7)) = I(X,~y7), so the set v(I(X, 7)) may be viewed
as a subset of {(z : 1) € PY(R) | x € R}. The sets v(F;) and y(F») correspond
therefore to two sets Jp, Js of r real numbers. Using the notation of Construction
with J = (Ji, J2), there exists an isomorphism ¢: (X;,7;) — (X,~7) such that
my = ymo¢ (Lemma @) Write § = yay~! = (21 : 12) — (ax1+bxs : cry+dxs), for
some real numbers a, b, ¢, d with ad—bc # 0. The map § leaves invariant the roots of
Pi(Il, IQ) = HaEqu('rl —CL.’,EQ), for each i, SO Pi(aI1+b.fE2, CI1+dI2) = Xle(xl, .IQ),
for some y; € R*. Moreover, since 0 leaves V; invariant, 1 - 2 is positive. Denote
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by ¢’ the following automorphism of P§ x P:
P’ ((331 cxa), (Y1 yg)) --» ((axl + bxo : cxy + dxa), (Ay1 : yg)),

where A € R is such that A> = y2/x1. Then, ¢ commutes with ¢/;. Recall that o/,
is the following self-map of P} x PL

o’y (1 2), (1 1 y2)) --» ((T1: T2), (—02 - Po(T1,72) : U1 - (1, T2)).

Since 1y : Sy — P§ x P is the blow-up of the points {((z:1),(0:1)) |z € J1} U
{((z:1),(1:0)) | z € J5}, which are preserved by ¢, this one lifts to an automor-
phism ¢ = njlz/)’nJ of (Sy,ms). Moreover, ¢’ commutes with ¢’;, so ¥ belongs to
Aut(X s, 7). It remains to choose 8 = ¢~ € Aut(X,ym) = Aut(X, 7). Since
7 = dr; = (yay~t) oy and m; = ywp, we have yrdp = yamd. This proves
that 73 = am, which means that 6(3) = a. O

Lemma 4.10. Let us take the notation of Construction @, for some J = (J1, Jz2).
Denote by A the real affine hypersurface of R® given by

Y2+ 2% = — H (x —as),

a€JiUJz

then the map v: (z,y,z) --» (77])_1(((:6 s 1),y =iz [lees, (@ — a))) is an
embedding A — X defined over R which induces an isomorphism

AR) — X;(R) .

Proof. Denote by B C C3 the affine hypersurface of equation y2 + 22 = —P(z,1)
(vecall that P(x,1) = [[,c 0, (—a:)), and by 7p: B — C the map (z,y, 2) — z.
Let A = (B,og), where o sends (z,y, z) onto (Z, 7, Z). Denote by 6: B --» PLxP{
the map that sends (z,y,2) onto ((z : 1), (y — iz : Px(z,1))) if Py(z,1) # 0 and
onto ((z :1),(—Pi(z,1) : y+iz)) if Pi(z,1) # 0. Then 6 is a birational morphism,
and 07! sends ((z1 : 22), (Y1 : y2)) on

(ﬂ, % (%Pg(l‘l,xg) - %Pl ($1,!E2)> R % (%Pg(l‘l,xg) + %Pl (,Tl,xg))) .

Observe that 0,0 = opf. In consequence, ¥ = (1;)"! o 6 is a real birational
map A --+» X .

Moreover, v is an isomorphism from A to the complement in S; of the union
of 771((1 : 0)) and the pull-back by 7 of P* x (0 : 1) and P! x (1 : 0). Indeed let
xg € C. If 2y € Cis such that P(xg, 1) # 0, then 6 restricts to an isomorphism from
75 (20) to {((z0 : 1), (y1 : y2)) € PL x P& | y1ya # 0} = C*. If P(x0,1) = 0, then
xo € J1UJ2, and the fibre 75" (z¢) consists of two lines of C? which intersect, given
by y = iz and y = —iz. If ¢ € Ji, then the line y+iz = 0 is sent isomorphically by
6 onto the fibre {((zo : 1), (y1 : y2)) € PL x P{ | y2 # 0} 22 C*, and the line y — iz
is contracted on the point ((xg : 1),(0: 1)). The map v sends thus isomorphically
75" (20) onto the fibre 7! ((x : 1)) minus the two points corresponding to the two
sections of self-intersection —r. The situation when zy € Js is similar. Finally, we
see that ¢ induces an isomorphism between B and the complement in S; of the
two sections of self-intersection —r (the strict transforms by =1 of P! x (0 : 1) and
P! x (1 :0)), and the fibre of 7=1((1 : 0)). Since these 3 curves do not have any
real point, ¢ induces an isomorphism A(R) — X ;(R). O
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Corollary 4.11. Let (X, 7) be a minimal exceptional real conic bundle. There
exists an affine real variety A C X isomorphic to the affine surface of R® given by

y?+ 2% =Qx),

where @ is a real polynomial with only simple roots, all real. Moreover, I(X,m) is
the closure of {(z : 1) € Py | Q(z) > 0}, and w|a is the projection (x,y,z) — x.

Proof. Denote by 2r the number of singular fibres of w. If r > 0, then (X,x)
is isomorphic to (X, 7;) for some J = (Jy,.J2) (Lemma [£.§); the result follows
then from Lemma [.1(. If » = 0, (X, 7) is isomorphic to (PL x Pk,pr;) or to
(PL x (P, 0), pr;) (Lemma [£.§). Taking Q(x) = 1 or Q(z) = —1 gives the result. [

We can now deduce the following important result, due to Comessatti [Com13].
See also [Kol97, Theorem 4.5].

Proposition 4.12. Let (X,m) and (X', 7') be two real conic bundles, and let o €
Aut(PL). Then, the following are equivalent.

(1) There exists a birational map p: X --+ X' such that 7' = an.
(2) a(I(X,m) =I(X", 7).
In particular, (X,7) and (X', 7’) are birational if and only if there exists an
automorphism of Py that sends I(X, ) on (X', 7).

Proof. (1) = (2) : The map ¢ restricts to an isomorphism X\F — X’\F’ where
F and F’ consist of finite sets of fibres of 7 and n’. In consequence, « sends
I(X,m)\7(F) on I(X',7")\m(F"). Since w(F) and w(F") are finite, a sends I(X, )
on I(X' 7).

(2) = (1) : We may assume that the conic bundles (X,7) and (X',#’) are
minimal. By Lemma @, both conic bundles may be supposed to be exceptional.
Since I(X,ar) = I(X’,7'), Lemma [£.§ yields the existence of an isomorphism
p: X — X' such that #’p = ar. O

We can now give the well-known description of I(X, ) announced before.

Corollary 4.13. Let (X, m) be a real conic bundle.
(1) I(X,7) is a finite union of closed intervals of Pk (which may be 0 or PL).
(2) The images by m of the singular fibres of ™ are the boundary points of the
intervals of I(X, ).
(3) The r connected components of X(R) surject by m on r closed intervals of
PY(R).
Proof. According to Proposition , these condition are independent of the bi-
rational class of (X, 7). Since (X, ) is birational to a minimal exceptional conic
bundle (Lemma [£.5), it suffices to prove the result when (X,7) is minimal and
exceptional. This is a direct consequence of Lemmas @ and @ O

The remaining part of the section is devoted to strengthen the results asserting
the existence of a birational equivalence between surfaces by proving the existence
of an isomorphism between real parts. The following lemma is the key ingredient
of this improvement.

Lemma 4.14. Let (X, 7) be a minimal exceptional real conic bundle, with at least
one singular fibre. Let q be a real point belonging to a nonsingular fibre.

Then, there exists a section s of ™ whose unique real point is q, and such that s
and its conjugate § intersect transversally at q.
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Proof. Denote by r > 1 the number of intervals of V. Up to an automorphism of
Pk, we may assume that (1:0) ¢ V. We denote by (a1 : 1),..., (ag : 1) € P§ the
boundary points of the intervals, and assume that a1 < as < -+ < ag,.. We write
p = (b: 1) and up to an automorphism of P, we can assume that b €]as, as[, a; = 0,
and b = 1. We denote by P the real polynomial P(z) = H?;l (x — a;). Observe
that for z € R, P(z) < 0 if and only if (x : 1) € V, and write ¢ = P(b) = P(1) < 0.

We fix Q,,(z) = c¢-2?™ for any positive integer m. Let us prove that for some
large m, we have @, (z) = P(z) if and only if € {a1,b} = {0,1}. There exists
mo such that ddQ—z’"(l) < 48(1) for m > mg. Moreover, dde’" (0) =0 > 2E(0).
Thus, there exist e1,&2 €]0;1[ such that Q,,(xz) > P(x) for any m > mg and any
x €]0,e1[U]es, 1]. Since the sequence (Qm())m>o converges uniformly to 0 on the
compact [e1, €3], there exists m1 > mg such that Q.,,(z) > P(z) for any m > m; and
any x €]0,1[. Using the same argument on the interval [1,as], we find mg > my
such that @, (z) < P(x) for any m > mo and any z €]1,as]. Then, choosing
m > mg sufficiently big, we get Q,,(a2) < minger P(x), and thus Q,,(x) < P(z)
for any x €] — 00,0[U]1,00[. It follows that P(x) and Q(x) = Qm(z) are equal if
and only if x € {a1,b}.

