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GEOMETRICALLY RATIONAL REAL CONIC BUNDLES

AND VERY TRANSITIVE ACTIONS

JÉRÉMY BLANC AND FRÉDÉRIC MANGOLTE

Abstract. We study very transitive groups of automorphisms of real geomet-
rically rational surfaces with applications to the classification of real algebraic
models of compact surfaces. We give an insight into the geometry of real parts
which is a geometry between biregular and birational geometry’s, and show
several surprising facts about it.
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1. Introduction

The aim of this paper is to study the action of birational maps on the set of
real points of a real algebraic variety. It is worthwhile to point out a common
terminological source of confusion about the meaning of what is a real algebraic

variety, see also the enlightening introduction of [Kol01]. From the point of view
of general algebraic geometry, a real variety X is a variety defined over the real
numbers, and a morphism is understanding to be defined over all the geometric
points. But in most of the texts in real algebraic geometry, the algebraic structure
considered corresponds to the one of a neighbourhood of the real points X(R) in
the whole complex variety, which is rather the structure of a germ of an algebraic
variety defined over R.

From this point of view it is natural to view X(R) as a compact submanifold
of Rn defined by real polynomial equations, where n is some natural integer. Likely,
it is natural to say that a map ψ : X(R) → Y (R) is an isomorphism if ψ is induced
by a birational map Ψ: X 99K Y such that Ψ (respectively Ψ−1) is regular at
any point of X(R) (respectively of Y (R)). In particular, ψ : X(R) → Y (R) is a
diffeomorphism. This notion corresponds to the notion of biregular maps defined
in [BCR98, 3.2.6] for the structure of real algebraic variety commonly used in the
realm of real algebraic geometry.

Conversely, let M be a compact C∞-manifold. According to the Nash-Tognoli’s
theorem [Tog73], every such M is diffeomorphic to a nonsingular real algebraic
subset of Rm for some m. Taking the Zariski closure in Pm and applying Hironaka’s
resolution of singularities [Hir64], we obtain that M is in fact diffeomorphic to the
set of real points X(R) of a nonsingular projective algebraic variety X defined over
R. Such a variety X is called an algebraic model of M . A natural question is, given
M , to classify the algebraic models of M up to isomorphism.

1



2 JÉRÉMY BLANC AND FRÉDÉRIC MANGOLTE

There are several recent results about the question of algebraic models and their
automorphism groups [BH07, HM07, HM08, KM08]. For example, when M is 2-
dimensional, and admits a real rational algebraic model, then this rational algebraic
model is unique [BH07]. Otherwise speaking, if X and Y are two rational real
algebraic surfaces, then X(R) and Y (R) are isomorphic if and only if there are
homeomorphic. Moreover, in [HM07], the proof has been shortened by showing
that the automorphism group Aut

(

X(R)
)

has a very transitive action on X(R) for
any rational real algebraic surface X .

Definition 1.0. Let G be a topological group acting continuously on a topological
space M . We say that two n-tuples of distinct points (p1, . . . , pn) and (q1, . . . , qn)
are compatible if there exists an homeomorphism ψ : M →M such that ψ(pi) = qi
for each i. Then the action of G on M is said very transitive if for any pair of
compatible n-tuples of points (p1, . . . , pn) and (q1, . . . , qn) of M , there exists an
element g ∈ G such that g(pi) = qi for each i.

Recall that a real projective surface is rational if it is birationally equivalent to the
real projective plane, and that it is geometrically rational if its complexification is
birationally equivalent to the complex projective plane. The main goal of this paper
is to complete the classification of real algebraic models of surfaces by dealing with
the case of geometrically rational real projective surfaces which are non-rational.

To distinguish between the Zariski topology and the topology induced by the
embedding of X(R) as a topological submanifold of Rn, we will call the later the
Euclidean topology. In the sequel, topological notions like connectedness or com-
pactness will always refer to the Euclidean topology. We will denote by #M the
number of connected components of a compact manifold M .

The number of connected components is a birational invariant. In particular, if
X is a rational projective surface, X(R) is connected.

There is one case which shares many features with the rational case.

Theorem 1.1. Let X be a nonsingular geometrically rational real projective sur-

face, and assume that #X(R) = 2. Then the action of the group Aut
(

X(R)
)

on

X(R) is very transitive.

When #X(R) ≥ 3, the action of the group Aut
(

X(R)
)

is in general far from very
transitive except for the case with three components for which a slight weakening
of the definition works.

Let (p1, . . . , pn) and (q1, . . . , qn) be two compatible n-tuples of points of M such
that, for each i, pi and qi belong to the same connected component of M . We
say that G is very transitive on connected components if for any such a pair, there
exists an element g ∈ G such that g(pi) = qi for each i.

Theorem 1.2. Let X be a nonsingular geometrically rational real projective sur-

face, and assume that #X(R) = 3. Then Aut
(

X(R)
)

is very transitive on connected

components.

When #X(R) > 3, either any element of Aut
(

X(R)
)

preserves a conic bun-

dle structure (Theorem 6.1), or Aut
(

X(R)
)

is countable (Corollary 3.9); thus

Aut
(

X(R)
)

is not even 1-transitive on connected components. Indeed, we prove
the following result in Section 9.
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Corollary 1.3. Let X be a nonsingular real projective surface. Then Aut
(

X(R)
)

has a very transitive action on X(R) if and only if the following two conditions

hold:

(1) X is geometrically rational, and

(2) #X(R) ≤ 2 or #X(R) = 3 for a few particular X.

Theses results apply to the classification of algebraic models of real surfaces.

Theorem 1.4. Let X,Y be two nonsingular geometrically rational real projective

surfaces, and assume that #X(R) ≤ 2. Then X(R) is isomorphic to Y (R) if and

only if X is birational to Y and X(R) is homeomorphic to Y (R). This is false in

general when #X(R) ≥ 3.

Recall that a nonsingular projective surface is minimal if any birational mor-
phism to a nonsingular surface is an isomorphism. We have the following rigidity
result about minimal geometrically rational real surfaces.

Theorem 1.5. Let X and Y be two minimal geometrically rational real surfaces,

and assume that either X or Y is non-rational. Then, the following are equivalent:

(1) X and Y are birational.

(2) X(R) and Y (R) are isomorphic.

In the course of this work, we have classified the birational classes of real conic
bundles and corrected an error contained in the literature (Theorem 6.1). As a
consequence, we get that the only geometrically rational surfaces X(R) for which
equivalence by homeomorphism implies equivalence by isomorphism are the con-
nected ones. In particular, this gives a converse statement to [BH07, Corollary 8.1].

Corollary 1.6. Let M be a compact C∞-surface. Then M admits a unique geo-

metrically rational model if and only if the following two conditions hold:

(1) M is connected, and

(2) M is non-orientable or M is orientable with genus g(M) ≤ 1.

For M orientable with g(M) > 1, there is no result close to some unicity. Thus
we can ask what should be the simplest algebraic model for such an M . This
question is studied in the forthcoming paper [HM09].

Let us cite some recent works concerning automorphisms of real projective sur-
faces.

In [RV05], it is proved that Aut
(

P2(R)
)

is generated by linear automorphisms
and certain real algebraic automorphisms of degree 5.

In [KM08] it is proved that for any rational surfaceX , Aut
(

X(R)
)

⊂ Diff
(

X(R)
)

is dense for the strong topology. For non geometrically rational surfaces, the group
Aut

(

X(R)
)

cannot be dense; as for most of the non-rational geometrically rational
surfaces. The cited paper left open the question of density only for some geomet-
rically rational surfaces with 2, 3, 4 or 5 connected components. One by-product
of our results is the non-density for most of the surfaces with at least 3 connected
components, see Proposition 9.2.

The paper [HM08] is devoted to the study of very transitive actions and unicity
of models for some kind of singular rational surfaces.
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Outline of the article. After giving some notation that will be used in the arti-
cle in Section 2, we recall in Section 3 the classification of minimal geometrically
rational real surfaces.

Section 4, which constitutes the technical heart of the paper, is devoted to conic
bundles, and especially to the minimal ones. We provide representative elements
of isomorphism classes, and explain the links between the conic bundles.

In Section 5, we investigate real surfaces which admit two conic bundles. We
show in particular that these are del Pezzo surfaces, and give some description of
the possible conic bundles on these surfaces. Section 6 is devoted to the proof of
Theorem 1.5. We firstly correct an existing inaccuracy in the literature, by proving
that if two surfaces admitting a conic bundle structure are birational, the birational
map may be chosen so that it preserves the conic bundle structures. Then, we
strengthen this result to isomorphisms between real parts when the surfaces are
minimal, before proving Theorem 1.5.

In Section 7, we prove that if the real part of a minimal geometrically rational
has 2 or 3 connected components, its automorphism group is very transitive on con-
nected components. In Section 8, we do the same work with non-minimal surfaces.
We show how to separate infinitely near points, which is certainly one of the most
counter-intuitive behaviour of our geometry, and was first observed in [BH07] for
rational surfaces. We also obtain the unicity of models in many cases.

Then, in Section 9, we use all the results of the previous sections, to give the
proof of the main results stated in the introduction (except Theorem 1.5, proved
in Section 6).

2. Notation

In the sequel, by a variety we will mean an algebraic variety, which may be real
or complex (i.e. defined over R or C). If the converse is not expressively stated
all our varieties will be projective and all our surfaces will be nonsingular and
geometrically rational (i.e. rational over C).

Recall that a real variety X may be identified with a pair (S, σ), where S is a
complex variety and σ is an anti-holomorphic involution on S; by abuse of notation
we will write X = (S, σ). Then, S(C) = X(C) denotes the set of complex points
of the variety, and X(R) = S(C)σ is the set of real points. A point p ∈ X may be
real (if it belongs to X(R)), or imaginary (if it belongs to X(C)\X(R)). If X(R)
is non empty (which will be the case for all our surfaces), then Pic(X) ∼= Pic(S)σ,
[Sil89, I.(4.5)]. As we work only with regular surfaces (i.e. q(X) = q(S) = 0),
the Picard group is isomorphic to the Néron-Severi group, and ρ(S) and ρ(X) will
denote respectively the rank of Pic(S) and Pic(X). Recall that ρ(X) ≤ ρ(S). We
denote by KX ∈ Pic(X) the canonical class, which may be identified with KS.
The intersection of two divisors of Pic(S) or Pic(X) will always denote the usual
intersection in Pic(S).

We will use the classical notions of morphisms, rational maps, isomorphisms and
automorphisms between real or complex varieties. Moreover, if X1 and X2 are two

real varieties, an isomorphism between real parts X1(R)
ψ
→ X2(R) is a birational

map ψ : X1 99K X2 such that ψ (respectively ψ−1) is regular at any point of X1(R)
(respectively of X2(R)). This endows X1(R) with a structure of a germ of algebraic
variety defined over R (as in [BCR98, 3.2.6]), whereas the structure of X1 is those
of an algebraic variety.
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Considering geometry’s on algebraic variety defined over R, this notion of isomor-
phism between real parts gives an intermediate geometry in between the biregular
geometry and the birational geometry. For example, let α : X1(R) → X2(R) be an
isomorphism, and ε : Y1 99K X1, η : Y2 99K X2 be two birational maps. Then the
map ψ := ε−1αη is a well-defined birational map. Then ψ can be an isomorphism
Y1(R) → Y2(R) even if nor ε, nor η is an isomorphism between real parts. In the
same vein, let α : X1(R) → X2(R) be an isomorphism, and let η1 : Y1 → X1 and
η2 : Y2 → X2 be two birational morphisms which are the blow-ups of only real points
(which may be proper or infinitely near points of X1 and X2). If α sends the points
blown-up by η1 on the points blown-up by η2, then β = (η2)

−1αη1 : Y1(R) → Y2(R)
is an isomorphism.

Using Aut and Bir to denote respectively the group of automorphisms and bi-
rational self-maps of a variety, we have the following inclusions for the groups
associated to X = (S, σ):

Aut(S) ⊂ Bir(S)
∪ ∪

Aut(X) ⊂ Aut
(

X(R)
)

⊂ Bir(X) .

By Pn we mean the projective n-space, which may be complex or real depending
on the context. It is unique as a complex variety – written Pn

C
. However, as a

real variety, Pn may either be Pn
C

endowed with the standard anti-holomorphic
involution, written Pn

R
, or only when n is odd, Pn

C
with a special involution with no

real points , written (Pn, ∅). To lighten notation, and since we never speak about
(P1, ∅)(R) we write P1(R) for P1

R
(R).

3. Minimal surfaces and minimal conic bundles

The aim of this section is to reduce our study of geometrically rational surfaces
to surfaces which admits a minimal conic bundle structure.

Definition 3.1. A surface X is said to be minimal if any birational morphism
from X to a (nonsingular) surface is an isomorphism.

If X is real, this is equivalent to say that there is no real (−1)-curve and no pair
of disjoint conjugate imaginary (−1)-curves on X .

Let us precise the notion of conic bundle. Since we only deal with geometrically
rational surfaces, the basis of our conic bundles is always geometrically rational.

Definition 3.2. A conic bundle is a pair (X,π) where X is a surface and π is a
morphism X → P1, where any fibre of π is isomorphic to a plane conic.

Note that if (X,π) is complex, a general fibre of π is isomorphic to P1
C
, and a

singular fibre consists of the union of two intersecting lines which are (−1)-curves
of X (the double line is not allowed, the surface X being nonsingular). If (X,π) is
real, a fibre over a real point of P1 may be isomorphic to P1

R
or to (P1, ∅), or to a

singular fibre with two irreducible components which can be two real components,
or two conjugated imaginary components intersecting in 1 real point.

We will assume in the sequel that if X is real, then the basis is P1
R

(and not
(P1, ∅)). This avoids certain conic bundles with no real points.

Definition 3.3. If (X,π) and (X ′, π′) are two conic bundles, a birational map of

conic bundles ψ : (X,π) 99K (X ′, π′) is a birational map ψ : X 99K X ′ such that
there exist an automorphism α of P1 with π′ ◦ φ = π ◦ α.
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This notion specialises to birational morphisms and to automorphisms of conic
bundles. We denote by Aut(X,π) (respectively Bir(X,π)) the group of automor-
phisms (respectively birational self-maps) of the conic bundle (X,π). Observe
that Aut(X,π) = Aut(X) ∩ Bir(X,π). Similarly, when (X,π) is real we define
by Aut(X(R), π) the group Aut

(

X(R)
)

∩ Bir(X,π).

Definition 3.4. A conic bundle (X,π) is said to be minimal if any birational
morphism of conic bundles (X,π) → (X ′, π′) is an isomorphism.

Note that a real conic bundle (X,π) is minimal if and only if the two irreducible
components of any real singular fibre of π are imaginary. Compare to the complex
case where (X,π) is minimal if and only if there is no singular fibre.

