Geometrically rational real conic bundles and very transitive actions

Jérémy Blanc, Frédéric Mangolte

To cite this version:

Jérémy Blanc, Frédéric Mangolte. Geometrically rational real conic bundles and very transitive actions. Compositio Mathematica, 2009, Accepté. hal-00368891v1

HAL Id: hal-00368891 https://hal.science/hal-00368891v1

Submitted on 17 Mar 2009 (v1), last revised 5 Mar 2010 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GEOMETRICALLY RATIONAL REAL CONIC BUNDLES AND VERY TRANSITIVE ACTIONS

JÉRÉMY BLANC AND FRÉDÉRIC MANGOLTE

Abstract

We study very transitive groups of automorphisms of real geometrically rational surfaces with applications to the classification of real algebraic models of compact surfaces. We give an insight into the geometry of real parts which is a geometry between biregular and birational geometry's, and show several surprising facts about it.

MSC 2000: 14E07, 14P25, 14J26
Keywords: real algebraic surfaces, rational surfaces, geometrically rational surfaces, birational geometry, algebraic automorphisms, very transitive actions, Cremona transformations

1. Introduction

The aim of this paper is to study the action of birational maps on the set of real points of a real algebraic variety. It is worthwhile to point out a common terminological source of confusion about the meaning of what is a real algebraic variety, see also the enlightening introduction of Kol01. From the point of view of general algebraic geometry, a real variety X is a variety defined over the real numbers, and a morphism is understanding to be defined over all the geometric points. But in most of the texts in real algebraic geometry, the algebraic structure considered corresponds to the one of a neighbourhood of the real points $X(\mathbb{R})$ in the whole complex variety, which is rather the structure of a germ of an algebraic variety defined over \mathbb{R}.

From this point of view it is natural to view $X(\mathbb{R})$ as a compact submanifold of \mathbb{R}^{n} defined by real polynomial equations, where n is some natural integer. Likely, it is natural to say that a map $\psi: X(\mathbb{R}) \rightarrow Y(\mathbb{R})$ is an isomorphism if ψ is induced by a birational map $\Psi: X \rightarrow Y$ such that Ψ (respectively Ψ^{-1}) is regular at any point of $X(\mathbb{R})$ (respectively of $Y(\mathbb{R})$). In particular, $\psi: X(\mathbb{R}) \rightarrow Y(\mathbb{R})$ is a diffeomorphism. This notion corresponds to the notion of biregular maps defined in BCR98, 3.2.6] for the structure of real algebraic variety commonly used in the realm of real algebraic geometry.

Conversely, let M be a compact \mathcal{C}^{∞}-manifold. According to the Nash-Tognoli's theorem Tog73, every such M is diffeomorphic to a nonsingular real algebraic subset of \mathbb{R}^{m} for some m. Taking the Zariski closure in \mathbb{P}^{m} and applying Hironaka's resolution of singularities Hir64, we obtain that M is in fact diffeomorphic to the set of real points $X(\mathbb{R})$ of a nonsingular projective algebraic variety X defined over \mathbb{R}. Such a variety X is called an algebraic model of M. A natural question is, given M, to classify the algebraic models of M up to isomorphism.

There are several recent results about the question of algebraic models and their automorphism groups BH07, HM07, HM08, KM08. For example, when M is 2dimensional, and admits a real rational algebraic model, then this rational algebraic model is unique BH07. Otherwise speaking, if X and Y are two rational real algebraic surfaces, then $X(\mathbb{R})$ and $Y(\mathbb{R})$ are isomorphic if and only if there are homeomorphic. Moreover, in HM07, the proof has been shortened by showing that the automorphism group $\operatorname{Aut}(X(\mathbb{R}))$ has a very transitive action on $X(\mathbb{R})$ for any rational real algebraic surface X.

Definition 1.0. Let G be a topological group acting continuously on a topological space M. We say that two n-tuples of distinct points $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ are compatible if there exists an homeomorphism $\psi: M \rightarrow M$ such that $\psi\left(p_{i}\right)=q_{i}$ for each i. Then the action of G on M is said very transitive if for any pair of compatible n-tuples of points $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ of M, there exists an element $g \in G$ such that $g\left(p_{i}\right)=q_{i}$ for each i.