Let us use the notation of Construction @ associated to J = (Jp,J2) with
J1 ={a1,...,a,} and J3 = {ar41,...,a2,}. Then, since V = V;, we may assume
that (X, 7) = (X,7;) (Lemma [£.g). Recall that X; = (S;,0,), where ny: S5 —
P¢ x P{ is the blow-up of the 2r points

{((@:1),00:1)) |ze L} U{((x:1),(1:0)) | z € J2},

and o is the lift by n; of the following self-maps of Pl x P{ (written here on the
affine plane {((z: 1), (y: 1)) e PL x P{ | 2,y € C})

-~ P, (f 1) )
oy (z,y) -+ (:C,— — . =),

where Py (z,1) - Pa(z,1) = P(x).
Note that none of the points at infinity (i.e. not in the affine plane described

above) is real, and that 7, induces a bijection between the set of real points of S
which belong to smooth fibres and the set

{(z,y) eC* |z e R,z ¢ {ay,...,a2,} and y - § = —Py(z,1)/Pa(z,1)} .

The image by 7 of the point ¢ € 7= 1(p) C S is thus equal to (b,ys) for some
yy € C satistying g, - 5 = Py (b, 1)/ Pa(b,1) = —P()/(Pa(b,1))* = —¢/ Pa(b, 1)
Denote by A € C[z] a complex polynomial such that A(z) - A(z) = —Q(x) (always
possible since Q(z) < 0 for any x € R). Since A\(b) - A\(b) = —Q(b) = —c, the
complex number & = \(b)/(yp - P2(b,1)) is such that £ = 1. Replacing A(z) by
A(z)/€, we may assume that y, = \(b)/Pa(b, 1).

The image of the rational map z ~ 7! ((x, P:‘((f_’)l))) is a section s C S. Its

conjugate 5 = o(s) is the image of the map  — n~*((z, — P;((i’)l) )). The real points

of s are images of a real number z € R such that \(z) - A(z) = —Pi(z) - Pa2(z) =
—P(z). As we saw before, there are only two possibilities for x, which are x = b
or z = aj. The image of the latter is not a real point on S (because the section
cannot pass through the singular point of the fibre). The only real point of s is

then 7~ (b, popy)) = 0 (b)) = ¢

—_
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Since Q(x) = A(z) - A(z) and P(x) have distinct derivatives in x = b, the two
sections s and § intersect transversally at the point q. (I

Proposition 4.15. Let (X,7) be a minimal real conic bundle with at least one
singular fibre. Then, there exists a minimal exceptional real conic bundle (X', x')
such that (X (R),m) and (X'(R),n’) are isomorphic.

Remark 4.16. The result is false without the assumption on the number of singular
fibres. Indeed, there is no isomorphism between (P} x P§)(R) and F!(R), since the
first one is homeomorphic to the torus S* x S! and the second one is homeomorphic
to the Klein bottle.

Proof. According to Lemma @, there exists a minimal exceptional real conic bun-
dle (X’,7') and a birational map of conic bundles ¢: (X', 7") --» (X, 7). Let us
decompose ¢ into ¢ = ¢, 0 -+ 0 ¢y, where ¢;: (X;-1,m—1) --» (X;,7;) is a bira-
tional map of conic bundles, which consists of the blow-up of a real point or two
imaginary conjugate points, followed by the contraction of the strict transform of
the corresponding fibre(s). The real conic bundles (X', 7") = (Xo,70), (X1,71),
(X2, m2), ..y (Xim,™m) = (X, 7) are all minimal.

Let us prove by induction on j that there exists a birational map of conic bundles
i (X', 7") --» (X, ;) which induces an isomorphism X'(R) --» X;(R). If j = 0,
we choose the identity for 9. Assume that j > 0. If ¢; blows-up two imaginary
conjugate points, it suffices to choose 1); = ¢; o 9;_1. Otherwise, ¢; blows-up a
real point ¢ € X;_1(R) that belongs to a smooth fibre of m;_1 and contracts the
strict transform of its fibre. The point (1;_1)"*(g) is real, and belongs to a smooth
fibre of my = 7’. According to Lemma , there exists a section s of X’ whose
unique real point is ¢ and such that s and 5 intersect transversally at (¢;_1)"'(q).
It follows that ¢;1,;_1(s) and ¢;9;_1(5) only intersect into imaginary conjugate
points. Blowing-up all of these points, and contracting the strict transforms of
the fibres, and repeating the process if needed, we get a birational map of conic
bundles a from (X, 7;) to a minimal conic bundle (X, #), such that adji; 1 (s)
and ag;1;_1(5) do not intersect. By Lemma [t.4, (X, #) is then an exceptional
conic bundle. From the unicity of such conic bundles (Lemma @), there exists an
isomorphism of conic bundles 3 (X , ) — (X', 7"). Since a induces an isomorphism
X;(R) — X (R), we may choose ¢; = 3o a. O

Corollary 4.17. Let (X,7x) and (Y, my) be two minimal conic bundles, and as-
sume that either X or'Y is not rational.

Let a € Aut(PL); for any birational map 3 : X --» Y such that myf8 = arx,
there exists an isomorphism v: X (R) — Y(R) such that myy = arx.

In particular, (X (R),7x) and (Y (R),ny) are isomorphic if and only if (X, 7x)
and (Y, my) are birational.

Proof. Since (X, 7x) is birational to (Y, 7y) and both are minimal, the number of
singular fibres of Tmx and 7y is the same, equal to 2r for some non-negative integer r.
Moreover, X and Y being not rational, » > 0. Applying Proposition , we may
assume that both (X, 7x) and (Y, 7y ) are minimal exceptional real conic bundles.
Since Tyy = amx, a(I(X,7x)) = I(X,arx) = I(Y,7y) (Proposition [L12). In
this case, Lemma @ yields the existence of an isomorphism v: X — Y such that
TYyY = anx. O
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We end this section by an easy corollary of the preceding result.

Corollary 4.18. Let (X, m) and (Y, my) be two minimal conic bundles. Then, the
following are equivalent:

(1) (X(R),m) and (Y (R),n) are isomorphic;

(2) (X,7) is birational to (Y, ) and X (R) is isomorphic to Y (R).

Proof. The implication (1) = (2) is evident. Let us prove the converse.

Since (X,mx) is birational to (Y, 7y) and both are minimal, the number of
singular fibres of T7x and 7y is the same, equal to 2r for some non-negative integer r.

Suppose that r = 0, which means that X is an Hirzebruch surfaces F,, for some
m and that Y = F,, for some n. Since X (R) is isomorphic to Y (R), we have m =n
mod 2. It is easy to prove that (X (R), ) and (Y (R),n) are isomorphic, by taking
elementary links at two imaginary distinct fibres (see for example [lManéOﬂ, Proof
of Theorem 6.1]).

Suppose now that r > 0. Applying Proposition , we may assume that both
(X,7mx) and (Y,my) are minimal exceptional real conic bundles. Since (X, mx)
and (Y, 7y) are birational, we may assume that I(X,7x) = I(Y, 7y ), up to an
automorphism of P} (Proposition [f.19). Then, (X,7x) and (Y,7y) are isomorphic

(Lemma [1.§). O

5. CONIC BUNDLES ON DEL PEZZO SURFACES

In the preceding section we studied real conic bundles structures. In this sec-
tion, we focus on surfaces admitting distinct minimal conic bundles. We will see
that these surfaces are necessarily del Pezzo surfaces (Lemma @) We begin by
the description of all possible minimal real conic bundles occurring on del Pezzo
surfaces.

Lemma 5.1. Let V be is a subset of PL(R), then the following are equivalent:

(1) there exists a minimal real conic bundle (X, m) such that X is a del Pezzo
surface and I1(X,m) =V;
(2) the set V is a union of closed intervals, and #V < 3.

Proof. The part (1) = (2) is easy. Indeed, if (X, n) is minimal, we know from
Lemma that its number of singular fibres is even, denoted 2r, and that 2r =
8—(Kx)?. Since —Kx is ample, K% > 1, thus r < 3. We conclude by Corollary
which asserts that I(X, ) is the union of r closed intervals .

Let us prove the converse. If V. = P}R) or V = (), we take (X,7) to be
(PL x P&, pry), where pry is the projection on the first factor, endowed with the
anti-holomorphic map that sends ((z1 : x2), (y1 : y2)) onto (21 : Z2), (£73 : ¥1)).

Assume now that V is neither empty nor equal to P}(R). Up to automorphism
of P4, there exist a1 < ag < ... < az, € R with 1 <r < 3 such that

V= LTJ {(:17 1) } x € |agi—1, ag;] CR}.