Any geometrically rational real surface Y is obtained by a finite sequence of
blow-ups (centred at a real point or at a pair of conjugate imaginary points) from a
minimal real surface X . The following classical theorem describes the possibilities
for the surface X .

Recall that a surface X is a del Pezzo surface if the anti-canonical divisor −KX

is ample. The same definition applies for X real or complex.

Theorem 3.5. If X is a minimal geometrically rational real surface such that

X(R) 6= ∅, then one and exactly one of the following holds:

(1) X is rational: it is isomorphic to P2
R
, to the quadric Q0 := {(x : y : z : t) ∈

P3
R
| x2 + y2 + z2 = t2}, or to a real Hirzebruch surface Fn, n 6= 1;

(2) X is a del Pezzo surface of degree 1 or 2 with ρ(X) = 1;
(3) there exists a minimal conic bundle structure π : X → P1 with an even

number of singular fibres 2r ≥ 4. Moreover, ρ(X) = 2.

Remark 3.6. If (S, σ) is a minimal geometrically rational real surface such that
Sσ = ∅, then S is an Hirzebruch surface of even index.

Proof. Follows from the work of Comessatti [Com12], (see also [Mani67], [Isk79],
[Sil89, Chap. V], or [Kol97]). �

Proposition 3.7 (Topology of the real part). In each case of the former theorem,

we have:

(1) X is rational if and only if X(R) is connected. When X is moreover mini-

mal, then X(R) is homeomorphic to one of the following: the real projective

plane, the sphere, the torus, or the Klein bottle.

(2) When X is a minimal del Pezzo surface of degree 1, it satisfies ρ(X) = 1,
and X(R) is the disjoint union of one real projective plane and 4 spheres.

If X is a minimal del Pezzo surface of degree 2 with ρ(X) = 1, then X(R)
is the disjoint union of 4 spheres.

(3) If X is non-rational and is endowed with a minimal conic bundle with 2r
singular fibres, then X(R) is the disjoint union of r spheres, r ≥ 2.

Proof. For the first assertion, see [Sil89, Corollary VI(6.5)], for the other ones, see
e.g. [Sil89, Chap. V] or [Kol97]. �

The proofs of Corollary 1.3 and of Theorem 1.5 will split into the cases listed in
Theorem 3.5. The rational case is treated in [HM07]. The next proposition states
the case when X is a minimal del Pezzo surface with ρ = 1. The remaining part
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of the paper is mainly devoted to the case when X is endowed with a minimal real
conic bundle.

Proposition 3.8. Let X,Y be two minimal geometrically rational real surfaces.

Assume that X is not rational and satisfy ρ(X) = 1 (but ρ(Y ) may be equal to 1
or 2).

(1) If X is a del Pezzo surface of degree 1, then any birational map X 99K Y
is an isomorphism. In particular,

Aut(X) = Aut
(

X(R)
)

= Bir(X) .

(2) If X is a del Pezzo surface of degree 2, X is birational to Y if and only X
is isomorphic to Y . Moreover, all the base-points of the elements of Bir(X)
are real, and

Aut(X) = Aut
(

X(R)
)

( Bir(X) .

Proof. Assume the existence of a birational map ψ : X 99K Y . If ψ is not an
isomorphism, we decompose ψ into elementary links

X = X0
ψ1

99K X1
ψ2

99K · · ·
ψn−1

99K Xn−1
ψn

99K Xn = Y

as in [Isk96, Theorem 2.5]. It follows from the description of the links of [Isk96,
Theorem 2.6] that for any link ψi : Xi−1 99K Xi, Xi−1 and Xi are isomorphic del
Pezzo surfaces of degree 2, and that ψi is equal to βηαη−1, where η is the blow-
up X ′ → Xi−1 of a real point of Xi−1, X

′ is a del Pezzo surface of degree 1,
α ∈ Aut(X ′) is the Bertini involution of the surface, and β : Xi+1 → Xi is an
isomorphism.

Therefore, Y is isomorphic to X . Moreover, if X has degree 1, ψ is an iso-
morphism. If X has degree 2, ψ is decomposed into conjugates of Bertini involu-
tions, so each of its base-points is real. This proves that if ψ ∈ Aut

(

X(R)
)

then
ψ ∈ Aut(X). Furthermore, conjugates of Bertini involutions belong to Bir(X) but
not to Aut(X) = Aut

(

X(R)
)

. �

Corollary 3.9. Let X0 be a minimal non-rational geometrically rational real sur-

face with ρ(X0) = 1, and let η : X → X0 be a birational morphism.

Then, Aut
(

X(R)
)

is countable. Moreover, if X0 is a del Pezzo surface of de-

gree 1, then Aut
(

X(R)
)

is finite.

Proof. Without changing the isomorphism class of X(R) we may assume that η is
the blow-up of only real points (which may belong to X0 as proper or infinitely near
points). Since any base-point of any element of Bir(X0) is real (Proposition 3.8),
the same is true for any element of Bir(X). In particular, Aut

(

X(R)
)

= Aut(X).
The group Aut(X) acts on Pic(X) ∼= Zn, where n = ρ(X) ≥ 1. This action gives
rise to an homomorphism θ : Aut(X) → GL(n,Z). Let us prove that θ is injective.
Indeed, if α ∈ Ker(θ), then α is conjugate by η to an element of α0 ∈ Aut(X0) which
acts trivially on Pic(X0). Writing S0 the complex surface obtaining by forgetting
the real structure of X0, S0 is the blow-up of 7 or 8 points in general position of
P2

C
. Thus α0 ∈ Aut(X0) ⊂ Aut(S0) is the lift of an automorphism of P2

C
which fixes

7 or 8 points, no 3 collinear, hence is the identity.
The morphism θ is injective, and this shows that Aut

(

X(R)
)

= Aut(X) is count-
able. Moreover, ifX0 is a del Pezzo surface of degree 1, then Bir(X0) = Aut(X0) (by
Proposition 3.8). Since Aut(X0) is finite, Aut

(

X(R)
)

⊂ Bir(X) is also finite. �
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4. Exceptional conic bundles

Definition 4.1. If (X,π) is a real conic bundle, I(X,π) ⊂ P1(R) denotes the image
by π of the set X(R) of real points of X .

It is well-known that I(X,π) is the union of a finite number of intervals (which
may be ∅ or P1(R)), and that it determines the birational class of (X,π). (In the
next section, we will prove that in fact I(X,π) determines the birational class of
X , and thus that I(X) is well-defined.)

In this section, we study the real conic bundles, and especially the minimal ones.
We prove that I(X,π) also determines the equivalence class of (X(R), π) among
the minimal conic bundles, and give the proof of Theorem 1.5 in the case of conic
bundles (Corollary 4.17). Doing this, we will give proofs of the well-known facts on
I(X,π) cited above.

The following lemma gives some useful information about sections of real conic
bundles. It is strongly inspired from the complex analogue, that can be found for
example in [Bla07, Section 3].

Lemma 4.2. Let (X,π) be a minimal real conic bundle.

Then, the number of singular fibres of π is even, and is equal to 8 − (KX)2.
Denoting by 2r ≥ 0 this number, the following hold:

(1) if r > 0, then π admits no real section;

(2) if s is a section distinct from its conjugate s, then s2 ≥ −r and s · s̄ = s2+r.

Proof. Let m be the number of singular fibres of π and denote by (S, π) the complex
conic bundle obtained from (X,π) by forgetting the real structure of X .

If m > 0, any section of π intersects exactly one component of each singular
fibre. Since (X,π) is minimal, no such component can be real, thus there is no real
section.

Let s be a section, and s̄ be its conjugate, and assume that s 6= s̄ (which is
always true if m > 0). Let us denote by η the birational morphism that contracts
one component in any singular fibre of π, which is the one which intersects s̄. Then,
η is defined over R if and only if m = 0 (and in this case it is an isomorphism).
Moreover, η : (S, π) → Fn is a birational morphism of conic bundles, for some
integer n ∈ N. Denote by E ∈ Pic(Fn) the divisor of a section with self-intersection
−n (which is unique if n 6= 0), and by f the divisor of a general fibre, the curves
η(s) and η(s̄) are respectively equivalent to E + af and E + bf , for some integers
a and b.

We compute

η(s)2 = (E + af)2 = −n+ 2a,
η(s̄)2 = (E + bf)2 = −n+ 2b,

η(s) · η(s̄) = (E + af) · (E + bf) = −n+ a+ b,

and find that η(s) · η(s̄) = 1/2 · (η(s)2 + η(s̄)2).
Because the m irreducible curves contracted by η intersect s̄ transversally and do

not intersect s, we have η(s)2 = s2, η(s̄)2 = s̄2 +m and η(s) · η(s̄) = s · s̄. Observe
that s̄2 = s2, so s · s̄ = 1/2 · (2s2 +m). This implies that m is even, equal to 2r for
some non-negative integer r and that s · s̄ = s2 + r. Since s 6= s̄, the number s · s̄
is non-negative, so s2 ≥ −r.

Since η contracts exactly m curves and (KFn
)2 = 8, m equals 8 − (KX)2. �
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Denoting by −n the minimal self-intersection of the sections in a minimal real
conic bundle with 2r singular fibres, the above lemma shows that n ≤ r. According
to [Bla07, Lemma 3.3], we also have 1 ≤ n, and S is obtained by blowing up some
points on F1 or F0. The simplest cases of conic bundles, which are the most general,
are those for which n is equal to 1 (in particular when X is a del Pezzo surface).
The most special cases are when n = r, which are interesting as for any given union
of a finite number of intervals V , there is only one such conic bundle (X,π) such
that I(X,π) = V (this will be proved in Lemma 4.8 below).

Definition 4.3. A conic bundle (X,π) is called an exceptional conic bundle if π
admits a section of self-intersection −r where 2r is the number of singular fibres.

This definition was already introduced in [DI06] and [Bla08]. If (S, π) is a min-
imal exceptional complex conic bundle with at least 4 singular fibres, Aut(S, π) =
Aut(S) is a maximal algebraic subgroup of Bir(S) ([Bla08]).

Lemma 4.4. Let (X,π) be a minimal real conic bundle. Then, (X,π) is exceptional

if and only if there exist two conjugate sections s and s̄ which do not intersect.

Proof. Denote by 2r the number of singular fibres of π. According to Lemma 4.2,
for any imaginary section s, s · s̄ = 0 ⇔ s2 = −r.

If s and s̄ do not intersect then s2 = −r, whence (X,π) is exceptional.
Conversely, assume that s is a section of self-intersection −r. If s is imaginary,

then s · s̄ = 0. Otherwise, r = 0 (Lemma 4.2) and therefore X = (P1
C
× P1

C
, σ) for

a certain anti-holomorphic involution σ. We may thus choose another section s′

which is imaginary and which has self-intersection 0. �

Lemma 4.5. Let (X,π) be a real conic bundle. Then, there exists a minimal

exceptional real conic bundle (X ′, π′) and a birational map of conic bundles

(X,π) 99K (X ′, π′) .

Proof. We may assume that (X,π) is minimal. Take a section s of π. If s intersects
its conjugate s̄ into a real point p (respectively into a pair of imaginary points q1
and q2), then blow-up the point p (respectively q1 and q2), and contract the strict
transform of the fibre of the points blown-up. Continuing this way, we obtain a
birational map of conic bundles φ : (X,π) 99K (X ′, π′) such that (X ′, π′) is minimal
and φ(s) does not intersect its conjugate. Applying Lemma 4.4, (X ′, π′) is an
exceptional conic bundle. �

The following construction gives a normal form for the exceptional conic bundles
associated to a given finite union of intervals bounded by an even number of points.
Lemma 4.7 asserts the existence, and Lemma 4.8 provides the unicity.

Construction 4.6. Let J = (J1, J2) be a pair of two disjoint finite subsets of R

with the same number of elements (i.e. J1, J2 ⊂ R, J1 ∩ J2 = ∅ and #J1 = #J2).
We associate to J three homogeneous polynomials P1, P2, P , a set VJ ⊂ P1(R),

three maps ηJ , σJ , αJ , a complex conic bundle (SJ , πJ ) and a real conic bundle
(XJ , πJ ). The polynomials are the following:

P1(x1, x2) =
∏

a∈J1
(x1 − ax2),

P2(x1, x2) =
∏

a∈J2
(x1 − ax2),

P (x1, x2) = P1(x1, x2) · P2(x1, x2).
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The set VJ equals {(x1 : x2) | P (x1, x2) ≤ 0} ⊂ P1(R), the map ηJ : SJ → P1
C
×P1

C
,

is the blow-up of the points
{(

(x : 1), (0 : 1)
) ∣

∣ x ∈ J1

}

∪
{(

(x : 1), (1 : 0)
) ∣

∣ x ∈ J2

}

,

the morphism πJ is pr1 ◦ ηJ . The maps αJ and σJ are self-maps of SJ , which are
the lifts by ηJ of the following self-maps of P1

C
× P1

C
.

α′
J :

(

(x1 : x2), (y1 : y2)
)

99K
(

(x1 : x2), (−y2 · P1(x1, x2) : y1 · P2(x1, x2)
)

,

σ′
J :

(

(x1 : x2), (y1 : y2)
)

99K
(

(x1 : x2), (−y2 · P1(x1, x2) : y1 · P2(x1, x2)
)

.

The following lemma shows that σJ is an anti-holomorphic involution of SJ . We
write XJ = (SJ , σJ ) the corresponding real surface.

Lemma 4.7. Let us take the notation of Construction 4.6. Then, αJ and σJ are

respectively an holomorphic and an anti-holomorphic involution of (SJ , πJ). The

real conic bundle (XJ , πJ) (with XJ = (SJ , σJ)) is minimal and exceptional, and

satisfies I(XJ , πJ ) = VJ . Moreover, the singular fibres of πJ are the fibres of (x : 1),
x ∈ J1 ∪ J2.

Proof. Denote by r the number of elements of J1 (which is also the number of
elements of J2). The map α′

J is a birational involution of P1
C
×P1

C
, which is defined

over R, and whose base-points are precisely the 2r points {((x : 1), (0 : 1)) | x ∈
J1} ∪ {((x : 1), (1 : 0)) | x ∈ J2} blown-up by ηJ . Since α′

J is an involution and
ηJ is the blow-up of all of its base-points, αJ = η−1α′

Jη is an automorphism of S,
which belongs to Aut(S, π).