Recall that a real projective surface is rational if it is birationally equivalent to the real projective plane, and that it is geometrically rational if its complexification is birationally equivalent to the complex projective plane. The main goal of this paper is to complete the classification of real algebraic models of surfaces by dealing with the case of geometrically rational real projective surfaces which are non-rational.

To distinguish between the Zariski topology and the topology induced by the embedding of $X(\mathbb{R})$ as a topological submanifold of \mathbb{R}^{n}, we will call the later the Euclidean topology. In the sequel, topological notions like connectedness or compactness will always refer to the Euclidean topology. We will denote by $\# M$ the number of connected components of a compact manifold M.

The number of connected components is a birational invariant. In particular, if X is a rational projective surface, $X(\mathbb{R})$ is connected.

There is one case which shares many features with the rational case.
Theorem 1.1. Let X be a nonsingular geometrically rational real projective surface, and assume that $\# X(\mathbb{R})=2$. Then the action of the group $\operatorname{Aut}(X(\mathbb{R}))$ on $X(\mathbb{R})$ is very transitive.

When $\# X(\mathbb{R}) \geq 3$, the action of the group $\operatorname{Aut}(X(\mathbb{R}))$ is in general far from very transitive except for the case with three components for which a slight weakening of the definition works.

Let $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be two compatible n-tuples of points of M such that, for each i, p_{i} and q_{i} belong to the same connected component of M. We say that G is very transitive on connected components if for any such a pair, there exists an element $g \in G$ such that $g\left(p_{i}\right)=q_{i}$ for each i.

Theorem 1.2. Let X be a nonsingular geometrically rational real projective surface, and assume that $\# X(\mathbb{R})=3$. Then $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive on connected components.

When $\# X(\mathbb{R})>3$, either any element of $\operatorname{Aut}(X(\mathbb{R}))$ preserves a conic bundle structure (Theorem 6.1), or $\operatorname{Aut}(X(\mathbb{R})$) is countable (Corollary 3.9); thus $\operatorname{Aut}(X(\mathbb{R}))$ is not even 1-transitive on connected components. Indeed, we prove the following result in Section 9 .

Corollary 1.3. Let X be a nonsingular real projective surface. Then $\operatorname{Aut}(X(\mathbb{R}))$ has a very transitive action on $X(\mathbb{R})$ if and only if the following two conditions hold:
(1) X is geometrically rational, and
(2) $\# X(\mathbb{R}) \leq 2$ or $\# X(\mathbb{R})=3$ for a few particular X.

Theses results apply to the classification of algebraic models of real surfaces.
Theorem 1.4. Let X, Y be two nonsingular geometrically rational real projective surfaces, and assume that $\# X(\mathbb{R}) \leq 2$. Then $X(\mathbb{R})$ is isomorphic to $Y(\mathbb{R})$ if and only if X is birational to Y and $X(\mathbb{R})$ is homeomorphic to $Y(\mathbb{R})$. This is false in general when $\# X(\mathbb{R}) \geq 3$.

Recall that a nonsingular projective surface is minimal if any birational morphism to a nonsingular surface is an isomorphism. We have the following rigidity result about minimal geometrically rational real surfaces.

Theorem 1.5. Let X and Y be two minimal geometrically rational real surfaces, and assume that either X or Y is non-rational. Then, the following are equivalent:
(1) X and Y are birational.
(2) $X(\mathbb{R})$ and $Y(\mathbb{R})$ are isomorphic.

In the course of this work, we have classified the birational classes of real conic bundles and corrected an error contained in the literature (Theorem 6.1). As a consequence, we get that the only geometrically rational surfaces $X(\mathbb{R})$ for which equivalence by homeomorphism implies equivalence by isomorphism are the connected ones. In particular, this gives a converse statement to BH07, Corollary 8.1].