We use the notation of Construction @ associated to J = (Jy,J2) with J; =
{a1,...,a.} and Jo = {a@,41,...,a2-}, and observe that V = V;. Let Sy := Sy,
mo = wy and Xo := X;. The real conic bundle (Xy,mg) is exceptional, and
I(Xo,m) = Vy =V (Lemma [L.7).
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If r =1,n;: So — P{ x P{ is the blow-up of two points which do not lie on the
same fibre of any projection, Sy is thus a del Pezzo surface of degree 6; choosing
(X, m) = (Xo, ™) achieves the proof.

Assume now that 2 < r < 3. Let ag := ay € Aut(Sp,m0) and og := o be the
holomorphic and anti-holomorphic involutions of Sy. Recall that aq is the lift by
1 of the birational involution

oy (w12 22), (y1 2 92)) - (@1 : 22), (—y2 H(l’l —a;T2) 1 Y1 H (21 — aiz2)))
1=1 1=r+1

of IP’}C X IP’}C. Then, aq acts trivially on the basis, fixes two points in each nonsingular
fibre and fixes only one point in each singular fibre (the singular point). We write
Ty C Sy the curve fixed by 7p, which is the strict transform of the curve of ]P’%: X ]P’%:
given by the equation

)? - ] (@1 —aiws) + (2)* - [ (21 — aizz) = 0.
1=r+1 =1

The curve I'y is a double covering of Pl by means of 7y, ramified over the 2r points
(a; : 1). Thus T'o(R) C Xo(R) is the union of r ovals, which surject by 7 on the r
closed intervals of I(Xy,mo) = V.

Denote by pg € T'g(R) a real point such that m(po) is not a boundary point. We
call ¥9 the blow-up of pg, followed by the contraction of the strict transform of its
fibre. Then, 1) is a birational map of conic bundles (Sy,m) --+ (S1,m1), where
T = oYy ! Since po is fixed by both o and ag, we get an anti-holomorphic
involution o1 = Yooy ! on S1, and an holomorphic involution a; = Yooy 1
that commutes with o1. We write X; = (S1,01) and choose a point p; € X1(R)
that belongs to a smooth fibre of 7; and that does not belong to s; or 57 (this
latter condition only avoids the base-point of 1)y 1). Similarly as before, we call
11 the blow-up of p;, followed by the contraction of the strict transform of its
fibre, and obtain a birational map of conic bundles ¢ : (X1, 71) --» (X2, 72) with
7y = ;L. Observe that I(Xo,me) = I(X1,m1) = I[(Xo,m0) = V.

We claim that if » = 2, then Sy is a del Pezzo surface and that if » = 3 and
p1 is well chosen, then Ss is a del Pezzo surface. Assuming this, it suffices to let
(X,m) = (X;,m;) for i =1 or i = 2 to conclude the proof.

Let us prove the claim. Denote by sg and 5g the exceptional sections of 7y, which
are the strict transforms by 75" of PL x (0: 1) and P§ x (1 : 0). Denote by s; and
5; the strict transforms of sg and 55 on S;. Since p; does not belong to s; or §; for
i=0,1, we have s? =52=—r+ifori=1,2.

We prove now that any section of 7 distinct from s; or 57 has self-intersection
> —1, and that there are finitely many sections of self-intersection —1. Denote by
C1 C Sp a section of 71, of self-intersection C? < —1, which is distinct from s; or
31. The strict transform on Sy of €y is written Cp, and has self-intersection C? 41,
depending whether Cj passes through py or not. The curve 7;(Cy) C IP’(%: X ]P’%:
is a section of pry, linearly equivalent to fo + dfi, where f; denotes the divisor
of the fibre or pr; and d is a non-negative integer. We have 1;(Cy)? = 2d and
17(Co)-ns(s0) = d. Denote by my, ..., ma, the multiplicities of 1;(Cy) at the points
blown-up by 77 — where m; corresponds to the point in the fibre pr;*((a; : 1)). Then

m; € {0,1} for each i, Cp-so =d — 3 ;_;m; > 0and Co-Fg=d— 3o . m; >0
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since C is distinct from so and 5, whence C3 = 2d— 32" 'm; > 0. Since C? < —1

and CZ = C% + 1, the only possibility is that CZ = 0, C? = —1 and that Cj passes
through po. Moreover, the possibilities for the m; are finite (at most 227), and for
each possibility, there is exactly one pencil of curves of Sy equivalent to Cy, and Cy
is the only curve of the pencil which passes through pg.

Therefore, if r = 2, every section of m; has self-intersection > —1. If r = 3,
choosing for p; € X;(R) a point that does not belong to any of the sections of m

with self-intersection —1, every section of 7o has self-intersection > —1.

We prove now that if r = 2, then S; is a del Pezzo surface. Recall that s? =
512 = —1. Denote by n; the contraction of the component of the singular fibres of
71 which intersect s1. Then, 7 is a birational morphism (not defined over R) from
S1 to Fy, which sends 57 on the exceptional section of F;. Composing 77; with the
contraction of this curve on a point p; € P%, we see that Sy is the blow-up of 5
points p1,...,ps in ]P’?C, that the fibres of 7 are sent on the lines passing through
p1, and that no two of the p; for ¢ > 2 are collinear with p;. Then S; is a del
Pezzo surface if and only if no three of the points p; for i > 2 are collinear. This
amounts to ask that no section of 7 has self-intersection < —2, and was proved

above. Then, S; is a del Pezzo surface.

We prove now that if » = 3, then S; is a del Pezzo surface for a well chosen py.
The technique is similar; recall that s% =352 = —1 and denote by n2: So — F; the
contraction of the component of each singular fibre of 72 which intersects s3. Then
12(32) is the exceptional section of Fy. Contracting it on p; € P2, Ss is the blow-up
of 7 points p1,...,pr € PA. Since no section of 7y has self-intersection < —2, no
three of the seven points are collinear. Then S5 is a del Pezzo surface if and only if
there is no conic passing through 6 of the 7 points. If the conic passes through pq,
its proper transform on S5 would be a section of self-intersection < —2. It suffices
thus to avoid the possibility of a conic D C P% that passes through po, ..., p7 and
not through p;. If such a D exists, its strict transform on S is a bisection which
has self-intersection —2, and does not intersect 53, where the base-point of ¢); ! lies
(the base-point belongs to s; N33 since p; & $1 U3ST).

Consequently, the strict transform of D on S; is a curve Dy C S; which has
multiplicity 2 at p;, and has self-intersection 2. This implies that D; is linearly
equivalent to the anti-canonical divisor —Kg, ; indeed, contracting a component of
a singular fibre that touches 357, then contracting s7 and all the components of the
other singular fibres that touch s; gives a birational morphism S; — PZ, that sends
D1 on a cubic passing once through all the points blown-up. Then, the holomorphic
involution «; acts on the linear system | — Kg, |, which has dimension m > 2 (it
corresponds to cubics of P passing through 7 points) and the induced map

|—Ks, |
C: Sl --» P
is equivariant.

Since the general fibres of ( have genus 1 and the curve I'; fixed by a7 has genus 2
(it is a double covering of P! ramified over 6 points), then T'; is not contained in a
fibre, whence oy acts trivially on P™ (in fact, the interested reader can show that
m = 2, that ¢ is a double covering and that o exchanges the two points in each
fibre). In consequence, D; is invariant by aq, so its singular point p; is fixed by a;.
It suffices to choose p; not lying on I'; and S, is a del Pezzo surface. O
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Recall the following classical result, that will be useful in the sequel.

Lemma 5.2. Letnw: S — IP’(%: be a complex conic bundle, and assume that S is a del
Pezzo surface, with (Kx)? =9 —m < 7. Then, there exists a birational morphism
n: S — PZ which is a blow-up of m points pi,...,pm and which sends the fibres of
m onto the lines passing through p1. The curves of self-intersection —1 of S are

the exceptional curves n=1(p1),...,n (pm);

the strict transforms of the lines passing through 2 of the p;;

the conics passing through 5 of the p;;

the cubics passing through 8 of the p; and being singular at one of these.

Proof. Denote by e the contraction of one component in each singular fibre of 7.
Then, ¢ is a birational morphism of conic bundles — not defined over R — from S to
a del Pezzo surface which is also an Hirzebruch surface. Changing the contracted
components, we may assume that ¢ is a map S — F;. Contracting the exceptional
section onto a point p; € IP’(%, we get a birational map n: S — IP’(% which is the

blow-up of m points pi,...,pm, of P4, and which sends the fibres of 7; onto the
lines passing through p;. The description of the (—1)-curves is well-known and may
be found for example in D d. O

Lemma 5.3. Let m: X — P} be a minimal real conic bundle. Then, the following
conditions are equivalent:

1) There exist a real conic bundle mo: X — ]P’Hlk, such that ™ and mo induce
distinct foliations on X (C).

2) Either X is isomorphic to Py x Pk, or X is a del Pezzo surface of degree 2
or 4.

Moreover, if the conditions are satisfied, then the following occur:

a) The map my is unique, up to an automorphism of Pj.

b) There exist « € Aut(X) and 8 € Aut(PL) such that mya = Bmra. Moreover,
if X is a del Pezzo surface of degree 2, a may be chosen to be the Geiser
involution.