The conic bundle (SJ , πJ ) is exceptional, since the strict transform of the sections
P1 × (0 : 1) and P1 × (1 : 0) have self-intersection −r. Moreover, its singular fibres
correspond to the fibres of the points blown-up by ηJ , so the fibres of the points
(x : 1) ∈ P1

R
, x ∈ J1 ∩ J2. Denote by τ the lift by ηJ of the usual anti-holomorphic

involution
(

(x1 : x2), (y1 : y2)
)

7→
(

(x1 : x2), (y1 : y2)
)

. Since αJ ∈ Aut(S, π)
commutes with τ , the map σJ = αJτ = ταJ is an anti-holomorphic involution
of S. Since XJ = (SJ , σJ ) and σJ exchanges the two components of any singular
fibre, the real conic bundle (XJ , πJ ) is minimal, and is exceptional as (SJ , πJ) is.

By construction, σJ is the lift by ηJ of the map σ′
J described in Construction 4.6.

Let (x1 : x2) be a point of P1
R
; we want to prove that the fibre f = π−1

(

(x1 : x2)
)

contains a real point (i. e. a point fixed by σJ ) if and only if (x1 : x2) ∈ VJ , which
is equivalent to say that P (x1, x2) ≤ 0. If (x1 : x2) = (ai : 1) ∈ V for some i,
then f is singular, and its unique singular point is real. Otherwise, η restricts to an
isomorphism from f to η(f). It follows that f has a real point if and only if there
exists (y1 : y2) ∈ P1

C
such that (y1 : y2) = (−y2P1(x1, x2) : y1P2(x1, x2)), which

is equivalent to y1y1P2(x1, x2) = −y2y2P1(x1, x2). This is possible if and only if
P (x1, x2) = P1(x1, x2) · P2(x1, x2) ≤ 0, which means that (x1 : x2) ∈ VJ . This
achieves to prove the equality I(X,π) = VJ . �

In the following, Assertion (1) is well-known, whereas the other assertions (and
in particular (4)) are new, and are one of the basic ingredients in the proof of the
remaining results of the section.

Lemma 4.8. Let (Y, πY ) be a minimal exceptional real conic bundle.

(1) I(Y, πY ) is the union of a finite union of closed intervals. The boundary

points of the intervals correspond to the singular fibres of πY .
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(2) If πY has no singular fibre, (Y, πY ) is either isomorphic to (P1
R
× P1

R
, pr1)

or to (P1
R
× (P1, ∅), pr1).

(3) If πY has at least one singular fibre, it is isomorphic to (XJ , πJ), for some

J = (J1, J2), as in Construction 4.6.
(4) If (Z, πZ) is a minimal exceptional real conic bundle with I(Z, πZ) = I(Y, πY ),

there exists an isomorphism φ : (Z, πZ) → (Y, πY ) satisfying πZ = πY ◦ φ
(i.e. φ acts trivially on the basis).

Proof. Denote by 2r the number of singular fibres of πY (which is even, since (Y, πY )
is minimal, see Lemma 4.2).

Assume first that r = 0, which implies that (Y, πY ) is a real form of (P1
C
×

P1
C
, pr1), hence is isomorphic to (P1

R
× P1

R
, pr1) or to (P1

R
× (P1, ∅), pr1); this proves

Assertion (1) and (2).
Assume now that r > 0, and denote by s and s̄ two conjugate imaginary sections

of πY of self-intersection −r. Let us write π = γ ◦ πY , for some γ ∈ Aut(P1
R
),

such that π−1((1 : 0)) is not a singular fibre. The singular fibres of π are above
the points (a1 : 1), . . . , (a2r : 1), where the ai are distinct real numbers. Let
J = (J1, J2) be a partition of {a1, . . . , a2r} into two sets of r points. Let ηY be
the birational morphism (not defined over R) which contracts the component of
π−1((ai : 1)) which intersects s if ai ∈ J1 and which intersects s̄ if ai ∈ J2. Then,
the images of s and s̄ are two sections of self-intersection 0. Thus we may assume
that ηY is a birational morphism of conic bundles (S, π) → (P1

C
× P1

C
, pr1), where

S is the complex surface obtained by forgetting the real structure of Y , pr1 is the
projection on the first factor, and where ηY (s) and ηY (s̄) are equal to P1

C
× (0 : 1)

and P1
C
× (1 : 0).

Using the notation of Construction 4.6 associated to J = (J1, J2), ηY is the
blow-up of the 2r points of P1

C
× P1

C
, which are exactly the points blown-up by

ηJ : SJ → P1
C
× P1

C
. We may therefore assume that Y = (SJ , σY ), for some anti-

holomorphic involution σY on SJ , and that π = πJ and ηY = ηJ .
The map σY ◦ σ−1

J belongs to Aut(SJ , πJ ) and acts trivially on the basis, since

σJ and σY have the same action on the basis. Moreover, σY ◦ σ−1
J preserves any

curve contracted by ηJ and is therefore the lift by ηJ of β :
(

(x1 : x2), (y1 : y2)
)

7→
(

(x1 : x2), (µy1 : y2)
)

for some µ ∈ C∗. It follows that ηJ ◦ σY ◦ η−1
J = β ◦ σ′

J is the
map

(

(x1 : x2), (y1 : y2)
)

99K
(

(x1 : x2), (−µ·y2P1(x1, x2) : y1P2(x1, x2))
)

.

Since σY is an involution, µ belongs to R. Then, for any point (x1 : x2) ∈ P1
R
,

the fibre π−1((x1 : x2)) contains points fixed by σY if and only if there exist
(y1 : y2) ∈ P1

C
such that y1y1P2(x1, x2) = −y2y2 · µP1(x1, x2). Consequently,

I(Y, π) is equal to VJ if µ > 0 and to the adherence of P1
R
\VJ if µ < 0. This

proves (1).
Moreover, this also shows that I(Y, π) is not the whole P1(R). We could thus

have chosen from the beginning the map γ so that (0 : 1) /∈ I(Y, π). This implies
that I(Y, π) = VJ and µ > 0. Choosing λ ∈ C∗ with λ · λ = µ and writing
γ :

(

(x1 : x2), (y1 : y2)
)

7→
(

(x1 : x2), (λy1 : y2)
)

, we get β ◦ σ′
J = γ ◦ σ′

J ◦ γ−1. It

follows that η−1
J ◦ γ ◦ ηJ ∈ Aut(S, π) conjugates σJ to σY = η−1

J ◦ (βσJ ) ◦ ηJ , and
therefore induces an isomorphism of real conic bundles (XJ , πJ ) → (Y, π), which is
the identity on the basis.
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In particular, (XJ , πJ) is isomorphic to (Y, π) and thus to (Y, πY ), and gives
Assertion (3). Moreover, if (Z, πZ) is another conic bundle with I(Z, πZ) = I(Y, π),
the above description also yields the existence of an isomorphism (XJ , πJ ) → (Z, γ◦
πZ) which acts trivially on the basis. Therefore, there exists an isomorphism (Z, γ ◦
πZ) → (Y, π) which acts trivially on the basis, and thus the same is true for (Z, πZ)
and (Y, πY ), so Assertion (4) is proved.

It remains to proves (4) when r = 0. Since I(Z, πZ) is equal to (Y, π), it is equal
to ∅ or P1

R
, hence the number of singular fibres of πZ is 0 by (3) (or using (1)). This

means that (Z, πZ) is a real form of (P1
C
× P1

C
, pr1). Either (Y, π) and (Z, πZ) are

both isomorphic to (P1
R
×P1

R
, pr1) or to (P1

R
× (P1, ∅), pr1). Assertion (4) is obvious

in both cases. �

Lemma 4.9. Let (X,π) be a minimal exceptional real conic bundle. The image

of the homomorphism θ : Aut(X,π) → Aut(P1
R
) given by the action on the base is

equal to
{

α ∈ Aut(P1
R)

∣

∣

∣
α(I(X,π)) = I(X,π)

}

.

Proof. Any element of β ∈ Aut(X,π) preservesX(R), thus θ(β) preserves π(X(R)) =
I(X,π).

Conversely, let α ∈ Aut(P1
R
) be a non-trivial element such that α(I(X,π)) =

I(X,π). It remains to prove the existence of β ∈ Aut(X,π) such that θ(β) = α. If
π has no singular fibre, this is obvious since (X,π) is a real form of (P1

C
× P1

C
, pr1).

Otherwise, there are 2r singular fibres, with r > 0, which correspond to the 2r
boundary points of I(X,π) (Lemma 4.8); we denote by F ⊂ I(X,π) this set of
points, which is invariant by α.

Let us prove that we may decompose F into two sets of r points, each one being
invariant by α. There are three kinds of non-trivial elements of Aut(P1

R
):

(1) translations (elements with one fixed point),
(2) rotations (elements with two fixed points, both imaginary), and
(3) symmetries (elements with two real fixed points).

Since α preserves a finite set of at least 2 points, α is not a translation. If α is
a rotation it has finite order n, and all its orbits on P1(R) have order n. Thus, F
decomposes into m orbits of n points, with mn = 2r. If n is even, we decompose
each orbit in two sets, and if m is even, we decompose the set of orbits into two
sets. The remaining case is when α is a symmetry. In well-chosen coordinates, α
is the map (x : y) 7→ (λx : y) for some λ ∈ R∗. If λ 6= −1, then α has infinite
order, hence F = {(0 : 1), (1 : 0)}, which decomposes into two sets of one point. If
λ = −1, then (0 : 1) and (1 : 0) are not boundary points; we decompose F into two
sets, the points (x : y) with x/y > 0 and the others.

Now, F = F1∪F2, where each set Fi is invariant by α. Let us choose γ ∈ Aut(P1
R
)

such that (1 : 0) /∈ γ(I(X,π)) = I(X, γπ), so the set γ(I(X,π)) may be viewed
as a subset of {(x : 1) ∈ P1(R) | x ∈ R}. The sets γ(F1) and γ(F2) correspond
therefore to two sets J1, J2 of r real numbers. Using the notation of Construction 4.6
with J = (J1, J2), there exists an isomorphism φ : (XJ , πJ ) → (X, γπ) such that
πJ = γπ◦φ (Lemma 4.8). Write δ = γαγ−1 = (x1 : x2) → (ax1+bx2 : cx1+dx2), for
some real numbers a, b, c, d with ad−bc 6= 0. The map δ leaves invariant the roots of
Pi(x1, x2) =

∏

a∈Ji
(x1−ax2), for each i, so Pi(ax1+bx2, cx1+dx2) = χi ·Pi(x1, x2),

for some χi ∈ R∗. Moreover, since δ leaves VJ invariant, χ1 ·χ2 is positive. Denote
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by ψ′ the following automorphism of P1
C
× P1

C
:

ψ′ :
(

(x1 : x2), (y1 : y2)
)

99K
(

(ax1 + bx2 : cx1 + dx2), (λy1 : y2)
)

,

where λ ∈ R is such that λ2 = χ2/χ1. Then, ψ′ commutes with σ′
J . Recall that σ′

J

is the following self-map of P1
C
× P1

C

σ′
J :

(

(x1 : x2), (y1 : y2)
)

99K
(

(x1 : x2), (−y2 · P1(x1, x2) : y1 · P2(x1, x2)
)

.

Since ηJ : SJ → P1
C
× P1

C
is the blow-up of the points

{(

(x : 1), (0 : 1)
) ∣

∣ x ∈ J1

}

∪
{(

(x : 1), (1 : 0)
) ∣

∣ x ∈ J2

}

, which are preserved by ψ′, this one lifts to an automor-

phism ψ = η−1
J ψ′ηJ of (SJ , πJ ). Moreover, ψ′ commutes with σ′

J , so ψ belongs to
Aut(XJ , πJ). It remains to choose β = φψφ−1 ∈ Aut(X, γπ) = Aut(X,π). Since
πJψ = δπJ = (γαγ−1) ◦ πJ and πJ = γπφ, we have γπφψ = γαπφ. This proves
that πβ = απ, which means that θ(β) = α. �

Lemma 4.10. Let us take the notation of Construction 4.6, for some J = (J1, J2).
Denote by A the real affine hypersurface of R3 given by

y2 + z2 = −
∏

a∈J1∪J2

(x − ai),

then the map ψ : (x, y, z) 99K (ηJ )−1
(

(

(x : 1), (y − iz :
∏

a∈J2
(x − a)

)

)

is an

embedding A→ XJ defined over R which induces an isomorphism

A(R) → XJ(R) .

Proof. Denote by B ⊂ C3 the affine hypersurface of equation y2 + z2 = −P (x, 1)
(recall that P (x, 1) =

∏

a∈J1∪J2
(x−ai)), and by πB : B → C the map (x, y, z) 7→ x.

Let A = (B, σB), where σB sends (x, y, z) onto (x̄, ȳ, z̄). Denote by θ : B 99K P1
C
×P1

C

the map that sends (x, y, z) onto
(

(x : 1), (y − iz : P2(x, 1))
)

if P2(x, 1) 6= 0 and

onto
(

(x : 1), (−P1(x, 1) : y+ iz)
)

if P1(x, 1) 6= 0. Then θ is a birational morphism,

and θ−1 sends
(

(x1 : x2), (y1 : y2)
)

on
(

x1

x2
,
1

2

(

y1
y2
P2(x1, x2) −

y2
y1
P1(x1, x2)

)

,
i

2

(

y1
y2
P2(x1, x2) +

y2
y1
P1(x1, x2)

))

.

Observe that σ′
Jθ = σBθ. In consequence, ψ = (ηJ )−1 ◦ θ is a real birational

map A 99K XJ .
Moreover, ψ is an isomorphism from A to the complement in SJ of the union

of π−1((1 : 0)) and the pull-back by η of P1 × (0 : 1) and P1 × (1 : 0). Indeed let
x0 ∈ C. If x0 ∈ C is such that P (x0, 1) 6= 0, then θ restricts to an isomorphism from
π−1
B (x0) to {((x0 : 1), (y1 : y2)) ∈ P1

C
× P1

C
| y1y2 6= 0} ∼= C∗. If P (x0, 1) = 0, then

x0 ∈ J1∪J2, and the fibre π−1
B (x0) consists of two lines of C2 which intersect, given

by y = iz and y = −iz. If x0 ∈ J1, then the line y+ iz = 0 is sent isomorphically by
θ onto the fibre {((x0 : 1), (y1 : y2)) ∈ P1

C
× P1

C
| y2 6= 0} ∼= C∗, and the line y − iz

is contracted on the point ((x0 : 1), (0 : 1)). The map ψ sends thus isomorphically
π−1
B (x0) onto the fibre π−1((x0 : 1)) minus the two points corresponding to the two

sections of self-intersection −r. The situation when x0 ∈ J2 is similar. Finally, we
see that ψ induces an isomorphism between B and the complement in SJ of the
two sections of self-intersection −r (the strict transforms by η−1 of P1 × (0 : 1) and
P1 × (1 : 0)), and the fibre of π−1((1 : 0)). Since these 3 curves do not have any
real point, ψ induces an isomorphism A(R) → XJ(R). �
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Corollary 4.11. Let (X,π) be a minimal exceptional real conic bundle. There

exists an affine real variety A ⊂ X isomorphic to the affine surface of R3 given by

y2 + z2 = Q(x),

where Q is a real polynomial with only simple roots, all real. Moreover, I(X,π) is

the closure of {(x : 1) ∈ P1
R
| Q(x) ≥ 0}, and π|A is the projection (x, y, z) 7→ x.

Proof. Denote by 2r the number of singular fibres of π. If r > 0, then (X,π)
is isomorphic to (XJ , πJ ) for some J = (J1, J2) (Lemma 4.8); the result follows
then from Lemma 4.10. If r = 0, (X,π) is isomorphic to (P1

R
× P1

R
, pr1) or to

(P1
R
×(P1, ∅), pr1) (Lemma 4.8). TakingQ(x) = 1 orQ(x) = −1 gives the result. �

We can now deduce the following important result, due to Comessatti [Com12].
See also [Kol97, Theorem 4.5].

Proposition 4.12. Let (X,π) and (X ′, π′) be two real conic bundles, and let α ∈
Aut(P1

R
). Then, the following are equivalent.

(1) There exists a birational map ϕ : X 99K X ′ such that π′ϕ = απ.
(2) α(I(X,π)) = I(X ′, π′).

In particular, (X,π) and (X ′, π′) are birational if and only if there exists an

automorphism of P1
R

that sends I(X,π) on I(X ′, π′).

Proof. (1) ⇒ (2) : The map ϕ restricts to an isomorphism X\F → X ′\F ′ where
F and F ′ consist of finite sets of fibres of π and π′. In consequence, α sends
I(X,π)\π(F ) on I(X ′, π′)\π(F ′). Since π(F ) and π(F ′) are finite, α sends I(X,π)
on I(X ′, π′).

(2) ⇒ (1) : We may assume that the conic bundles (X,π) and (X ′, π′) are
minimal. By Lemma 4.5, both conic bundles may be supposed to be exceptional.
Since I(X,απ) = I(X ′, π′), Lemma 4.8 yields the existence of an isomorphism
ϕ : X → X ′ such that π′ϕ = απ. �

We can now give the well-known description of I(X,π) announced before.

Corollary 4.13. Let (X,π) be a real conic bundle.

(1) I(X,π) is a finite union of closed intervals of P1
R

(which may be ∅ or P1
R
).

(2) The images by π of the singular fibres of π are the boundary points of the

intervals of I(X,π).
(3) The r connected components of X(R) surject by π on r closed intervals of

P1(R).

Proof. According to Proposition 4.12, these condition are independent of the bi-
rational class of (X,π). Since (X,π) is birational to a minimal exceptional conic
bundle (Lemma 4.5), it suffices to prove the result when (X,π) is minimal and
exceptional. This is a direct consequence of Lemmas 4.7 and 4.8. �

The remaining part of the section is devoted to strengthen the results asserting
the existence of a birational equivalence between surfaces by proving the existence
of an isomorphism between real parts. The following lemma is the key ingredient
of this improvement.

Lemma 4.14. Let (X,π) be a minimal exceptional real conic bundle, with at least

one singular fibre. Let q be a real point belonging to a nonsingular fibre.

Then, there exists a section s of π whose unique real point is q, and such that s
and its conjugate s̄ intersect transversally at q.
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Proof. Denote by r ≥ 1 the number of intervals of V . Up to an automorphism of
P1

R
, we may assume that (1 : 0) /∈ V . We denote by (a1 : 1), . . . , (a2r : 1) ∈ P1

R
the

boundary points of the intervals, and assume that a1 < a2 < · · · < a2r. We write
p = (b : 1) and up to an automorphism of P1

R
, we can assume that b ∈]a1, a2[, a1 = 0,

and b = 1. We denote by P the real polynomial P (x) =
∏2r
i=1(x − ai). Observe

that for x ∈ R, P (x) ≤ 0 if and only if (x : 1) ∈ V , and write c = P (b) = P (1) < 0.
We fix Qm(x) = c · x2m for any positive integer m. Let us prove that for some

large m, we have Qm(x) = P (x) if and only if x ∈ {a1, b} = {0, 1}. There exists

m0 such that dQm

dx
(1) < dP

dx
(1) for m ≥ m0. Moreover, dQm

dx
(0) = 0 > dP

dx
(0).

Thus, there exist ε1, ε2 ∈]0; 1[ such that Qm(x) > P (x) for any m ≥ m0 and any
x ∈]0, ε1[∪]ε2, 1[. Since the sequence (Qm(x))m>0 converges uniformly to 0 on the
compact [ε1, ε2], there existsm1 ≥ m0 such thatQm(x) > P (x) for anym ≥ m1 and
any x ∈]0, 1[. Using the same argument on the interval [1, a2], we find m2 ≥ m1

such that Qm(x) < P (x) for any m ≥ m2 and any x ∈]1, a2]. Then, choosing
m ≥ m2 sufficiently big, we get Qm(a2) < minx∈R P (x), and thus Qm(x) < P (x)
for any x ∈] − ∞, 0[∪]1,∞[. It follows that P (x) and Q(x) = Qm(x) are equal if
and only if x ∈ {a1, b}.

Let us use the notation of Construction 4.6 associated to J = (J1, J2) with
J1 = {a1, . . . , ar} and J2 = {ar+1, . . . , a2r}. Then, since V = VJ , we may assume
that (X,π) = (XJ , πJ) (Lemma 4.8). Recall that XJ = (SJ , σJ ), where ηJ : SJ →
P1

C
× P1

C
is the blow-up of the 2r points

{(

(x : 1), (0 : 1)
) ∣

∣ x ∈ J1

}

∪
{(

(x : 1), (1 : 0)
) ∣

∣ x ∈ J2

}

,

and σJ is the lift by ηJ of the following self-maps of P1
C
× P1

C
(written here on the

affine plane {((x : 1), (y : 1)) ∈ P1
C
× P1

C
| x, y ∈ C})

σ′
J : (x, y) 99K

(

x̄,−
P1(x̄, 1)

P2(x̄, 1)
·
1

ȳ

)

,

where P1(x, 1) · P2(x, 1) = P (x).
Note that none of the points at infinity (i.e. not in the affine plane described

above) is real, and that ηJ induces a bijection between the set of real points of S
which belong to smooth fibres and the set

{

(x, y) ∈ C2 | x ∈ R, x /∈ {a1, ..., a2r} and y · ȳ = −P1(x, 1)/P2(x, 1)
}

.

The image by ηJ of the point q ∈ π−1(p) ⊂ S is thus equal to (b, yb) for some
yb ∈ C satisfying yb · yb = −P1(b, 1)/P2(b, 1) = −P (b)/(P2(b, 1))2 = −c/P2(b, 1)2.

Denote by λ ∈ C[x] a complex polynomial such that λ(x) · λ(x) = −Q(x) (always

possible since Q(x) ≤ 0 for any x ∈ R). Since λ(b) · λ(b) = −Q(b) = −c, the
complex number ξ = λ(b)/(yb · P2(b, 1)) is such that ξξ = 1. Replacing λ(x) by
λ(x)/ξ, we may assume that yb = λ(b)/P2(b, 1).

The image of the rational map x 7→ η−1
(

(x, λ(x)
P2(x,1))

)

is a section s ⊂ S. Its

conjugate s̄ = σ(s) is the image of the map x 7→ η−1
(

(x̄,−P1(x̄,1)

λ(x)
)
)

. The real points

of s are images of a real number x ∈ R such that λ(x) · λ(x) = −P1(x) · P2(x) =
−P (x). As we saw before, there are only two possibilities for x, which are x = b
or x = a1. The image of the latter is not a real point on S (because the section
cannot pass through the singular point of the fibre). The only real point of s is

then η−1
(

(b, λ(b)
P2(b,1))

)

= η−1
(

(b, yb)
)

= q.
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Since Q(x) = λ(x) · λ(x) and P (x) have distinct derivatives in x = b, the two
sections s and s̄ intersect transversally at the point q. �

Proposition 4.15. Let (X,π) be a minimal real conic bundle with at least one

singular fibre. Then, there exists a minimal exceptional real conic bundle (X ′, π′)
such that (X(R), π) and (X ′(R), π′) are isomorphic.

Remark 4.16. The result is false without the assumption on the number of singular
fibres. Indeed, there is no isomorphism between (P1

R
×P1

R
)(R) and F1(R), since the

first one is homeomorphic to the torus S1×S1 and the second one is homeomorphic
to the Klein bottle.

Proof. According to Lemma 4.5, there exists a minimal exceptional real conic bun-
dle (X ′, π′) and a birational map of conic bundles ϕ : (X ′, π′) 99K (X,π). Let us
decompose ϕ into ϕ = φm ◦ · · · ◦ φ1, where φi : (Xi−1, πi−1) 99K (Xi, πi) is a bira-
tional map of conic bundles, which consists of the blow-up of a real point or two
imaginary conjugate points, followed by the contraction of the strict transform of
the corresponding fibre(s). The real conic bundles (X ′, π′) = (X0, π0), (X1, π1),
(X2, π2), . . . , (Xm, πm) = (X,π) are all minimal.

Let us prove by induction on j that there exists a birational map of conic bundles
ψj : (X ′, π′) 99K (Xj , πj) which induces an isomorphism X ′(R) 99K Xj(R). If j = 0,
we choose the identity for ψ0. Assume that j > 0. If φj blows-up two imaginary
conjugate points, it suffices to choose ψj = φj ◦ ψj−1. Otherwise, φj blows-up a
real point q ∈ Xi−1(R) that belongs to a smooth fibre of πi−1 and contracts the
strict transform of its fibre. The point (ψj−1)

−1(q) is real, and belongs to a smooth
fibre of π0 = π′. According to Lemma 4.14, there exists a section s of X ′ whose
unique real point is q and such that s and s̄ intersect transversally at (ψj−1)

−1(q).
It follows that φjψj−1(s) and φjψj−1(s̄) only intersect into imaginary conjugate
points. Blowing-up all of these points, and contracting the strict transforms of
the fibres, and repeating the process if needed, we get a birational map of conic
bundles α from (Xj , πj) to a minimal conic bundle (X̂, π̂), such that αφjψj−1(s)

and αφjψj−1(s̄) do not intersect. By Lemma 4.4, (X̂, π̂) is then an exceptional
conic bundle. From the unicity of such conic bundles (Lemma 4.8), there exists an

isomorphism of conic bundles β : (X̂, π̂) → (X ′, π′). Since α induces an isomorphism

Xj(R) → X̂(R), we may choose φj = β ◦ α. �

Corollary 4.17. Let (X,πX) and (Y, πY ) be two minimal conic bundles, and as-

sume that either X or Y is not rational.

Let α ∈ Aut(P1
R
); for any birational map β : X 99K Y such that πY β = απX ,

there exists an isomorphism γ : X(R) → Y (R) such that πY γ = απX .

In particular, (X(R), πX) and (Y (R), πY ) are isomorphic if and only if (X,πX)
and (Y, πY ) are birational.

Proof. Since (X,πX) is birational to (Y, πY ) and both are minimal, the number of
singular fibres of πX and πY is the same, equal to 2r for some non-negative integer r.
Moreover, X and Y being not rational, r > 0. Applying Proposition 4.15, we may
assume that both (X,πX) and (Y, πY ) are minimal exceptional real conic bundles.
Since πY γ = απX , α(I(X,πX)) = I(X,απX) = I(Y, πY ) (Proposition 4.12). In
this case, Lemma 4.8 yields the existence of an isomorphism γ : X → Y such that
πY γ = απX . �
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We end this section by an easy corollary of the preceding result.

Corollary 4.18. Let (X,π) and (Y, πY ) be two minimal conic bundles. Then, the

following are equivalent:

(1) (X(R), π) and (Y (R), π) are isomorphic;

(2) (X,π) is birational to (Y, π) and X(R) is isomorphic to Y (R).

Proof. The implication (1) ⇒ (2) is evident. Let us prove the converse.
Since (X,πX) is birational to (Y, πY ) and both are minimal, the number of

singular fibres of πX and πY is the same, equal to 2r for some non-negative integer r.
Suppose that r = 0, which means that X is an Hirzebruch surfaces Fm for some

m and that Y = Fn for some n. Since X(R) is isomorphic to Y (R), we have m ≡ n
mod 2. It is easy to prove that (X(R), π) and (Y (R), π) are isomorphic, by taking
elementary links at two imaginary distinct fibres (see for example [Mang06, Proof
of Theorem 6.1]).

Suppose now that r > 0. Applying Proposition 4.15, we may assume that both
(X,πX) and (Y, πY ) are minimal exceptional real conic bundles. Since (X,πX)
and (Y, πY ) are birational, we may assume that I(X,πX) = I(Y, πY ), up to an
automorphism of P1

R
(Proposition 4.12). Then, (X,πX) and (Y, πY ) are isomorphic

(Lemma 4.8). �

5. Conic bundles on del Pezzo surfaces

In the preceding section we studied real conic bundles structures. In this sec-
tion, we focus on surfaces admitting distinct minimal conic bundles. We will see
that these surfaces are necessarily del Pezzo surfaces (Lemma 5.3). We begin by
the description of all possible minimal real conic bundles occurring on del Pezzo
surfaces.

Lemma 5.1. Let V be is a subset of P1(R), then the following are equivalent:

(1) there exists a minimal real conic bundle (X,π) such that X is a del Pezzo

surface and I(X,π) = V ;

(2) the set V is a union of closed intervals, and #V ≤ 3.

Proof. The part (1) ⇒ (2) is easy. Indeed, if (X,π) is minimal, we know from
Lemma 4.2 that its number of singular fibres is even, denoted 2r, and that 2r =
8−(KX)2. Since −KX is ample,K2

X ≥ 1, thus r ≤ 3. We conclude by Corollary 4.13
which asserts that I(X,π) is the union of r closed intervals .

Let us prove the converse. If V = P1(R) or V = ∅, we take (X,π) to be
(P1

C
× P1

C
, pr1), where pr1 is the projection on the first factor, endowed with the

anti-holomorphic map that sends
(

(x1 : x2), (y1 : y2)
)

onto
(

(x1 : x2), (±y2 : y1)
)

.

Assume now that V is neither empty nor equal to P1(R). Up to automorphism
of P1

R
, there exist a1 < a2 < ... < a2r ∈ R with 1 ≤ r ≤ 3 such that

V =
r

⋃

i=1

{

(x : 1)
∣

∣

∣
x ∈ [a2i−1, a2i] ⊂ R

}

.