¢) Denoting by fi1, fo C Pic(X) the divisors of the general fibre of respectively
71 and 7o, we have f1 + fo = —cKx where c = 4/(Kx)? € N- %

Proof. Assume the existence of w2, and denote by f; the divisor of the fibre of 7; for
i=1,2. We have (f1)? = (f2)? = 0 and by adjunction formula f; - Kx = fo- Kx =
—2, where Kx is the canonical divisor. Let us write d = (Kx)?.

Since (X, 1) is minimal, Pic(X) has rank 2, hence f; = aKx + bfa, for some
a,b € Q. Computing (f1)? and f; - Kx we find respectively 0 = a?d — 4ab =
a(ad — 4b) and —2 = ad — 2b. If a = 0, we find f; = f2, a contradiction. Thus,
4b = ad and 2b = ad+ 2, which yields b = —1 and ad = —4, so f1+ fo = —4/d- K.
This shows that fs5 is uniquely determined by fi.

Denote as usual by S the complex surface associated to X. Let C' € Pic(S) be
an effective divisor, with reduced support, and let us prove that C - (f; + f2) > 0.
Since C' is effective, C'- f1 > 0and C- fy > 0. If C- f; = 0, then the support of C' is
contained in one fibre of m;. If C' is a multiple of fi, then C - fo > 0; otherwise, C'
is a multiple of a (—1)-curve contained in a singular fibre of f1, and the orbit of C
by the anti-holomorphic involution is equal to a multiple of f;, whence C - fo > 0.

Since f1+ f2 is ample, and f1+ fo = —4/d- Kx either Kx or —Kx is ample. The
surface X being geometrically rational, the former cannot occur, whence d > 0.
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If S is isomorphic to P{ x PL, the existence of 71, mo shows that X is isomorphic
to P}, x P}. Otherwise, Kx is not a multiple in Pic(X¢) and thus d is equal to
1, 2 or 4. The number of singular fibres being even and equal to 8 — (Kx)? by
Lemma @7 the only possibilities are then 2 and 4.

We have proved that 1) implies 2), a), and c¢).

Assume now that X = (S, 0) is Py x P} or a del Pezzo surface of degree 2 or 4.
We construct an automorphism « of X which does not belong to Aut(X, 7). Then,
by taking mo = ma we get assertion 1). Taking into account the unicity of ma, we
get b).

If X is PL x P}, the two conic bundles are given by the projections on each
factor, and we can get for o the swap of the factors.

If X is a del Pezzo surface of degree 2, the anti-canonical map ¢: X — P? is
a double covering ramified along a smooth quartic, cf. e.g. . Let o be
the involution associated to the double covering — « is classically called the Geiser
inwvolution. It fixes a smooth quartic, hence cannot preserve any conic bundle.

The remaining case is when X is a del Pezzo surface of degree 4. By Lemma @,
there is a birational map 7: S — P% which is the blow-up of five points p, ..., ps
of P4, no three being collinear and which sends the fibres of 71 on the lines passing
through p; . There are 16 exceptional curves (curves isomorphic to IP’}C of self-
intersection (—1)) on S:

o By =n"Yp1),...., B5 =71 (ps) (5 curves);

e the strict transforms of the lines passing through p; and p;, denoted by L;;
(10 curves);

e the strict transform of the conic passing through the five points, denoted

by T.
Note that the four singular fibres of m; are E; U L;;, i = 2,...,5, and that o
exchanges thus E; and L;; for ¢ =1,...,5. The intersection form being preserved,

this implies that ¢ acts on the 16 exceptional curves as
(B2 L12)(E3 L13)(Es L1a)(Es L1s)(E1 T')(Laz Las)(Laoa Las)(Las L3a).

After a linear change of coordinates, we may assume that p; = (1 : 1 : 1),
po=(1:0:0),p3=0:1:0),ps=0:0:1)and ps = (a:b:c) for some
a,b,c € C*. Denote by ¢ the birational involution (x : y : z) --» (ayz : bxz : cxy)
of ]P’?C. Since the base-points of ¢ are ps, p3, p4 and since ¢ exchanges p; and ps, the
map ¢ = 7~ '¢n is an automorphism of S. Its action on the 16 exceptional curves
is given by the permutation

(L2s E4)(Laa E3)(L3s Ea)(Lia Las)(L13 Las)(L1a Las)(T Lis)(Er Es).

Observe that the actions of ¢ and o on the set of 16 exceptional curves commute.
This means that pop~'o~! is an holomorphic automorphism of S which preserves
any of the 16 curves. It is the lift of an automorphism of P% that fixes the 5

points p1,...,ps and hence is the identity. Consequently, ¢ and ¢ commute, so
© € Aut(X). Since ¢ sends a general line passing though p; onto a conic passing
through po, ..., ps, ¢ belongs to Aut(X)\ Aut(X, 7). O

Corollary 5.4. Let X be a minimal geometrically rational real surface, which is
not rational. Then, the following are equivalent:

(1) #X(R) =2 or #X(R) = 3;
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(2) There exists a geometrically rational real surface Y (R) isomorphic to X (R),
and such that Y admits two minimal conic bundles m:Y — PﬂlQ and
ma: Y — Pk inducing distinct foliations on Y (C).

Proof. [(2) = (1)] By Lemma .3, Y is then a del Pezzo surface, which has degree
2 or 4 since Y is not rational. This implies that #Y(R) = 2 or #Y(R) = 3 by
Proposition B.7.

[(1) = (2)]. According to Theorem B.5 and Proposition B.7, (1) implies the ex-
istence of a minimal real conic bundle structure mx: X — P} with 4 or 6 singular
fibres. This condition is equivalent to the fact that I(X,7x) is the union of 2 or
3 intervals (Corollary ) According to Lemma @, there exists a minimal real
conic bundle (Y, ;) such that Y is a del Pezzo surface and I(Y,m) = I(X, 7x).
Proposition and Corollary show that (X(R),7x) and (Y, ) are isomor-
phic. Moreover Lemma @ yields the existence of ma. O

6. EQUIVALENCE OF SURFACES VERSUS EQUIVALENCE OF CONIC BUNDLES

This section is devoted to the proof of Theorem @ It remains to solve the
conic bundle case, which is done in Theorem . First of all, we correct an existing
inaccuracy in the literature; in [Kol97, Exercice 5.8] or [Bil8d, VI.3.5], it is asserted
that all minimal real conic bundles with four singular fibres belong to a unique
birational equivalence class. To the contrary, the following general result, which
includes the case with four singular fibres, occurs:

Theorem 6.1. Let mx: X — ]IbﬂlQ and Ty : Y — ]IbﬂlQ be two real conic bundles, and
suppose that either X orY is non-rational. Then, the following are equivalent:

(1) The two real surfaces X andY are birational.
(2) The two real conic bundles (X, nx) and (Y,my) are birational.
(3) There exists an automorphism of P which sends (X, wx) onto I(Y,my).

Moreover, if the number of singular fibres of wx is at least 8, then Bir(X) =
Bil“(X, 7Tx).

Remark 6.2. Tt is well-known that this result is false when X and Y are rational.
Indeed, consider (X, 7y) = (PL x PL,pr;) and (Y, 7y) be a real conic bundle with
two singular fibres. The surfaces X and Y are birational, but the conic bundles
(X,7x) and (Y, 7y ) are not.

Proof. The equivalence (3) < (2) was proved in Proposition and (2) = (1) is
evident.

We may assume that (X, 7x) and (Y, 7y) are minimal and that X is not rational,
hence mx has at least 4 singular fibres. Let ¥: X --» Y a birational map, and
decompose 9 into elementary links: ¢ = ), 0 -+ 011 (see , Theorem 2.5]).
Consider t1: X --+ X3 the first link, which may be of type II or IV only by
, Theorem 2.6]. If ¢ is of type II, then 7 is a birational map of conic
bundles (X, 7x) --+ (X1, ) for some conic bundle structure m;: X; — P If )y
is of type IV, then 17 is an isomorphism X — X7 and the link is precisely a change
of conic bundle structure from wx to m;: X; — P!, which induce distinct foliations
on X (R). Applying Lemma E, X is a del Pezzo surfaces of degree 2 or 4, and
there exist automorphisms o € Aut(X) and 8 € Aut(Pg) such that mya = B,
whence (X, ) is isomorphic to (X7, 7). We proceed by induction on the number
of elementary links to conclude that (X,7x) is birational to (Y, 7y ). Moreover,
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if mx has at least 8 singular fibres, then no link of type I'V may occur, so ¢ is a
birational map of conic bundles (X, 7x) --» (Y, 7y ). O

When the conic bundles are minimal, we can strengthen Theorem @ to get an
isomorphism between the real parts.

Theorem 6.3. Let mx: X — ]IbﬂlQ and 7y: Y — PﬂlQ be two minimal real conic
bundles, and suppose that either X or Y is non-rational. Then, the following are
equivalent:

(1) X and Y are birational.
(2) X(R) and Y(R) are isomorphic.
(3) (X(R),mx) and (Y(R),ny) are isomorphic.

Proof. The implications (3) = (2) = (1) being evident, it suffices to prove (1) =
(3). Since X and Y are not rational, both mx and my have at least one singular
fibre. Applying Proposition , we may assume that both (X, 7x) and (Y, 7y)
are minimal exceptional real conic bundles. Then, since (X,7x) and (Y, 7y) are
birational (Theorem p.1), we may assume that I(X,7x) = I(Y,7y), up to an
automorphism of Py. Then Lemma [£.§ shows that (X, wx) is isomorphic to (Y, 7y ).

O

We are now able to prove Theorem [L.J concerning minimal surfaces.

Proof of Theorem E Let X and Y be two minimal geometrically rational real
surfaces, and assume that either X or Y is non-rational.

If X(R) and Y(R) are isomorphic, it is clear that X and Y are birational. Let
us prove the converse.

Theorem B.9 lists all the possibilities for X. If p(X) = 1 or p(Y) = 1, Propo-
sition B.§ shows that X is isomorphic to Y. Otherwise, since neither X nor Y
is rational, there exist minimal conic bundle structures on X and on Y. From
Theorem f.3, we conclude that X (R) is isomorphic to Y (R). O

To go further with non-minimal surfaces, we need to know when the group
Aut(X (R)) is very transitive for X minimal. This is done in the next sections.

7. VERY TRANSITIVE ACTIONS

Thanks to the work done in Section @, it is easy to apply the techniques of
[HMO7] to prove that Aut (X (R)) is fiberwise very transitive on a real conic bundle.
After describing the transitivity of Aut (X (R)) on the tangent space of a general
point, we set the main result of that section: Aut (X (R)) is very transitive on
connected components when X is minimal and admits two conic bundle structures
(Proposition E) We end the section by giving a characterisation of surfaces X
for which Aut(X (R)) is able to mix the connected components of X (R).

Lemma 7.1. Let (X,w) be a minimal real conic bundle over P} with at least one
singular fibre. Let (p1,...,pn) and (q1,...,qs) be two n-tuples of distinct points of
X(R), and let (by,...,bym) be m points of I(X,w). Assume that 7(p;) = 7(q;) for
each i, that w(p;) # w(p;) for i # j and that w(p;) # b; for any i and any j.

Then, there exists o € Aut(X (R)) such that o(p;) = q; for every i, 7a = and
a|7771(bi) is the identity for every i.
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Remark 7.2. The same result holds for minimal real conic bundles with no singular
fibre, see [B . 5.4]. The following proof uses twisting maps, see below, which
were introduced in [] to prove that the action of the automorphism group
Aut(S?) on the quadric sphere S? := {(z : y : 2) € R3 | 2% + y? + 2% = 0} is very
transitive.

Proof. By Proposition 7 we may assume that (X, m) is exceptional. Moreover,
Corollary yields the existence of an affine real surface A C X isomorphic to
the hypersurface of R? given by

2r
Y+ 2t = —H(:v —ai),
i=1
for some aq,...,as, € R with a1 < ag < -+ < ag,, where 7|4 corresponds to the
projection (z,y,z) — z, and where the inclusion A C X induces an isomorphism

AR) — X (R).

For i = 1,...,n, let us denote by (z;,¥;, z;) the coordinates of p; in A C R3
and by (u;,v;, w;) the ones of ¢;. From hypothesis, we have x; = w; for all 7, thus
we get y? + 22 = v? + w? for all i. Let ®; € SO2(R) be the rotation sending
(zi,9i) to (us,v;). Then by [AMO7, Lemma 2.2], there exists an algebraic map
®: [a1,az-] — SO2(R) such that ®(x;) = ®; fori =1,...,n and ®(b;) is the identity
for i = 1,...,m. Let us recall the proof; since SO2(R) is isomorphic to the unit
circle St := {(z : y : 2) € P2(R) | 22 4+ y? = 22}, it suffices to prove the statement
for St instead of SO2(R). Let ®q be a point of S distinct from ®y,...,®,, and
from the identity. Since S\ {®g} is isomorphic to R, it suffices, finally, to prove the
statement for R instead of SO2(R). The latter statement is an easy consequence of
Lagrange polynomial interpolation.

Then the map defined by a: (z,y,2) — (,(y,z) - ®(z)) induces an automor-
phism A(R) — A(R) called the twisting map of 7 associated to ®. Moreover,
a(pi) = g, for all i, Ta = 7, al,-1@,) is the identity for every 4, and 7 induces an
automorphism X (R) — X (R). O

Lemma 7.3. Let (X,m) be a minimal real conic bundle over P} with at least one
singular fibre. Let p € X be a point in a nonsingular fibre of w, and let ¥ C I(X, )
be a finite subset, with w(p) € . Denote by n: Y — X the blow-up of p, and by
E CY the exceptional curve. Let q € E the point corresponding to the direction of
the fibre of m passing through p.

Then, the lift of the group

G = {a € Aut(X(R)),ma =7 ‘ alr-1(x) is the identity}

by n is a subgroup n~1Gn C Aut (Y(R)) which fizes the point q, and acts transitively
on E\q = A}.

Proof. Since G acts identically on 7~(¥), it fixes p, and therefore lifts to H =
n~1Gn C Aut(Y (R), ), which preserves E. Moreover, G preserves the fibre of 7
passing through p, so H preserves its strict transform, which intersects transversally
E at ¢, so q is fixed.

Let us prove now that the action of n7'Gn on E\q is transitive. By Proposi-
tion , we may assume that (X, 7) is exceptional. Then, we take an affine surface
A C X, isomorphic to the hypersurface y? + 22 = P(x) of R? for some polynomial
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P, such that A|, is the projection pr,: (x,y, z) — x and the inclusion A C X gives
an isomorphism A(R) — X (R) (Corollary [E11)). Let us write (0,0, 20) € R? the
coordinates of p. Since z is on a nonsingular fibre of 7, then P(z¢) > 0. Up to
an affine automorphism of R?, and up to multiplication of P by some constant, we
may assume that 2o =0, P(0) =1, yo =0, and z9 = 0.

To any real polynomial A € R[X], we associate the matrix

( a(X) - B(X) ) € SO (R(X)) ,

—A(X)  a(X)
where o = }I—iz € R(X) and 8 = % € R(X). And corresponding to this matrix,

we associate the map

Pa: (2,y,2) = (@,0(2) -y = B(z) - 2, B(x) -y + () - 2),

which belongs to Aut(A(R), pr,). To impose that 1, is the identity on (pr,) (%)
is the same to ask that A(z) = 0 for each (z : 1) € ¥ C P}(R), and in particular for
z=0.

Denote by O = Rz, vy, 2]/(y* + 22 — P(x)) the ring of functions of A, by p C O
the ideal of functions vanishing at p, by O, the localisation, and by m C O, the
maximal ideal of Op. Then, the cotangent ring 77 4 of p in A is equal to m/m?, and
is generated by the images [z], [y], [ — 1] of z,y,2z — 1 € R[x, y, z]. Since P(0) =1,
we may write P(x) = 1+ zQ(z), for some real polynomial ). We compute

[0] = [y?+2°~P(2)] = [y* +(:=1)°+2(z~1) ~2Q(2)] = [2(:~1)~2Q(0)] € m/m*.

We see that [z — 1] = [2Q(0)/2], thus m/m? is generated by [z] and [y] as a
R-module. Since A\(0) = 0, we can write A(z) = zu(x), for some real polynomial p.
The linear action of ¢, on the cotangent space T 4 fixes [z] and sends [y] onto

“A2)H)y—2X(2)z
[a@) -y = B(a) 2] = [U2GHERAEE] [y~ 22(@)(1 +2Q(0)/2)]
= [y—2u(0)z] .
It suffices to change the derivative of A at 0 (which is equal to ((0)), which may be
any real number. Therefore, the action of G on the projectivisation of T 4, fixes a

point (corresponding to [x]) but acts transitively on the complement of this point.
Since E corresponds to the projectivisation of T), 4, G acts transitively on F\g. O

Lemma 7.4. Let X be a real projective surface endowed with two minimal conic
bundles m1: X — Pg and mo: X — Pk inducing distinct foliations on X (C). Let
F; be a real fibre of mj, j = 1,2. If Fi(R) N F>2(R) # 0, then at most one of the
curves F}; can be singular.

Proof. Suppose the converse for contradiction. Then, F; is the union of two (—1)-
curves E; 1 and FEj», intersecting transversally at some point p;. Since p; is the
only real point of F;, we have p; = ps. Hence, E5 1 - F1 > 2.

According to Lemma , X is a del Pezzo surface of degree 2 or 4. Denote
by S the complex surface obtained by forgetting the real structure on X, and by
n: S — P2 the birational map which is the blow-up of pi1,...,pm, m =5orm =7,
and which sends the fibres of 71 on lines passing through p; (Lemma @) The
curves Fs 1 and Es o having self-intersection —1, these are the strict transform of
lines or conics of P? passing through 3 or 5 of the p;. Since both curves intersect
the fibres of 7; into at least 2 points, the curves are conics not passing through p;.
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This means that m = 7 and that the two conics intersect nowhere except at four of
the points pa, ..., p7. This is impossible since E5; and E5 o intersect at p. (|

We now use Lemma @ to show that the action of Aut (X (R)) is very transitive
on connected components when X is a surface with two conic bundles.