We use the notation of Construction 4.6 associated to J = (J1, J2) with J1 =
{a1, . . . , ar} and J2 = {ar+1, . . . , a2r}, and observe that V = VJ . Let S0 := SJ ,
π0 := πJ and X0 := XJ . The real conic bundle (X0, π0) is exceptional, and
I(X0, π0) = VJ = V (Lemma 4.7).
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If r = 1, ηJ : S0 → P1
C
× P1

C
is the blow-up of two points which do not lie on the

same fibre of any projection, S0 is thus a del Pezzo surface of degree 6; choosing
(X,π) = (X0, π0) achieves the proof.

Assume now that 2 ≤ r ≤ 3. Let α0 := αJ ∈ Aut(S0, π0) and σ0 := σJ be the
holomorphic and anti-holomorphic involutions of S0. Recall that α0 is the lift by
ηJ of the birational involution

α′
J :

(

(x1 : x2), (y1 : y2)
)

99K
(

(x1 : x2), (−y2

r
∏

i=1

(x1 − aix2) : y1

2r
∏

i=r+1

(x1 − aix2))
)

of P1
C
×P1

C
. Then, α0 acts trivially on the basis, fixes two points in each nonsingular

fibre and fixes only one point in each singular fibre (the singular point). We write
Γ0 ⊂ S0 the curve fixed by τ0, which is the strict transform of the curve of P1

C
×P1

C

given by the equation

(y1)
2 ·

2r
∏

i=r+1

(x1 − aix2) + (y2)
2 ·

r
∏

i=1

(x1 − aix2) = 0.

The curve Γ0 is a double covering of P1
C

by means of π0, ramified over the 2r points
(ai : 1). Thus Γ0(R) ⊂ X0(R) is the union of r ovals, which surject by π0 on the r
closed intervals of I(X0, π0) = V .

Denote by p0 ∈ Γ0(R) a real point such that π0(p0) is not a boundary point. We
call ψ0 the blow-up of p0, followed by the contraction of the strict transform of its
fibre. Then, ψ0 is a birational map of conic bundles (S0, π0) 99K (S1, π1), where
π1 = π0ψ

−1
0 . Since p0 is fixed by both σ0 and α0, we get an anti-holomorphic

involution σ1 = ψ0σ0ψ
−1
0 on S1, and an holomorphic involution α1 = ψ0α0ψ

−1
0

that commutes with σ1. We write X1 = (S1, σ1) and choose a point p1 ∈ X1(R)
that belongs to a smooth fibre of π1 and that does not belong to s1 or s1 (this
latter condition only avoids the base-point of ψ−1

0 ). Similarly as before, we call
ψ1 the blow-up of p1, followed by the contraction of the strict transform of its
fibre, and obtain a birational map of conic bundles ψ1 : (X1, π1) 99K (X2, π2) with
π2 = π1ψ

−1
1 . Observe that I(X2, π2) = I(X1, π1) = I(X0, π0) = V .

We claim that if r = 2, then S1 is a del Pezzo surface and that if r = 3 and
p1 is well chosen, then S2 is a del Pezzo surface. Assuming this, it suffices to let
(X,π) := (Xi, πi) for i = 1 or i = 2 to conclude the proof.

Let us prove the claim. Denote by s0 and s0 the exceptional sections of π0, which
are the strict transforms by η−1

J of P1
C
× (0 : 1) and P1

C
× (1 : 0). Denote by si and

si the strict transforms of s0 and s0 on Si. Since pi does not belong to si or si for
i = 0, 1, we have s2i = si

2 = −r + i for i = 1, 2.
We prove now that any section of π1 distinct from s1 or s1 has self-intersection

≥ −1, and that there are finitely many sections of self-intersection −1. Denote by
C1 ⊂ S1 a section of π1, of self-intersection C2

1 ≤ −1, which is distinct from s1 or
s1. The strict transform on S0 of C1 is written C0, and has self-intersection C2

1 ±1,
depending whether C0 passes through p0 or not. The curve ηJ (C0) ⊂ P1

C
× P1

C

is a section of pr1, linearly equivalent to f2 + df1, where fi denotes the divisor
of the fibre or pri and d is a non-negative integer. We have ηJ(C0)

2 = 2d and
ηJ(C0)·ηJ (s0) = d. Denote bym1, . . . ,m2r the multiplicities of ηJ (C0) at the points
blown-up by ηJ – wheremi corresponds to the point in the fibre pr−1

1 ((ai : 1)). Then

mi ∈ {0, 1} for each i, C0 · s0 = d−
∑r

i=1mi ≥ 0 and C0 · s0 = d−
∑2r

i=r+1mi ≥ 0
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since C0 is distinct from s0 and s0, whence C2
0 = 2d−

∑2r
i=1mi ≥ 0. Since C2

1 ≤ −1
and C2

0 = C2
1 ± 1, the only possibility is that C2

0 = 0, C2
1 = −1 and that C0 passes

through p0. Moreover, the possibilities for the mi are finite (at most 22r), and for
each possibility, there is exactly one pencil of curves of S0 equivalent to C0, and C0

is the only curve of the pencil which passes through p0.
Therefore, if r = 2, every section of π1 has self-intersection ≥ −1. If r = 3,

choosing for p1 ∈ X1(R) a point that does not belong to any of the sections of π1

with self-intersection −1, every section of π2 has self-intersection ≥ −1.

We prove now that if r = 2, then S1 is a del Pezzo surface. Recall that s21 =
s1

2 = −1. Denote by η1 the contraction of the component of the singular fibres of
π1 which intersect s1. Then, η1 is a birational morphism (not defined over R) from
S1 to F1, which sends s1 on the exceptional section of F1. Composing η1 with the
contraction of this curve on a point p1 ∈ P2

C
, we see that S1 is the blow-up of 5

points p1, . . . , p5 in P2
C
, that the fibres of π1 are sent on the lines passing through

p1, and that no two of the pi for i ≥ 2 are collinear with p1. Then S1 is a del
Pezzo surface if and only if no three of the points pi for i ≥ 2 are collinear. This
amounts to ask that no section of π1 has self-intersection ≤ −2, and was proved
above. Then, S1 is a del Pezzo surface.

We prove now that if r = 3, then S2 is a del Pezzo surface for a well chosen p1.
The technique is similar; recall that s22 = s2

2 = −1 and denote by η2 : S2 → F1 the
contraction of the component of each singular fibre of π2 which intersects s2. Then
η2(s2) is the exceptional section of F1. Contracting it on p1 ∈ P2

C
, S2 is the blow-up

of 7 points p1, . . . , p7 ∈ P2
C
. Since no section of π2 has self-intersection ≤ −2, no

three of the seven points are collinear. Then S2 is a del Pezzo surface if and only if
there is no conic passing through 6 of the 7 points. If the conic passes through p1,
its proper transform on S2 would be a section of self-intersection ≤ −2. It suffices
thus to avoid the possibility of a conic D ⊂ P2

C
that passes through p2, . . . , p7 and

not through p1. If such a D exists, its strict transform on S2 is a bisection which
has self-intersection −2, and does not intersect s2, where the base-point of ψ−1

1 lies
(the base-point belongs to s2 ∩ s2 since p1 /∈ s1 ∪ s1).

Consequently, the strict transform of D on S1 is a curve D1 ⊂ S1 which has
multiplicity 2 at p1, and has self-intersection 2. This implies that D1 is linearly
equivalent to the anti-canonical divisor −KS1

; indeed, contracting a component of
a singular fibre that touches s1, then contracting s1 and all the components of the
other singular fibres that touch s1 gives a birational morphism S1 → P2

C
, that sends

D1 on a cubic passing once through all the points blown-up. Then, the holomorphic
involution α1 acts on the linear system | − KS1

|, which has dimension m ≥ 2 (it
corresponds to cubics of P2

C
passing through 7 points) and the induced map

ζ : S1

|−KS1
|

99K Pm

is equivariant.
Since the general fibres of ζ have genus 1 and the curve Γ1 fixed by α1 has genus 2

(it is a double covering of P1 ramified over 6 points), then Γ1 is not contained in a
fibre, whence α1 acts trivially on Pm (in fact, the interested reader can show that
m = 2, that ζ is a double covering and that α0 exchanges the two points in each
fibre). In consequence, D1 is invariant by α1, so its singular point p1 is fixed by α1.
It suffices to choose p1 not lying on Γ1 and S2 is a del Pezzo surface. �
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Recall the following classical result, that will be useful in the sequel.

Lemma 5.2. Let π : S → P1
C

be a complex conic bundle, and assume that S is a del

Pezzo surface, with (KX)2 = 9 −m ≤ 7. Then, there exists a birational morphism

η : S → P2
C

which is a blow-up of m points p1, . . . , pm and which sends the fibres of

π onto the lines passing through p1. The curves of self-intersection −1 of S are

• the exceptional curves η−1(p1), . . . , η
−1(pm);

• the strict transforms of the lines passing through 2 of the pi;
• the conics passing through 5 of the pi;
• the cubics passing through 8 of the pi and being singular at one of these.

Proof. Denote by ε the contraction of one component in each singular fibre of π.
Then, ε is a birational morphism of conic bundles – not defined over R – from S to
a del Pezzo surface which is also an Hirzebruch surface. Changing the contracted
components, we may assume that ε is a map S → F1. Contracting the exceptional
section onto a point p1 ∈ P2

C
, we get a birational map η : S → P2

C
which is the

blow-up of m points p1, . . . , pm of P2
C
, and which sends the fibres of π1 onto the

lines passing through p1. The description of the (−1)-curves is well-known and may
be found for example in [Dem76]. �

Lemma 5.3. Let π1 : X → P1
R

be a minimal real conic bundle. Then, the following

conditions are equivalent:

1) There exist a real conic bundle π2 : X → P1
R
, such that π1 and π2 induce

distinct foliations on X(C).
2) Either X is isomorphic to P1

R
×P1

R
, or X is a del Pezzo surface of degree 2

or 4.

Moreover, if the conditions are satisfied, then the following occur:

a) The map π2 is unique, up to an automorphism of P1
R
.

b) There exist α ∈ Aut(X) and β ∈ Aut(P1
R
) such that π1α = βπ2. Moreover,

if X is a del Pezzo surface of degree 2, α may be chosen to be the Geiser

involution.

c) Denoting by f1, f2 ⊂ Pic(X) the divisors of the general fibre of respectively

π1 and π2, we have f1 + f2 = −cKX where c = 4/(KX)2 ∈ N · 1
2 .

Proof. Assume the existence of π2, and denote by fi the divisor of the fibre of πi for
i = 1, 2. We have (f1)

2 = (f2)
2 = 0 and by adjunction formula f1 ·KX = f2 ·KX =

−2, where KX is the canonical divisor. Let us write d = (KX)2.
Since (X,π1) is minimal, Pic(X) has rank 2, hence f1 = aKX + bf2, for some

a, b ∈ Q. Computing (f1)
2 and f1 · KX we find respectively 0 = a2d − 4ab =

a(ad − 4b) and −2 = ad − 2b. If a = 0, we find f1 = f2, a contradiction. Thus,
4b = ad and 2b = ad+2, which yields b = −1 and ad = −4, so f1 +f2 = −4/d ·KX.
This shows that f2 is uniquely determined by f1.

Denote as usual by S the complex surface associated to X . Let C ∈ Pic(S) be
an effective divisor, with reduced support, and let us prove that C · (f1 + f2) > 0.
Since C is effective, C ·f1 ≥ 0 and C ·f2 ≥ 0. If C ·f1 = 0, then the support of C is
contained in one fibre of π1. If C is a multiple of f1, then C · f2 > 0; otherwise, C
is a multiple of a (−1)-curve contained in a singular fibre of f1, and the orbit of C
by the anti-holomorphic involution is equal to a multiple of f1, whence C · f2 > 0.

Since f1+f2 is ample, and f1+f2 = −4/d·KX either KX or −KX is ample. The
surface X being geometrically rational, the former cannot occur, whence d > 0.
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If S is isomorphic to P1
C
×P1

C
, the existence of π1, π2 shows that X is isomorphic

to P1
R
× P1

R
. Otherwise, KX is not a multiple in Pic(XC) and thus d is equal to

1, 2 or 4. The number of singular fibres being even and equal to 8 − (KX)2 by
Lemma 4.2, the only possibilities are then 2 and 4.

We have proved that 1) implies 2), a), and c).
Assume now that X = (S, σ) is P1

R
× P1

R
or a del Pezzo surface of degree 2 or 4.

We construct an automorphism α of X which does not belong to Aut(X,π). Then,
by taking π2 = π1α we get assertion 1). Taking into account the unicity of π2, we
get b).

If X is P1
R
× P1

R
, the two conic bundles are given by the projections on each

factor, and we can get for α the swap of the factors.
If X is a del Pezzo surface of degree 2, the anti-canonical map ζ : X → P2 is

a double covering ramified along a smooth quartic, cf. e.g. [Dem76]. Let α be
the involution associated to the double covering – α is classically called the Geiser

involution. It fixes a smooth quartic, hence cannot preserve any conic bundle.
The remaining case is when X is a del Pezzo surface of degree 4. By Lemma 5.2,

there is a birational map η : S → P2
C

which is the blow-up of five points p1, . . . , p5

of P2
C
, no three being collinear and which sends the fibres of π1 on the lines passing

through p1 . There are 16 exceptional curves (curves isomorphic to P1
C

of self-
intersection (−1)) on S:

• E1 = η−1(p1), ..., E5 = η−1(p5) (5 curves);
• the strict transforms of the lines passing through pi and pj , denoted by Lij

(10 curves);
• the strict transform of the conic passing through the five points, denoted

by Γ.

Note that the four singular fibres of π1 are Ei ∪ Lij , i = 2, . . . , 5, and that σ
exchanges thus Ei and Lij for i = 1, . . . , 5. The intersection form being preserved,
this implies that σ acts on the 16 exceptional curves as

(E2 L12)(E3 L13)(E4 L14)(E5 L15)(E1 Γ)(L23 L45)(L24 L35)(L25 L34).

After a linear change of coordinates, we may assume that p1 = (1 : 1 : 1),
p2 = (1 : 0 : 0), p3 = (0 : 1 : 0), p4 = (0 : 0 : 1) and p5 = (a : b : c) for some
a, b, c ∈ C∗. Denote by φ the birational involution (x : y : z) 99K (ayz : bxz : cxy)
of P2

C
. Since the base-points of φ are p2, p3, p4 and since φ exchanges p1 and p5, the

map ϕ = η−1φη is an automorphism of S. Its action on the 16 exceptional curves
is given by the permutation

(L23 E4)(L24 E3)(L34 E2)(L12 L25)(L13 L35)(L14 L45)(Γ L15)(E1 E5).