Proposition 7.5. Let X be a real projective surface, which admits two minimal
conic bundles m: X — Pk and ma: X — PL inducing distinct foliations on X (C).

Let (p1,...,pn) and (q1,...,qn) be two n-tuples of distinct points of X (R) such
that p; and q; belong to the same connected component for each i. Then, there
exists an element of Aut (X(R)) which sends p; on q; for each i, and which sends
each connected component of X (R) on itself.

Proof. When X is rational, the result follows from [HMO07, Theorem 1.4]. Thus we
assume that X is non-rational, and in particular that X (R) is non-connected.

From Lemma @, any real point which is critical for one fibration is not crit-
ical for the second fibration. Otherwise speaking (recall that the fibrations are
minimal) a real intersection point of a fibre F; of m; with a fibre Fy of w2 cannot
be a singular point of F; and of F5 at the same time. By Lemma EI applied to
(X,m), and to (X, m2), we may assume without loss of generality that all points
Dly---3Pnsq1,---,qn belong to smooth fibres of m; and to smooth fibres of ms.
We now use Lemma to obtain an automorphism « of (X (R),m) such that
mo(a(p;)) # ma(a(p;)) and ma(a(g:)) # m2(a(gy)) for ¢ # j. Hence, we may suppose
that mo(p;) # m2(p;) and ma(q;) # ma(g;) for ¢ # j.

Likewise, using an automorphism of (X (R), m2) we may suppose that m(p;) #
m1(pj) and m1(g;) # m1(g;) for i # j.

We now show that for ¢ = 1,...,m, there exists an element «; € Aut (X(R))
that sends p; on ¢; and that restricts to the identity on the sets Ujx;{p;} and
Uj2i{g;}. Then, the composition of the o; will achieve the proof. Observe that
¢ = m x m gives a finite surjective morphism X — P} x P which is 2-to-1 or
4-to-1 depending of the degree of X (follows from assertion (¢) of Lemma .3).
Denote by W the image of X(R). The map X(R) — W is a differential map,
which has topological finite degree. Denote by W; the connected component of W
which contains both ((p;) and ((g;). Observe that W; is contained in the square
I(X,m)xI(X, ), and that for each point € W;, the intersection of the horizontal
and vertical lines (fibres of the two projections of P} x PL) passing through z
with W; is either only {z}, when z is on the boundary of W;, or is a bounded
interval. Moreover, W; is connected. Then, there exists a path from ((p;) to ((q;)
which is a sequence of vertical or horizontal segments contained in W;. We may
furthermore assume that none of the segments is contained in (pr;)~!(mi(a)) or
(pry)(m2(a)) for any a € (Uj2i{p;}) U (Uj=i{q;}). Denote by rq,...,r; the points
of U that are sent on the singular points or ending points of the path, and by
$1,...,8; some points of X (R) which are sent by ¢ on r1,...,r; respectively. Up to
renumbering, s1 = p;, 5; = ¢; and two consecutive points s; and s;11 are such that
m1(sj) = mi(sj41) or ma(s;) = ma(sj+1). We construct then «; as a composition
of I — 1 maps, each one belonging either to Aut(X(R),71) or Aut(X(R),m2) and
sending s; on s;j41, and fixing the points (Uj2;{p;}) U (U;xi{g;}). O

The following proposition describes the possible mixes of connected components.
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Proposition 7.6. Let (X, 7) be a minimal real conic bundle. Denote by I, ..., I,

the v connected components of I(X,m), and by My, ..., M, the r connected com-

ponents of X(R), where I, = n(M;), M; = n~Y(I;) N X(R). If v € Sym, is a

permutation of {1,...,r}, the following are equivalent:

(1) there exists o € Aut(Py) such that a(I;) = I,y for each i;

) there exists # € Aut(X(R), ) such that B(M;) = M, for each i;

) there exists 8 € Aut(X(R)) such that B(M;) = M, for each i;

) there exist two real Zariski open sets V,(W C X, and (8 € Bir(X), inducing
an isomorphism V. — W, such that B(V(R) N M;) = W(R) N M, for each
i.

Moreover, the conditions are always satisfied when r < 2, and are in general not

satisfied when r > 3.

Proof. The implications (2) = (1) and (2) = (3) = (4) are obvious.

Let us prove (1) = (2). According to Proposition , we may assume that
(X, m) is exceptional. The results follows from Lemma 1.9,

We prove now that if » < 2, Assertion (1) is always satisfied, hence all the
conditions are equivalent (since all are true). When r < 1, take « to be the
identity. When r = 2, we make a linear change of coordinates to the effect that
I ={(x:1)|0<z <1} and I is bounded by (1 :0) and (A : 1), for some A € R,
A>1or A<0. Then, a: (1 : x2) — (Axe : 1) is an involution which exchanges
Il and _[2.

It remains to prove the implication (4) = (1) for » > 3. We decompose § into
elementary links

X =X, LR X, LR X, 1 B, X, =X
as in [[sk96, Theorem 2.5]. It follows from the description of the links of [[sk96,
Theorem 2.6] that each of the links is of type IT or IV, and that the links of type
1T are birational maps of conic bundles and the links of type I'V occur on del Pezzo
surfaces of degree 2.

In consequence, each of the X; admits a conic bundle structure given by m;: X; —
Pk, where mg = 7, = m, and if 3; has type I, it is a birational map of conic bundles
(X1, mi—1) -+ (X4, m;), and if it has type IV, it is an isomorphism X;_; — X;
which does not send the general fibre of m;_1 on those of m;. In this latter case,
since m; and 7;_13; have distinct general fibres, X; 1 and X; are del Pezzo surfaces
of degree 2, and the Geiser involution ¢;—1 € Aut(X;_1) exchanges the two general
fibres (follows from [[sk9d, Theorem 2.6], but also from Lemma p.d). This means
that the map (; o ¢;—1, that we denote by ~;, is an isomorphism of conic bundles
(Xiz1,mim1) = (X, mi).

Now, we prove by induction on the number of links of type IV that 5 may be
decomposed into compositions of elements of Bir(X, 7) and maps of the form )1
where 1 is a birational map of conic bundles (X, 7) --» (X', 7’), (X', 7’) is a del
Pezzo surface of degree 2 and ¢ € Aut(X’) is the Geiser involution. If there is no link
of type IV, 3 preserves the conic bundle structure given by 7. Otherwise, denote
by B; the first link of type IV, which is an isomorphism 3;: X; — X;41, and write
Bi = i o t;—1 as before. We write ¢ = ;1 o --- o (31, which is a birational map of
conic bundles ¢: (X, m) --» (X;,m;). Then, B = (Bn0---0fBip10709) (W~ ti19)).
Applying the induction hypothesis on the map (8, o -+ 0 ;11 0y 0 ¢) € Bir(X),
we are done.
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Now, observe that when (X’,#’) is a minimal real conic bundle and X’ is a del
Pezzo surface of degree 2, the map (: X’ — P2 given by | — Kx/| is a double
covering, ramified over a smooth quartic curve I' C P% (see e.g. [D d]). Since
(X,7) is minimal, 7 has 6 singular fibres (Lemma [i.), so I(X,7) is the union of
three intervals and X (R) is the union of 3 connected components (Corollary )
This implies that I'(R) is the union of three disjoint ovals. A connected component
M of X(R) is homeomorphic to a sphere, and surjects by ¢ to the interior of one
of the three ovals. The Geiser involution (induced by the double covering) induces
an involution on M, which fixes the preimage of the oval. This means that the
Geiser involution sends any connected component of X (R) on itself. Thus, in the
decomposition of 8 into elements of Bir(X,n) and conjugate elements of Geiser
involutions, the only relevant elements are those of Bir(X, 7). There exists thus
(' € Bir(X, w) which acts on the connected components of X (R) in the same way
as (. This shows that (4) implies (1).

We finish by proving that (1) is false in general, when r > 3. This follows from
the fact that if ¥ is a general finite subset of 2r distinct points of P4, the group
{a € Aut(P}) | a(X) = X} is trivial. Supposing this fact true, we obtain the result
by applying it to the 2r boundary points of I(X, 7). Let us prove the fact. The set
of 2r-tuples of P} is an open subset W of (P})?". For any non-trivial permutation
v € Sym,,, we denote by W,, C W the set of points a = (a1, ...,a2,) € W such
that there exists o € Aut(P}) with a(a;) = a,;) for each i. Let a € W,,, and take
two 4-tuples 31,35 of a;’s with ¥; # ¥ and Yo = v(X;) (this is possible since v
is non-trivial). Then, the cross-ratio of the a;’s in 3; and in 39 are the same. This
implies a non-trivial condition on W. Consequently, W,, is contained in a closed
subset of W. Doing this for all non-trivial permutations v, we obtain the result. [

8. REAL ALGEBRAIC MODELS

The aim of this section is to go further with non-minimal surfaces with 2 or 3
connected components. We begin to show how to separate infinitely near points to
the effect that any such a surface Y (R) is isomorphic to a blow-up By, ... 4., X (R)
where X is minimal and aq, ..., a,, are distinct proper points of X (R). Then, we
replace X (R) by an isomorphic del Pezzo model (Corollary Q) and we use the
fact that Aut(X(R)) is very transitive on connected components for such an X
(Proposition [.§) to prove that in many cases, if two birational surfaces Y and Z
have homeomorphic real parts then Y (R) and Z(R) are isomorphic. As a corollary,
we get that in any cases, Aut (Y(R)) is very transitive on connected components.

Proposition 8.1. Let X be a minimal geometrically rational real surface, with
#X(R) =2 or #X(R) =3, and let n: Y — X be a birational morphism.
Then there exists a blow-up n': Y’ — X, whose centre is a finite number of
distinct real proper points of X, and such that Y'(R) is isomorphic to Y (R).
Moreover, we can assume that the isomorphism Y (R) — Y’(R) induces an home-
omorphism n~ (M) — (n')~Y(M) for each connected component M of X (R).

Proof. According to Corollary @7 we may assume that X admits two minimal
conic bundles 71: X — P} and m2: X — P} inducing distinct foliations on X (C).
Preserving the isomorphism class of Y (R), we may assume that the points in the
centre of 1 are all real (such a point may be a proper point of X (R) or an infinitely
near point). Let us denote by m (= K% — K%) the number of those points. We
prove the result by induction on m.



REAL CONIC BUNDLES AND VERY TRANSITIVE ACTIONS 29

The cases m = 0 and m = 1 being obvious (take ' = 7)), we assume that
m > 2. We decompose 1 as 7 = 0 o e, where €: Y — Z is the blow-up of one real
point ¢ € Z, and #: Z — Y is the blow-up of m — 1 real points. By induction
hypothesis, we may assume that 6 is the blow-up of m — 1 proper points of X,
namely a1, ,am—1 € X(R). Moreover, applying Proposition @, we may move
the points by an element of Aut(X(R)), and assume that mi(a;) # m1(a;) and
mao(a;) # ma(a;) for i # j, and that the fibre of m; passing through a; and the fibre
of 7o passing through a; are nonsingular and transverse at a;, for each 1.

If 6(q) ¢ {a1,...,am—1}, then n is the blow-up of m distinct proper points of X,
hence we are done. Otherwise, assume that 6(q) = a;. We write E = 0"1(a;1) C Z,
and denote by F; C Z the strict pull-back by 7 of the fibre of 7; passing through
ay, for i = 1,2. Then, F; and F» are two (—1)-curves which do not intersect.
Hence, the point ¢ € F belongs to at most one of the two curves, so we may assume
that ¢ ¢ Fy. Denote by 62: Z — X5 the contraction of the m — 1 disjoint (—1)-
curves Fy,0(az),...,0  (am—1). Since ¢ does not belong to any of these curves,
12 = O3 o € is the blow-up of m — 1 distinct proper points of Xs. It remains to find
an isomorphism v: X2(R) — X (R) such that for each connected component M of
X (R), yna sends n~1(M) on M.

Denoting 7/ = m 00 o 9;1, the map 9 = 6, 0 0! is a birational map of conic
bundles (X,m) --» (X2,7’), which factorizes as the blow-up of a;, followed by
the contraction of the strict transform of the fibre passing through a;. There-
fore, the conic bundle (X2, 7’) is minimal. Since X is not rational and 7'y = 7y,
Corollary yields the existence of an isomorphism v: X2(R) — X (R) such that
w1y = 7. Observe that yne o n™! = 703 0 6~ = 44 is a birational map X --» X
which satisfies o (yn2 0on~1) = 7. Consequently, for any connected component M
of X (R), which corresponds to 7~1(V) N X (R), for some interval V C P&, we find
7(ynan~ Y (M)) = (M) = V, thus yny sends =1 (M) on M. O

Corollary 8.2. Let X be a minimal geometrically rational real surface, such that
#X(R) = 2 or #X(R) = 3, and let n:' Y — X, e: Z — X be two birational
morphisms. Denote by My, ..., M, the connected components of X (R) (r = 2,3).
Then, the following are equivalent:
(1) n71(M;) C Y(R) and e~1(M;) C Z(R) are homeomorphic for each i;
(2) there exists an isomorphism Y (R) — Z(R) which induces an homeomor-
phism n~1(M;) — e~ *(M;) for each i.

Proof. (2) = (1) being obvious, let us prove the converse. According to Proposi-
tion B.], we may assume that n and ¢ are the blow-ups of a finite number of distinct
real proper points of X. Denote by X, and 3. these two finite sets. For each 7, the
fact that n=1(M;) C Y(R) and e~ *(M;) C Z(R) are homeomorphic implies that
the numbers of points of 3, N M; and . N M; coincide.

By Corollary @ and Proposition @, Aut (X (R)) is very transitive on connected
components of X (R). In particular, there exists an element o € Aut (X (R)) such
that a(M;) = M; for each i and «(%,) = X.. Then, ¢y = e tan: Y(R) — Z(R) is
the wanted isomorphism. ([

Corollary 8.3. Let Y be a geometrically rational real surface with #Y (R) =2 or
#Y(R) = 3. Let (p1,...,pn) and (q1,...,qn) be two n-tuples of distinct points of
Y (R) such that p; and ¢; belong to the same connected component for each i.
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Then, there ezists an element o € Aut (Y(R)), which fizes each connected com-
ponent of Y (R) and such that a(p;) = q; for each i.

Proof. Let n:' Y — X be a birational morphism to a minimal real surface X;
observe that #X (R) = #Y (R). According to Corollary p.4, we may assume that X
admits two minimal conic bundles m: X — IP’]}Q and mo: X — ]P’]llQ inducing distinct
foliations on X (C). By Proposition @, we can suppose that 7 is the blow-up of m
distinct real proper points ai, ..., a,, € X. We prove the result by induction on m.

If m = 0, which means that X =Y, the result follows from Proposition @

If m > 0, denote by 19: Z — X the blow-up of a1,...,am,-1 (1o is the identity
if m = 1), and by 1;: Y — Z the blow-up of b = n;*(a,).

Applying Proposition 7., we may assume that 7 (a;) # m1(a;) and mo(a;) #
mo(a;) for i # j, and that the fibre of m passing through a; and the fibre of
mo passing through a; are nonsingular and transverse at a;, for each i. Let us
denote by E C Y the exceptional curve n; ' (b) of 7, and by F; the strict trans-
form on Y of the fibre of m; passing through a,,, for ¢ = 1,2. Then E, F; and
F5 are three (—1)-curves, F; and F» do not intersect, and F intersect transver-
sally each of the F;. By induction hypothesis, we may use the lift of an element
of Aut (Z (R)) which fixes b to assume that no one of the points p; belongs to
FI\E, R\E or to n7(a;) for i = 1,...,m — 1. Then the group G = {a €
Aut(X(R)) | ma = m,a fixes ai, ..., am,n(p1),...,n(pn)}, acts transitively on
E\F, (Lemma [7.9). Lifting a well-chosen element of this group in Aut (Y(R)), we
may move the points p; and assume that no one of the p; belongs to F» (i.e. we can
avoid F» N E). Denote by n': Y — X' the contraction of the disjoint (—1)-curves
Fo,n~Hay),...n7 Y am—1).

Then, the birational map ¢ = n'n~': X --» X’ is a birational map of conic
bundles (X,7m3) --» (X', '), where 7’ = w91, which consists of the blow-up of
am, followed by the contraction of the strict transform of the fibre passing through
am. Therefore, the conic bundle (X’,7’) is minimal. Since X is not rational,
Corollary yields the existence of an isomorphism 7v: X'(R) — X (R) such that
mgy = 7. Therefore, there exists an element 8 € Aut(X’(R)) which fixes all the
points blown-up by 7', which fixes all the points {n/(p;),p; ¢ E}, and which sends
the points {n(p;),p; € E} outside of /(E). Applying the lift of 5 on Aut(Y (R)), we
may assume that none of the points p; belongs to E. Doing the same manipulation
with the g;, it remains to use the lift of an element of Aut(Z(R)) which fixes b and
sends 71 (p;) on 11 (g;) for each i. O

9. PROOF OF THE MAIN RESULTS

The proof of Theorem @ was given at the end of Section E Now, we deduce
the others results stated in the introduction from the results of Sections E and .
The following lemma serves to prove most of them.

Lemma 9.1. Let (X,7) be a minimal real conic bundle, such that I(X, ) is the
union of r intervals I, ..., L., withr =2 orr = 3.
Letny:Y — X and nz: Z — X be two birational morphisms. Fori=1,...,r,
we write X; = 7Y L) N X(R), Y; = 0y (X)) NY(R) and Z; =, (X;) N Z(R).
Let p1,...,pn EY(R), q1,...,q, € Z(R) be two n-tuples of distinct points, and
assume the existence of an homeomorphism h: Y (R) — Z(R) which sends p; on g;
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for each i, and sends Y; on Z,;y, where v € Sym,. is a permutation of {1,...,r}.
Then, the following are equivalent:

(1) There exists an isomorphism (3: Y (R) — Z(R) which sends Y; on Z,;) for
each i € {1,...,r} and sends p; on q; for each j € {1,...,n}.