Observe that the actions of ϕ and σ on the set of 16 exceptional curves commute.
This means that ϕσϕ−1σ−1 is an holomorphic automorphism of S which preserves
any of the 16 curves. It is the lift of an automorphism of P2

C
that fixes the 5

points p1, . . . , p5 and hence is the identity. Consequently, ϕ and σ commute, so
ϕ ∈ Aut(X). Since φ sends a general line passing though p1 onto a conic passing
through p2, . . . , p5, φ belongs to Aut(X)\Aut(X,π). �

Corollary 5.4. Let X be a minimal geometrically rational real surface, which is

not rational. Then, the following are equivalent:

(1) #X(R) = 2 or #X(R) = 3;
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(2) There exists a geometrically rational real surface Y (R) isomorphic to X(R),
and such that Y admits two minimal conic bundles π1 : Y → P1

R
and

π2 : Y → P1
R

inducing distinct foliations on Y (C).

Proof. [(2) ⇒ (1)] By Lemma 5.3, Y is then a del Pezzo surface, which has degree
2 or 4 since Y is not rational. This implies that #Y (R) = 2 or #Y (R) = 3 by
Proposition 3.7.

[(1) ⇒ (2)]. According to Theorem 3.5 and Proposition 3.7, (1) implies the ex-
istence of a minimal real conic bundle structure πX : X → P1

R
with 4 or 6 singular

fibres. This condition is equivalent to the fact that I(X,πX) is the union of 2 or
3 intervals (Corollary 4.13). According to Lemma 5.1, there exists a minimal real
conic bundle (Y, π1) such that Y is a del Pezzo surface and I(Y, π1) = I(X,πX).
Proposition 4.12 and Corollary 4.17 show that (X(R), πX) and (Y, π1) are isomor-
phic. Moreover Lemma 5.3 yields the existence of π2. �

6. Equivalence of surfaces versus equivalence of conic bundles

This section is devoted to the proof of Theorem 1.5. It remains to solve the
conic bundle case, which is done in Theorem 6.3. First of all, we correct an existing
inaccuracy in the literature; in [Kol97, Exercice 5.8] or [Sil89, VI.3.5], it is asserted
that all minimal real conic bundles with four singular fibres belong to a unique
birational equivalence class. To the contrary, the following general result, which
includes the case with four singular fibres, occurs:

Theorem 6.1. Let πX : X → P1
R

and πY : Y → P1
R

be two real conic bundles, and

suppose that either X or Y is non-rational. Then, the following are equivalent:

(1) The two real surfaces X and Y are birational.

(2) The two real conic bundles (X,πX) and (Y, πY ) are birational.

(3) There exists an automorphism of P1 which sends I(X,πX) onto I(Y, πY ).

Moreover, if the number of singular fibres of πX is at least 8, then Bir(X) =
Bir(X,πX).

Remark 6.2. It is well-known that this result is false when X and Y are rational.
Indeed, consider (X,πX) = (P1

R
× P1

R
, pr1) and (Y, πY ) be a real conic bundle with

two singular fibres. The surfaces X and Y are birational, but the conic bundles
(X,πX) and (Y, πY ) are not.

Proof. The equivalence (3) ⇔ (2) was proved in Proposition 4.12 and (2) ⇒ (1) is
evident.

We may assume that (X,πX) and (Y, πY ) are minimal and thatX is not rational,
hence πX has at least 4 singular fibres. Let ψ : X 99K Y a birational map, and
decompose ψ into elementary links: ψ = ψn ◦ · · · ◦ ψ1 (see [Isk96, Theorem 2.5]).
Consider ψ1 : X 99K X1 the first link, which may be of type II or IV only by
[Isk96, Theorem 2.6]. If ψ1 is of type II, then ψ1 is a birational map of conic
bundles (X,πX) 99K (X1, π1) for some conic bundle structure π1 : X1 → P1. If ψ1

is of type IV , then ψ1 is an isomorphism X → X1 and the link is precisely a change
of conic bundle structure from πX to π1 : X1 → P1, which induce distinct foliations
on X(R). Applying Lemma 5.3, X is a del Pezzo surfaces of degree 2 or 4, and
there exist automorphisms α ∈ Aut(X) and β ∈ Aut(P1

R
) such that π1ψ1α = βπ2,

whence (X,π) is isomorphic to (X1, π1). We proceed by induction on the number
of elementary links to conclude that (X,πX) is birational to (Y, πY ). Moreover,
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if πX has at least 8 singular fibres, then no link of type IV may occur, so ψ is a
birational map of conic bundles (X,πX) 99K (Y, πY ). �

When the conic bundles are minimal, we can strengthen Theorem 6.1 to get an
isomorphism between the real parts.

Theorem 6.3. Let πX : X → P1
R

and πY : Y → P1
R

be two minimal real conic

bundles, and suppose that either X or Y is non-rational. Then, the following are

equivalent:

(1) X and Y are birational.

(2) X(R) and Y (R) are isomorphic.

(3) (X(R), πX) and (Y (R), πY ) are isomorphic.

Proof. The implications (3) ⇒ (2) ⇒ (1) being evident, it suffices to prove (1) ⇒
(3). Since X and Y are not rational, both πX and πY have at least one singular
fibre. Applying Proposition 4.15, we may assume that both (X,πX) and (Y, πY )
are minimal exceptional real conic bundles. Then, since (X,πX) and (Y, πY ) are
birational (Theorem 6.1), we may assume that I(X,πX) = I(Y, πY ), up to an
automorphism of P1

R
. Then Lemma 4.8 shows that (X,πX) is isomorphic to (Y, πY ).

�

We are now able to prove Theorem 1.5 concerning minimal surfaces.

Proof of Theorem 1.5. Let X and Y be two minimal geometrically rational real
surfaces, and assume that either X or Y is non-rational.

If X(R) and Y (R) are isomorphic, it is clear that X and Y are birational. Let
us prove the converse.

Theorem 3.5 lists all the possibilities for X . If ρ(X) = 1 or ρ(Y ) = 1, Propo-
sition 3.8 shows that X is isomorphic to Y . Otherwise, since neither X nor Y
is rational, there exist minimal conic bundle structures on X and on Y . From
Theorem 6.3, we conclude that X(R) is isomorphic to Y (R). �

To go further with non-minimal surfaces, we need to know when the group
Aut

(

X(R)
)

is very transitive for X minimal. This is done in the next sections.

7. Very transitive actions

Thanks to the work done in Section 4, it is easy to apply the techniques of
[HM07] to prove that Aut

(

X(R)
)

is fiberwise very transitive on a real conic bundle.

After describing the transitivity of Aut
(

X(R)
)

on the tangent space of a general

point, we set the main result of that section: Aut
(

X(R)
)

is very transitive on
connected components when X is minimal and admits two conic bundle structures
(Proposition 7.5). We end the section by giving a characterisation of surfaces X
for which Aut

(

X(R)
)

is able to mix the connected components of X(R).

Lemma 7.1. Let (X,π) be a minimal real conic bundle over P1
R

with at least one

singular fibre. Let (p1, . . . , pn) and (q1, . . . , qn) be two n-tuples of distinct points of

X(R), and let (b1, . . . , bm) be m points of I(X,π). Assume that π(pi) = π(qi) for

each i, that π(pi) 6= π(pj) for i 6= j and that π(pi) 6= bj for any i and any j.
Then, there exists α ∈ Aut

(

X(R)
)

such that α(pi) = qi for every i, πα = π and

α|π−1(bi) is the identity for every i.
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Remark 7.2. The same result holds for minimal real conic bundles with no singular
fibre, see [BH07, 5.4]. The following proof uses twisting maps, see below, which
were introduced in [HM07] to prove that the action of the automorphism group
Aut(S2) on the quadric sphere S2 := {(x : y : z) ∈ R3 | x2 + y2 + z2 = 0} is very
transitive.

Proof. By Proposition 4.15, we may assume that (X,π) is exceptional. Moreover,
Corollary 4.11 yields the existence of an affine real surface A ⊂ X isomorphic to
the hypersurface of R3 given by

y2 + z2 = −
2r
∏

i=1

(x− ai),

for some a1, . . . , a2r ∈ R with a1 < a2 < · · · < a2r, where π|A corresponds to the
projection (x, y, z) 7→ x, and where the inclusion A ⊂ X induces an isomorphism
A(R) → X(R).

For i = 1, . . . , n, let us denote by (xi, yi, zi) the coordinates of pi in A ⊂ R3

and by (ui, vi, wi) the ones of qi. From hypothesis, we have xi = ui for all i, thus
we get y2

i + z2
i = v2

i + w2
i for all i. Let Φi ∈ SO2(R) be the rotation sending

(xi, yi) to (ui, vi). Then by [HM07, Lemma 2.2], there exists an algebraic map
Φ: [a1, a2r] → SO2(R) such that Φ(xi) = Φi for i = 1, . . . , n and Φ(bi) is the identity
for i = 1, . . . ,m. Let us recall the proof; since SO2(R) is isomorphic to the unit
circle S1 := {(x : y : z) ∈ P2(R) | x2 + y2 = z2}, it suffices to prove the statement
for S1 instead of SO2(R). Let Φ0 be a point of S1 distinct from Φ1, . . . ,Φn and
from the identity. Since S1\{Φ0} is isomorphic to R, it suffices, finally, to prove the
statement for R instead of SO2(R). The latter statement is an easy consequence of
Lagrange polynomial interpolation.

Then the map defined by α : (x, y, z) 7→
(

x, (y, z) · Φ(x)
)

induces an automor-
phism A(R) → A(R) called the twisting map of π associated to Φ. Moreover,
α(pi) = qi, for all i, πα = π, α|π−1(bi) is the identity for every i, and π induces an
automorphism X(R) → X(R). �

Lemma 7.3. Let (X,π) be a minimal real conic bundle over P1
R

with at least one

singular fibre. Let p ∈ X be a point in a nonsingular fibre of π, and let Σ ⊂ I(X,π)
be a finite subset, with π(p) ∈ Σ. Denote by η : Y → X the blow-up of p, and by

E ⊂ Y the exceptional curve. Let q ∈ E the point corresponding to the direction of

the fibre of π passing through p.
Then, the lift of the group

G =
{

α ∈ Aut
(

X(R)
)

, πα = π
∣

∣

∣
α|π−1(Σ) is the identity

}

by η is a subgroup η−1Gη ⊂ Aut
(

Y (R)
)

which fixes the point q, and acts transitively

on E\q ∼= A1
R
.

Proof. Since G acts identically on π−1(Σ), it fixes p, and therefore lifts to H =
η−1Gη ⊂ Aut(Y (R), πη), which preserves E. Moreover, G preserves the fibre of π
passing through p, so H preserves its strict transform, which intersects transversally
E at q, so q is fixed.

Let us prove now that the action of η−1Gη on E\q is transitive. By Proposi-
tion 4.15, we may assume that (X,π) is exceptional. Then, we take an affine surface
A ⊂ X , isomorphic to the hypersurface y2 + z2 = P (x) of R3 for some polynomial
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P , such that A|π is the projection prx : (x, y, z) 7→ x and the inclusion A ⊂ X gives
an isomorphism A(R) → X(R) (Corollary 4.11). Let us write (x0, y0, z0) ∈ R3 the
coordinates of p. Since x is on a nonsingular fibre of π, then P (x0) > 0. Up to
an affine automorphism of R3, and up to multiplication of P by some constant, we
may assume that x0 = 0, P (0) = 1, y0 = 0, and z0 = 0.

To any real polynomial λ ∈ R[X ], we associate the matrix
(

α(X) β(X)
−β(X) α(X)

)

∈ SO2(R(X)) ,

where α = 1−λ2

1+λ2 ∈ R(X) and β = 2λ
1+λ2 ∈ R(X). And corresponding to this matrix,

we associate the map

ψλ : (x, y, z) 7→ (x, α(x) · y − β(x) · z, β(x) · y + α(x) · z),

which belongs to Aut(A(R), prx). To impose that ψλ is the identity on (prx)
−1(Σ)

is the same to ask that λ(x) = 0 for each (x : 1) ∈ Σ ⊂ P1(R), and in particular for
x = 0.

Denote by O = R[x, y, z]/(y2 + z2 − P (x)) the ring of functions of A, by p ⊂ O
the ideal of functions vanishing at p, by Op the localisation, and by m ⊂ Op the
maximal ideal of Op. Then, the cotangent ring T ∗

p,A of p in A is equal to m/m2, and

is generated by the images [x], [y], [z − 1] of x, y, z− 1 ∈ R[x, y, z]. Since P (0) = 1,
we may write P (x) = 1 + xQ(x), for some real polynomial Q. We compute

[0] = [y2+z2−P (x)] = [y2+(z−1)2+2(z−1)−xQ(x)] = [2(z−1)−xQ(0)] ∈ m/m2 .

We see that [z − 1] = [xQ(0)/2], thus m/m2 is generated by [x] and [y] as a
R-module. Since λ(0) = 0, we can write λ(x) = xµ(x), for some real polynomial µ.
The linear action of ψλ on the cotangent space T ∗

p,A fixes [x] and sends [y] onto

[α(x) · y − β(x) · z] =
[

(1−λ(x)2)y−2λ(x)z
λ(x)2+1

]

= [y − 2λ(x)(1 + xQ(0)/2)]

= [y − 2µ(0)x] .

It suffices to change the derivative of λ at 0 (which is equal to µ(0)), which may be
any real number. Therefore, the action of G on the projectivisation of T ∗

p,A, fixes a

point (corresponding to [x]) but acts transitively on the complement of this point.
Since E corresponds to the projectivisation of Tp,A, G acts transitively on E\q. �

Lemma 7.4. Let X be a real projective surface endowed with two minimal conic

bundles π1 : X → P1
R

and π2 : X → P1
R

inducing distinct foliations on X(C). Let

Fj be a real fibre of πj, j = 1, 2. If F1(R) ∩ F2(R) 6= ∅, then at most one of the

curves Fj can be singular.

Proof. Suppose the converse for contradiction. Then, Fi is the union of two (−1)-
curves Ei,1 and Ei,2, intersecting transversally at some point pi. Since pi is the
only real point of Fi, we have p1 = p2. Hence, E2,1 · F1 ≥ 2.

According to Lemma 5.3, X is a del Pezzo surface of degree 2 or 4. Denote
by S the complex surface obtained by forgetting the real structure on X , and by
η : S → P2

C
the birational map which is the blow-up of p1, . . . , pm, m = 5 or m = 7,

and which sends the fibres of π1 on lines passing through p1 (Lemma 5.2). The
curves E2,1 and E2,2 having self-intersection −1, these are the strict transform of
lines or conics of P2 passing through 3 or 5 of the pi. Since both curves intersect
the fibres of π1 into at least 2 points, the curves are conics not passing through p1.
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This means that m = 7 and that the two conics intersect nowhere except at four of
the points p2, . . . , p7. This is impossible since E2,1 and E2,2 intersect at p. �

We now use Lemma 7.1 to show that the action of Aut
(

X(R)
)

is very transitive
on connected components when X is a surface with two conic bundles.