(2) There exists an automorphism o € Aut(Pg) which sends I; on 1,,(;y for each
ie{l,...,r}.

Moreover, both assertions are true if r = 2, and false in general when r = 3.

Proof. Observe that the X; (respectively the Y;, Z;) are the connected components
of X(R) (respectively of Y'(R), Z(R)).

[(1) = (2)] The map nzfBn; " is a birational self-map of X, which restricts to an
isomorphism ¢: V' — W, where V and W are two real Zariski open subsets of X.
Moreover, the hypothesis on 3 implies that o(V(R) N X;) = W(R) N X, ;). The
existence of « is provided by Proposition @

[(2) = (1)] Proposition [.q yields the existence of v € Aut(X(R), ) such that
v(Xi) = X,y We may thus assume that v is the identity. According to Proposi-
tion @, we may moreover suppose that 7y and 7z are the blow-ups of a finite set
of disjoint real proper points of X. Since Y; is homeomorphic to Z; for each i, ny
is the blow-up of a1,...,a,, and nz is the blow-up of b1, ..., by, where a; and b;
belong to the same connected component of X (R) for each j. Then, there exists an
element of Aut (X (R)) which preserves each connected component of X and sends
a; on bj for each j (Corollary B.3). We may thus assume that Y = Z, and conclude
by applying Corollary @ to Y.

The fact that (2) is true when r = 2 and false in general when r = 3 was proved
in Proposition E O

Proof of Theorem DI Let Y be a nonsingular geometrically rational real projective
surface, with #Y (R) = 2. Let (p1,...,pn) and (q1, - . ., gn) be two n-tuples of points
which are compatible. We want to prove the existence of a € Aut(Y (R)) such that
a(p;) = ¢; for each i.

If p; and ¢; are in the same connected component of Y (R), the result follows
from Corollary B.3.

Otherwise, the compatibility means that the two components of X (R) are home-
omorphic and that p; and ¢; are in a distinct component for each ¢. Lemma @
provides the existence of an element of Aut(Y(R)) which permutes the two con-
nected components of Y(R). This reduces the situation to the previous case. [

Theorem is Corollary applied to the case of 3 connected components.

Proof of Corollary . We prove firstly that if X is not geometrically rational,
then Aut(X(R)) is not very transitive. If X has Kodaira dimension 2, (surface of
general type), it has only finitely many birational self-maps (see e.g. [Uen7H].) If
X has Kodaira dimension 1, every birational self-map of X preserves the elliptic
fibration induced by |Kx|. If X has Kodaira dimension 0, and X is minimal, then
Bir(X) = Aut(X). The group Aut(X) is an algebraic group of dimension 1 or 2 (its
neutral component is an elliptic curve or an Abelian surface). Thus, Bir(X) may
not be 2-transitive. The case when X is not minimal is deduced from this case.

If X is a surface with Kodaira dimension —oo, then X is uniruled. If furthermore,
X is not geometrically rational and X (R) is non-empty, then the Albanese map
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X — C'is a real ruling over a curve with genus g(C) > 0, see e.g. [Fil8d, V.(1.8)],
and the Albanese map is preserved by any birational self-map.

Assume now that X is a geometrically rational surface. When #X (R) =1, X is
rational; the fact that Aut(X(R)) is very transitive is the main result of [EMO0T).
When #X (R) = 2, Aut(X (R)) is very transitive by Theorem [L.1]

When #X (R) > 3, we prove now that the group Aut(X(R)) is not transitive.
Denote by n: X — Xy a birational morphism to a minimal real surface, and ob-
serve that #Xo(R) = #X(R) > 3. Let us discuss the two cases for Xy given by
Theorem B.5. If X is a del Pezzo surface with p(X) = 1, then Aut(X(R)) is
countable (Corollary B.9), thus Aut(X(R)) cannot be transitive. The other case
is when p(Xy) = 2. Then, X; endows a real conic bundle structure (Xy,mo),
and Bir(Xy) = Bir(Xo,m) (Theorem [f.1]). Since the action of Bir(Xo,m) on the
basis of the conic bundle is finite (there are too much boundary points), neither
Aut(Xo(R)) nor Aut(X(R)) may be transitive.

When #X(R) = 3, Aut(X(R)) is very transitive on connected components
(Theorem [I.J). Thus, Aut (X(R)) is very transitive if and only if for any home-
omorphism h: X(R) — X (R), there exists o € Aut(X(R)) which permutes the
components of X(R) in the same way that h does. The possibilities when this
occur are described by Lemma @ For example, when X is minimal, it admits
a minimal real conic bundle structure (X, 7) (Theorem @ and Proposition @),
where 7 has 6 singular fibres. Then, Aut(X(R)) is very transitive if and only if
{a € Aut(PL) | a(I(X,7) = I(X, )} acts transitively on the three intervals of
I(X, 7). This is true in some special cases, but false in general. When X is not
minimal, Aut (X (R)) is very transitive for example when the three connected com-
ponents of X (R) are not homeomorphic 2-by-2, or when X is the blow-up of a
minimal surface Y with a very transitive group Aut(Y (R)). O

Proof of Theorem B Let X,Y be two geometrically rational real surfaces, and
assume that #X (R) < 2. We assume that X is birational to ¥ and that X (R) is
homeomorphic to Y (R), and prove that X (R) is isomorphic to Y (R).

Remark that all geometrically rational surfaces with connected real part are
birational to each others, thus in this case the statement follows from the unicity
of rational models [B |. We may thus assume that #X(R) = 2. Denote by
nx: X — X and ny : Y — Y} birational morphisms to minimal real surfaces.

Since Xy and Yj are birational, X,(R) and Yy(R) are isomorphic (Theorem [L.),
so we may assume that Xy = Y. The result now follows from Lemma @ (I

Proof of Corollary . If M is connected, and M is non-orientable or M is ori-
entable with genus g(M) < 1, then it admits a unique geometrically rational model
by [BHOT, Corollary 8.1]. Moreover, this model is in fact rational.

Conversely let M be a compact C*°-surface and assume that M admits a unique
geometrically rational model X . The existence of such a model implies, by Commes-
satti’s theorem , that any connected component of M is non-orientable or is
orientable with genus g < 1. The unicity means that for any geometrically rational
model Y of M, then Y (R) is isomorphic to X (R). In particular, this implies that
all geometrically rational models of M belong to a unique birational class. From
Theorem @ and Proposition @, this means that X is rational. It remains to
observe that when X is rational, X (R) is connected, and is either non-orientable
or orientable of genus < 1. When X is minimal, this follows from Proposition @
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Then, blowing-up points on a surface either does nothing on the topology of the
real part (if the points blown-up are imaginary), or it gives a non-orientable real
part (if the points blown-up ar real). (Il

We finish by a result on non-density. In [KMOg, it is proved that Aut(X (R)) is
dense in Diff (X (R)) when X is a geometrically rational surface with #X(R) = 1
(or equivalently when X is rational). In the cited paper, it is said that #X (R) = 2
is probably the only other case where the density holds. The following collect the
known results in this direction. The first two of them are new.

Proposition 9.2. Let X be a geometrically rational surface.
o If #X(R) > 5, then Aut(X (R)) is not dense in Diff (X (R));
o if #X(R) =3 or #X(R) = 4, then Aut(X(R)) is not dense in Diff (X (R))
for a general X, but could be dense in some special cases;
o if #X(R) =1, then Aut(X(R)) is dense in Diff (X (R)).

Proof. The case #X (R) = 1 is the main result of [KMO§. Assume from now on
that #X(R) > 3, and denote by 1: X — Xj a birational morphism to a minimal
real surface, and observe that #Xo(R) = #X(R) > 3. Let us discuss the two cases
for Xy given by Theorem @

Assume that X is a del Pezzo surface with p(Xy) = 1. If the degree of
Xo is 1 then Bir(Xj) is finite (Corollary B.9), thus Aut(X(R)) cannot be dense.
If X,y has degree 2, then #Xy(R) = 4 (Proposition B.7), so #X(R) = 4 too.
Since Aut(Xo(R)) = Aut(Xo) is finite, Aut(Xo(R)) cannot be dense (but maybe
Aut(X(R)) could be).

The other case is when p(Xy) = 2. Then, X, endows a real conic bundle structure
(Xo,m0). If #X(R) = #Xo(R) > 4, then Bir(X,) = Bir(Xo, m) (Theorem [.1)),
so Aut(X(R)) is not dense. If #X,(R) = 3, then in general Aut(Xo(R)) does not
exchanges the connected component of Xo(R). Consequently, Aut(Xo(R)) is not
dense (but maybe Aut(X(R)) could be, if the connected components of X (R) are
not homeomorphic). O
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