Proposition 7.5. Let X be a real projective surface, which admits two minimal

conic bundles π1 : X → P1
R

and π2 : X → P1
R

inducing distinct foliations on X(C).
Let (p1, . . . , pn) and (q1, . . . , qn) be two n-tuples of distinct points of X(R) such

that pi and qi belong to the same connected component for each i. Then, there

exists an element of Aut
(

X(R)
)

which sends pi on qi for each i, and which sends

each connected component of X(R) on itself.

Proof. When X is rational, the result follows from [HM07, Theorem 1.4]. Thus we
assume that X is non-rational, and in particular that X(R) is non-connected.

From Lemma 7.4, any real point which is critical for one fibration is not crit-
ical for the second fibration. Otherwise speaking (recall that the fibrations are
minimal) a real intersection point of a fibre F1 of π1 with a fibre F2 of π2 cannot
be a singular point of F1 and of F2 at the same time. By Lemma 7.1 applied to
(X,π1), and to (X,π2), we may assume without loss of generality that all points
p1, . . . , pn, q1, . . . , qn belong to smooth fibres of π1 and to smooth fibres of π2.
We now use Lemma 7.1 to obtain an automorphism α of (X(R), π1) such that
π2(α(pi)) 6= π2(α(pj)) and π2(α(qi)) 6= π2(α(qj)) for i 6= j. Hence, we may suppose
that π2(pi) 6= π2(pj) and π2(qi) 6= π2(qj) for i 6= j.

Likewise, using an automorphism of (X(R), π2) we may suppose that π1(pi) 6=
π1(pj) and π1(qi) 6= π1(qj) for i 6= j.

We now show that for i = 1, . . . ,m, there exists an element αi ∈ Aut
(

X(R)
)

that sends pi on qi and that restricts to the identity on the sets ∪j 6=i{pj} and
∪j 6=i{qj}. Then, the composition of the αi will achieve the proof. Observe that
ζ = π1 × π2 gives a finite surjective morphism X → P1

R
× P1

R
which is 2-to-1 or

4-to-1 depending of the degree of X (follows from assertion (c) of Lemma 5.3).
Denote by W the image of X(R). The map X(R) → W is a differential map,
which has topological finite degree. Denote by Wi the connected component of W
which contains both ζ(pi) and ζ(qi). Observe that Wi is contained in the square
I(X,π1)×I(X,π2), and that for each point x ∈Wi, the intersection of the horizontal
and vertical lines (fibres of the two projections of P1

R
× P1

R
) passing through x

with Wi is either only {x}, when x is on the boundary of Wi, or is a bounded
interval. Moreover, Wi is connected. Then, there exists a path from ζ(pi) to ζ(qi)
which is a sequence of vertical or horizontal segments contained in Wi. We may
furthermore assume that none of the segments is contained in (pr1)

−1(π1(a)) or
(pr2)

−1(π2(a)) for any a ∈ (∪j 6=i{pj}) ∪ (∪j 6=i{qj}). Denote by r1, ..., rl the points
of U that are sent on the singular points or ending points of the path, and by
s1, . . . , sl some points of X(R) which are sent by ζ on r1, . . . , rl respectively. Up to
renumbering, s1 = pi, sl = qi and two consecutive points sj and sj+1 are such that
π1(sj) = π1(sj+1) or π2(sj) = π2(sj+1). We construct then αi as a composition
of l − 1 maps, each one belonging either to Aut(X(R), π1) or Aut(X(R), π2) and
sending sj on sj+1, and fixing the points (∪j 6=i{pj}) ∪ (∪j 6=i{qj}). �

The following proposition describes the possible mixes of connected components.
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Proposition 7.6. Let (X,π) be a minimal real conic bundle. Denote by I1, . . . , Ir
the r connected components of I(X,π), and by M1, . . . ,Mr the r connected com-

ponents of X(R), where Ii = π(Mi), Mi = π−1(Ii) ∩ X(R). If ν ∈ Symr is a

permutation of {1, . . . , r}, the following are equivalent:

(1) there exists α ∈ Aut(P1
R
) such that α(Ii) = Iν(i) for each i;

(2) there exists β ∈ Aut(X(R), π) such that β(Mi) = Mν(i) for each i;

(3) there exists β ∈ Aut
(

X(R)
)

such that β(Mi) = Mν(i) for each i;
(4) there exist two real Zariski open sets V,W ⊂ X, and β ∈ Bir(X), inducing

an isomorphism V →W , such that β(V (R)∩Mi) = W (R)∩Mν(i) for each

i.

Moreover, the conditions are always satisfied when r ≤ 2, and are in general not

satisfied when r ≥ 3.

Proof. The implications (2) ⇒ (1) and (2) ⇒ (3) ⇒ (4) are obvious.
Let us prove (1) ⇒ (2). According to Proposition 4.15, we may assume that

(X,π) is exceptional. The results follows from Lemma 4.9.
We prove now that if r ≤ 2, Assertion (1) is always satisfied, hence all the

conditions are equivalent (since all are true). When r ≤ 1, take α to be the
identity. When r = 2, we make a linear change of coordinates to the effect that
I1 = {(x : 1) | 0 ≤ x ≤ 1} and I2 is bounded by (1 : 0) and (λ : 1), for some λ ∈ R,
λ > 1 or λ < 0. Then, α : (x1 : x2) 7→ (λx2 : x1) is an involution which exchanges
I1 and I2.

It remains to prove the implication (4) ⇒ (1) for r ≥ 3. We decompose β into
elementary links

X = X0
β1

99K X1
β2

99K · · ·
βn−1

99K Xn−1
βn

99K Xn = X

as in [Isk96, Theorem 2.5]. It follows from the description of the links of [Isk96,
Theorem 2.6] that each of the links is of type II or IV , and that the links of type
II are birational maps of conic bundles and the links of type IV occur on del Pezzo
surfaces of degree 2.

In consequence, each of theXi admits a conic bundle structure given by πi : Xi →
P1

R
, where π0 = πn = π, and if βi has type II, it is a birational map of conic bundles

(Xi−1, πi−1) 99K (Xi, πi), and if it has type IV , it is an isomorphism Xi−1 → Xi

which does not send the general fibre of πi−1 on those of πi. In this latter case,
since πi and πi−1βi have distinct general fibres, Xi−1 and Xi are del Pezzo surfaces
of degree 2, and the Geiser involution ιi−1 ∈ Aut(Xi−1) exchanges the two general
fibres (follows from [Isk96, Theorem 2.6], but also from Lemma 5.3). This means
that the map βi ◦ ιi−1, that we denote by γi, is an isomorphism of conic bundles
(Xi−1, πi−1) → (Xi, πi).

Now, we prove by induction on the number of links of type IV that β may be
decomposed into compositions of elements of Bir(X,π) and maps of the form ψιψ−1

where ψ is a birational map of conic bundles (X,π) 99K (X ′, π′), (X ′, π′) is a del
Pezzo surface of degree 2 and ι ∈ Aut(X ′) is the Geiser involution. If there is no link
of type IV , β preserves the conic bundle structure given by π. Otherwise, denote
by βi the first link of type IV , which is an isomorphism βi : Xi → Xi+1, and write
βi = γi ◦ ιi−1 as before. We write ψ = βi−1 ◦ · · · ◦ β1, which is a birational map of
conic bundles ψ : (X,π) 99K (Xi, πi). Then, β = (βn ◦ · · · ◦βi+1 ◦γi ◦ψ)(ψ−1ιi−1ψ).
Applying the induction hypothesis on the map (βn ◦ · · · ◦ βi+1 ◦ γi ◦ ψ) ∈ Bir(X),
we are done.
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Now, observe that when (X ′, π′) is a minimal real conic bundle and X ′ is a del
Pezzo surface of degree 2, the map ζ : X ′ → P2

R
given by | − KX′ | is a double

covering, ramified over a smooth quartic curve Γ ⊂ P2
R

(see e.g. [Dem76]). Since
(X,π) is minimal, π has 6 singular fibres (Lemma 4.2), so I(X,π) is the union of
three intervals and X(R) is the union of 3 connected components (Corollary 4.13).
This implies that Γ(R) is the union of three disjoint ovals. A connected component
M of X(R) is homeomorphic to a sphere, and surjects by ζ to the interior of one
of the three ovals. The Geiser involution (induced by the double covering) induces
an involution on M , which fixes the preimage of the oval. This means that the
Geiser involution sends any connected component of X(R) on itself. Thus, in the
decomposition of β into elements of Bir(X,π) and conjugate elements of Geiser
involutions, the only relevant elements are those of Bir(X,π). There exists thus
β′ ∈ Bir(X,π) which acts on the connected components of X(R) in the same way
as β. This shows that (4) implies (1).

We finish by proving that (1) is false in general, when r ≥ 3. This follows from
the fact that if Σ is a general finite subset of 2r distinct points of P1

R
, the group

{α ∈ Aut(P1
R
) | α(Σ) = Σ} is trivial. Supposing this fact true, we obtain the result

by applying it to the 2r boundary points of I(X,π). Let us prove the fact. The set
of 2r-tuples of P1

R
is an open subset W of (P1

R
)2r. For any non-trivial permutation

υ ∈ Sym2r, we denote by Wυ ⊂ W the set of points a = (a1, . . . , a2r) ∈ W such
that there exists α ∈ Aut(P1

R
) with α(ai) = aυ(i) for each i. Let a ∈ Wυ, and take

two 4-tuples Σ1,Σ2 of ai’s with Σ1 6= Σ2 and Σ2 = υ(Σ1) (this is possible since υ
is non-trivial). Then, the cross-ratio of the ai’s in Σ1 and in Σ2 are the same. This
implies a non-trivial condition on W . Consequently, Wυ is contained in a closed
subset of W . Doing this for all non-trivial permutations υ, we obtain the result. �

8. Real algebraic models

The aim of this section is to go further with non-minimal surfaces with 2 or 3
connected components. We begin to show how to separate infinitely near points to
the effect that any such a surface Y (R) is isomorphic to a blow-up Ba1,...,am

X(R)
where X is minimal and a1, . . . , am are distinct proper points of X(R). Then, we
replace X(R) by an isomorphic del Pezzo model (Corollary 5.4) and we use the
fact that Aut

(

X(R)
)

is very transitive on connected components for such an X
(Proposition 7.5) to prove that in many cases, if two birational surfaces Y and Z
have homeomorphic real parts then Y (R) and Z(R) are isomorphic. As a corollary,
we get that in any cases, Aut

(

Y (R)
)

is very transitive on connected components.

Proposition 8.1. Let X be a minimal geometrically rational real surface, with

#X(R) = 2 or #X(R) = 3, and let η : Y → X be a birational morphism.

Then there exists a blow-up η′ : Y ′ → X, whose centre is a finite number of

distinct real proper points of X, and such that Y ′(R) is isomorphic to Y (R).
Moreover, we can assume that the isomorphism Y (R) → Y ′(R) induces an home-

omorphism η−1(M) → (η′)−1(M) for each connected component M of X(R).

Proof. According to Corollary 5.4, we may assume that X admits two minimal
conic bundles π1 : X → P1

R
and π2 : X → P1

R
inducing distinct foliations on X(C).

Preserving the isomorphism class of Y (R), we may assume that the points in the
centre of η are all real (such a point may be a proper point of X(R) or an infinitely
near point). Let us denote by m (= K2

X −K2
Y ) the number of those points. We

prove the result by induction on m.
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The cases m = 0 and m = 1 being obvious (take η′ = η), we assume that
m ≥ 2. We decompose η as η = θ ◦ ε, where ε : Y → Z is the blow-up of one real
point q ∈ Z, and θ : Z → Y is the blow-up of m − 1 real points. By induction
hypothesis, we may assume that θ is the blow-up of m − 1 proper points of X ,
namely a1, · · · , am−1 ∈ X(R). Moreover, applying Proposition 7.5, we may move
the points by an element of Aut

(

X(R)
)

, and assume that π1(ai) 6= π1(aj) and
π2(ai) 6= π2(aj) for i 6= j, and that the fibre of π1 passing through ai and the fibre
of π2 passing through ai are nonsingular and transverse at ai, for each i.

If θ(q) /∈ {a1, . . . , am−1}, then η is the blow-up of m distinct proper points of X ,
hence we are done. Otherwise, assume that θ(q) = a1. We write E = θ−1(a1) ⊂ Z,
and denote by Fi ⊂ Z the strict pull-back by η of the fibre of πi passing through
a1, for i = 1, 2. Then, F1 and F2 are two (−1)-curves which do not intersect.
Hence, the point q ∈ E belongs to at most one of the two curves, so we may assume
that q /∈ F1. Denote by θ2 : Z → X2 the contraction of the m − 1 disjoint (−1)-
curves F1, θ

−1(a2), . . . , θ
−1(am−1). Since q does not belong to any of these curves,

η2 = θ2 ◦ ε is the blow-up of m− 1 distinct proper points of X2. It remains to find
an isomorphism γ : X2(R) → X(R) such that for each connected component M of
X(R), γη2 sends η−1(M) on M .

Denoting π′ = π1 ◦ θ ◦ θ−1
2 , the map ψ = θ2 ◦ θ−1 is a birational map of conic

bundles (X,π1) 99K (X2, π
′), which factorizes as the blow-up of a1, followed by

the contraction of the strict transform of the fibre passing through a1. There-
fore, the conic bundle (X2, π

′) is minimal. Since X is not rational and π′ψ = π1,
Corollary 4.17 yields the existence of an isomorphism γ : X2(R) → X(R) such that
π1γ = π′. Observe that γη2 ◦ η−1 = γθ2 ◦ θ−1 = γψ is a birational map X 99K X
which satisfies π ◦ (γη2 ◦ η

−1) = π. Consequently, for any connected component M
of X(R), which corresponds to π−1(V ) ∩X(R), for some interval V ⊂ P1

R
, we find

π(γη2η
−1(M)) = π(M) = V , thus γη2 sends η−1(M) on M . �

Corollary 8.2. Let X be a minimal geometrically rational real surface, such that

#X(R) = 2 or #X(R) = 3, and let η : Y → X, ε : Z → X be two birational

morphisms. Denote by M1, . . . ,Mr the connected components of X(R) (r = 2, 3).
Then, the following are equivalent:

(1) η−1(Mi) ⊂ Y (R) and ε−1(Mi) ⊂ Z(R) are homeomorphic for each i;
(2) there exists an isomorphism Y (R) → Z(R) which induces an homeomor-

phism η−1(Mi) → ε−1(Mi) for each i.

Proof. (2) ⇒ (1) being obvious, let us prove the converse. According to Proposi-
tion 8.1, we may assume that η and ε are the blow-ups of a finite number of distinct
real proper points of X . Denote by Ση and Σε these two finite sets. For each i, the
fact that η−1(Mi) ⊂ Y (R) and ε−1(Mi) ⊂ Z(R) are homeomorphic implies that
the numbers of points of Ση ∩Mi and Σε ∩Mi coincide.

By Corollary 5.4 and Proposition 7.5, Aut
(

X(R)
)

is very transitive on connected

components of X(R). In particular, there exists an element α ∈ Aut
(

X(R)
)

such

that α(Mi) = Mi for each i and α(Ση) = Σε. Then, ψ = ε−1αη : Y (R) → Z(R) is
the wanted isomorphism. �

Corollary 8.3. Let Y be a geometrically rational real surface with #Y (R) = 2 or

#Y (R) = 3. Let (p1, . . . , pn) and (q1, . . . , qn) be two n-tuples of distinct points of

Y (R) such that pi and qi belong to the same connected component for each i.
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Then, there exists an element α ∈ Aut
(

Y (R)
)

, which fixes each connected com-

ponent of Y (R) and such that α(pi) = qi for each i.

Proof. Let η : Y → X be a birational morphism to a minimal real surface X ;
observe that #X(R) = #Y (R). According to Corollary 5.4, we may assume that X
admits two minimal conic bundles π1 : X → P1

R
and π2 : X → P1

R
inducing distinct

foliations on X(C). By Proposition 8.1, we can suppose that η is the blow-up of m
distinct real proper points a1, . . . , am ∈ X . We prove the result by induction on m.

If m = 0, which means that X = Y , the result follows from Proposition 7.5.
If m > 0, denote by η0 : Z → X the blow-up of a1, . . . , am−1 (η0 is the identity

if m = 1), and by η1 : Y → Z the blow-up of b = η−1
0 (ar).

Applying Proposition 7.5, we may assume that π1(ai) 6= π1(aj) and π2(ai) 6=
π2(aj) for i 6= j, and that the fibre of π1 passing through ai and the fibre of
π2 passing through ai are nonsingular and transverse at ai, for each i. Let us
denote by E ⊂ Y the exceptional curve η−1

1 (b) of η1 and by Fi the strict trans-
form on Y of the fibre of πi passing through am, for i = 1, 2. Then E, F1 and
F2 are three (−1)-curves, F1 and F2 do not intersect, and E intersect transver-
sally each of the Fi. By induction hypothesis, we may use the lift of an element
of Aut

(

Z(R)
)

which fixes b to assume that no one of the points pi belongs to

F1\E, F2\E or to η−1(ai) for i = 1, . . . ,m − 1. Then the group G = {α ∈
Aut

(

X(R)
)

| π1α = π1, α fixes a1, . . . , am, η(p1), . . . , η(pn)}, acts transitively on

E\F1 (Lemma 7.3). Lifting a well-chosen element of this group in Aut
(

Y (R)
)

, we
may move the points pi and assume that no one of the pi belongs to F2 (i.e. we can
avoid F2 ∩ E). Denote by η′ : Y → X ′ the contraction of the disjoint (−1)-curves
F2, η

−1(a1), . . . η
−1(am−1).

Then, the birational map ψ = η′η−1 : X 99K X ′ is a birational map of conic
bundles (X,π2) 99K (X ′, π′), where π′ = π2ψ

−1, which consists of the blow-up of
am, followed by the contraction of the strict transform of the fibre passing through
am. Therefore, the conic bundle (X ′, π′) is minimal. Since X is not rational,
Corollary 4.17 yields the existence of an isomorphism γ : X ′(R) → X(R) such that
π2γ = π′. Therefore, there exists an element β ∈ Aut

(

X ′(R)
)

which fixes all the
points blown-up by η′, which fixes all the points {η′(pi), pi /∈ E}, and which sends
the points {η′(pi), pi ∈ E} outside of η′(E). Applying the lift of β on Aut

(

Y (R)
)

, we
may assume that none of the points pi belongs to E. Doing the same manipulation
with the qi, it remains to use the lift of an element of Aut

(

Z(R)
)

which fixes b and
sends η1(pi) on η1(qi) for each i. �

9. Proof of the main results

The proof of Theorem 1.5 was given at the end of Section 5. Now, we deduce
the others results stated in the introduction from the results of Sections 7 and 8.
The following lemma serves to prove most of them.

Lemma 9.1. Let (X,π) be a minimal real conic bundle, such that I(X,π) is the

union of r intervals I1, . . . , Ir, with r = 2 or r = 3.
Let ηY : Y → X and ηZ : Z → X be two birational morphisms. For i = 1, . . . , r,

we write Xi = π−1(Ii) ∩X(R), Yi = η−1
Y (Xi) ∩ Y (R) and Zi = η−1

Z (Xi) ∩ Z(R).
Let p1, . . . , pn ∈ Y (R), q1, . . . , qn ∈ Z(R) be two n-tuples of distinct points, and

assume the existence of an homeomorphism h : Y (R) → Z(R) which sends pi on qi
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for each i, and sends Yi on Zν(i), where ν ∈ Symr is a permutation of {1, . . . , r}.
Then, the following are equivalent:

(1) There exists an isomorphism β : Y (R) → Z(R) which sends Yi on Zν(i) for

each i ∈ {1, . . . , r} and sends pj on qj for each j ∈ {1, . . . , n}.
(2) There exists an automorphism α ∈ Aut(P1

R
) which sends Ii on Iν(i) for each

i ∈ {1, . . . , r}.

Moreover, both assertions are true if r = 2, and false in general when r = 3.

Proof. Observe that the Xi (respectively the Yi, Zi) are the connected components
of X(R) (respectively of Y (R), Z(R)).

[(1) ⇒ (2)] The map ηZβη
−1
Y is a birational self-map of X , which restricts to an

isomorphism ϕ : V → W , where V and W are two real Zariski open subsets of X .
Moreover, the hypothesis on β implies that ϕ(V (R) ∩ Xi) = W (R) ∩ Xν(i). The
existence of α is provided by Proposition 7.6.

[(2) ⇒ (1)] Proposition 7.6 yields the existence of γ ∈ Aut(X(R), π) such that
γ(Xi) = Xν(i). We may thus assume that ν is the identity. According to Proposi-
tion 8.1, we may moreover suppose that ηY and ηZ are the blow-ups of a finite set
of disjoint real proper points of X . Since Yi is homeomorphic to Zi for each i, ηY
is the blow-up of a1, . . . , am and ηZ is the blow-up of b1, . . . , bm, where aj and bj
belong to the same connected component of X(R) for each j. Then, there exists an
element of Aut

(

X(R)
)

which preserves each connected component of X and sends
aj on bj for each j (Corollary 8.3). We may thus assume that Y = Z, and conclude
by applying Corollary 8.3 to Y .

The fact that (2) is true when r = 2 and false in general when r = 3 was proved
in Proposition 7.6. �

Proof of Theorem 1.1. Let Y be a nonsingular geometrically rational real projective
surface, with #Y (R) = 2. Let (p1, . . . , pn) and (q1, . . . , qn) be two n-tuples of points
which are compatible. We want to prove the existence of α ∈ Aut

(

Y (R)
)

such that
α(pi) = qi for each i.

If pi and qi are in the same connected component of Y (R), the result follows
from Corollary 8.3.

Otherwise, the compatibility means that the two components of X(R) are home-
omorphic and that pi and qi are in a distinct component for each i. Lemma 9.1
provides the existence of an element of Aut

(

Y (R)
)

which permutes the two con-
nected components of Y (R). This reduces the situation to the previous case. �

Theorem 1.2 is Corollary 8.3 applied to the case of 3 connected components.

Proof of Corollary 1.3. We prove firstly that if X is not geometrically rational,
then Aut

(

X(R)
)

is not very transitive. If X has Kodaira dimension 2, (surface of
general type), it has only finitely many birational self-maps (see e.g. [Uen75].) If
X has Kodaira dimension 1, every birational self-map of X preserves the elliptic
fibration induced by |KX |. If X has Kodaira dimension 0, and X is minimal, then
Bir(X) = Aut(X). The group Aut(X) is an algebraic group of dimension 1 or 2 (its
neutral component is an elliptic curve or an Abelian surface). Thus, Bir(X) may
not be 2-transitive. The case when X is not minimal is deduced from this case.

IfX is a surface with Kodaira dimension −∞, thenX is uniruled. If furthermore,
X is not geometrically rational and X(R) is non-empty, then the Albanese map
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X → C is a real ruling over a curve with genus g(C) > 0, see e.g. [Sil89, V.(1.8)],
and the Albanese map is preserved by any birational self-map.

Assume now that X is a geometrically rational surface. When #X(R) = 1, X is
rational; the fact that Aut

(

X(R)
)

is very transitive is the main result of [HM07].

When #X(R) = 2, Aut
(

X(R)
)

is very transitive by Theorem 1.1.

When #X(R) > 3, we prove now that the group Aut
(

X(R)
)

is not transitive.
Denote by η : X → X0 a birational morphism to a minimal real surface, and ob-
serve that #X0(R) = #X(R) > 3. Let us discuss the two cases for X0 given by
Theorem 3.5. If X0 is a del Pezzo surface with ρ(X0) = 1, then Aut

(

X(R)
)

is

countable (Corollary 3.9), thus Aut
(

X(R)
)

cannot be transitive. The other case
is when ρ(X0) = 2. Then, X0 endows a real conic bundle structure (X0, π0),
and Bir(X0) = Bir(X0, π0) (Theorem 6.1). Since the action of Bir(X0, π0) on the
basis of the conic bundle is finite (there are too much boundary points), neither
Aut

(

X0(R)
)

nor Aut
(

X(R)
)

may be transitive.

When #X(R) = 3, Aut
(

X(R)
)

is very transitive on connected components

(Theorem 1.2). Thus, Aut
(

X(R)
)

is very transitive if and only if for any home-

omorphism h : X(R) → X(R), there exists α ∈ Aut
(

X(R)
)

which permutes the
components of X(R) in the same way that h does. The possibilities when this
occur are described by Lemma 9.1. For example, when X is minimal, it admits
a minimal real conic bundle structure (X,π) (Theorem 3.5 and Proposition 3.7),
where π has 6 singular fibres. Then, Aut

(

X(R)
)

is very transitive if and only if

{α ∈ Aut(P1
R
) | α(I(X,π) = I(X,π)} acts transitively on the three intervals of

I(X,π). This is true in some special cases, but false in general. When X is not
minimal, Aut

(

X(R)
)

is very transitive for example when the three connected com-
ponents of X(R) are not homeomorphic 2-by-2, or when X is the blow-up of a
minimal surface Y with a very transitive group Aut

(

Y (R)
)

. �

Proof of Theorem 1.4. Let X,Y be two geometrically rational real surfaces, and
assume that #X(R) ≤ 2. We assume that X is birational to Y and that X(R) is
homeomorphic to Y (R), and prove that X(R) is isomorphic to Y (R).

Remark that all geometrically rational surfaces with connected real part are
birational to each others, thus in this case the statement follows from the unicity
of rational models [BH07]. We may thus assume that #X(R) = 2. Denote by
ηX : X → X0 and ηY : Y → Y0 birational morphisms to minimal real surfaces.

Since X0 and Y0 are birational, X0(R) and Y0(R) are isomorphic (Theorem 1.5),
so we may assume that X0 = Y0. The result now follows from Lemma 9.1. �

Proof of Corollary 1.6. If M is connected, and M is non-orientable or M is ori-
entable with genus g(M) ≤ 1, then it admits a unique geometrically rational model
by [BH07, Corollary 8.1]. Moreover, this model is in fact rational.

Conversely let M be a compact C∞-surface and assume that M admits a unique
geometrically rational modelX . The existence of such a model implies, by Commes-
satti’s theorem [Com14], that any connected component of M is non-orientable or is
orientable with genus g ≤ 1. The unicity means that for any geometrically rational
model Y of M , then Y (R) is isomorphic to X(R). In particular, this implies that
all geometrically rational models of M belong to a unique birational class. From
Theorem 6.1 and Proposition 3.8, this means that X is rational. It remains to
observe that when X is rational, X(R) is connected, and is either non-orientable
or orientable of genus ≤ 1. When X is minimal, this follows from Proposition 3.7.
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Then, blowing-up points on a surface either does nothing on the topology of the
real part (if the points blown-up are imaginary), or it gives a non-orientable real
part (if the points blown-up ar real). �

We finish by a result on non-density. In [KM08], it is proved that Aut
(

X(R)
)

is

dense in Diff
(

X(R)
)

when X is a geometrically rational surface with #X(R) = 1
(or equivalently when X is rational). In the cited paper, it is said that #X(R) = 2
is probably the only other case where the density holds. The following collect the
known results in this direction. The first two of them are new.

Proposition 9.2. Let X be a geometrically rational surface.

• If #X(R) ≥ 5, then Aut
(

X(R)
)

is not dense in Diff
(

X(R)
)

;

• if #X(R) = 3 or #X(R) = 4, then Aut
(

X(R)
)

is not dense in Diff
(

X(R)
)

for a general X, but could be dense in some special cases;

• if #X(R) = 1, then Aut
(

X(R)
)

is dense in Diff
(

X(R)
)

.

Proof. The case #X(R) = 1 is the main result of [KM08]. Assume from now on
that #X(R) ≥ 3, and denote by η : X → X0 a birational morphism to a minimal
real surface, and observe that #X0(R) = #X(R) ≥ 3. Let us discuss the two cases
for X0 given by Theorem 3.5.

Assume that X0 is a del Pezzo surface with ρ(X0) = 1. If the degree of
X0 is 1 then Bir(X0) is finite (Corollary 3.9), thus Aut

(

X(R)
)

cannot be dense.
If X0 has degree 2, then #X0(R) = 4 (Proposition 3.7), so #X(R) = 4 too.
Since Aut

(

X0(R)
)

= Aut(X0) is finite, Aut
(

X0(R)
)

cannot be dense (but maybe

Aut
(

X(R)
)

could be).
The other case is when ρ(X0) = 2. Then, X0 endows a real conic bundle structure

(X0, π0). If #X(R) = #X0(R) ≥ 4, then Bir(X0) = Bir(X0, π0) (Theorem 6.1),
so Aut

(

X(R)
)

is not dense. If #X0(R) = 3, then in general Aut
(

X0(R)
)

does not

exchanges the connected component of X0(R). Consequently, Aut
(

X0(R)
)

is not

dense (but maybe Aut
(

X(R)
)

could be, if the connected components of X(R) are
not homeomorphic). �
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