Corollary 1.6. Let M be a compact \mathcal{C}^{∞}-surface. Then M admits a unique geometrically rational model if and only if the following two conditions hold:
(1) M is connected, and
(2) M is non-orientable or M is orientable with genus $g(M) \leq 1$.

For M orientable with $g(M)>1$, there is no result close to some unicity. Thus we can ask what should be the simplest algebraic model for such an M. This question is studied in the forthcoming paper HM09.

Let us cite some recent works concerning automorphisms of real projective surfaces.

In RV05 , it is proved that $\operatorname{Aut}\left(\mathbb{P}^{2}(\mathbb{R})\right)$ is generated by linear automorphisms and certain real algebraic automorphisms of degree 5 .

In KM08 it is proved that for any rational surface $X, \operatorname{Aut}(X(\mathbb{R})) \subset \operatorname{Diff}(X(\mathbb{R}))$ is dense for the strong topology. For non geometrically rational surfaces, the group $\operatorname{Aut}(X(\mathbb{R}))$ cannot be dense; as for most of the non-rational geometrically rational surfaces. The cited paper left open the question of density only for some geometrically rational surfaces with $2,3,4$ or 5 connected components. One by-product of our results is the non-density for most of the surfaces with at least 3 connected components, see Proposition 9.2 .

The paper HM08 is devoted to the study of very transitive actions and unicity of models for some kind of singular rational surfaces.

Outline of the article. After giving some notation that will be used in the article in Section 2, we recall in Section 3 the classification of minimal geometrically rational real surfaces.

Section 4, which constitutes the technical heart of the paper, is devoted to conic bundles, and especially to the minimal ones. We provide representative elements of isomorphism classes, and explain the links between the conic bundles.

In Section 5 , we investigate real surfaces which admit two conic bundles. We show in particular that these are del Pezzo surfaces, and give some description of the possible conic bundles on these surfaces. Section 6 is devoted to the proof of Theorem 1.5. We firstly correct an existing inaccuracy in the literature, by proving that if two surfaces admitting a conic bundle structure are birational, the birational map may be chosen so that it preserves the conic bundle structures. Then, we strengthen this result to isomorphisms between real parts when the surfaces are minimal, before proving Theorem 1.5 .

In Section 7, we prove that if the real part of a minimal geometrically rational has 2 or 3 connected components, its automorphism group is very transitive on connected components. In Section 8 , we do the same work with non-minimal surfaces. We show how to separate infinitely near points, which is certainly one of the most counter-intuitive behaviour of our geometry, and was first observed in BH07 for rational surfaces. We also obtain the unicity of models in many cases.

Then, in Section 9, we use all the results of the previous sections, to give the proof of the main results stated in the introduction (except Theorem 1.5, proved in Section (6).

2. Notation

In the sequel, by a variety we will mean an algebraic variety, which may be real or complex (i.e. defined over \mathbb{R} or \mathbb{C}). If the converse is not expressively stated all our varieties will be projective and all our surfaces will be nonsingular and geometrically rational (i.e. rational over \mathbb{C}).

Recall that a real variety X may be identified with a pair (S, σ), where S is a complex variety and σ is an anti-holomorphic involution on S; by abuse of notation we will write $X=(S, \sigma)$. Then, $S(\mathbb{C})=X(\mathbb{C})$ denotes the set of complex points of the variety, and $X(\mathbb{R})=S(\mathbb{C})^{\sigma}$ is the set of real points. A point $p \in X$ may be real (if it belongs to $X(\mathbb{R})$), or imaginary (if it belongs to $X(\mathbb{C}) \backslash X(\mathbb{R})$). If $X(\mathbb{R})$ is non empty (which will be the case for all our surfaces), then $\operatorname{Pic}(X) \cong \operatorname{Pic}(S)^{\sigma}$, Sil89, I.(4.5)]. As we work only with regular surfaces (i.e. $q(X)=q(S)=0$), the Picard group is isomorphic to the Néron-Severi group, and $\rho(S)$ and $\rho(X)$ will denote respectively the rank of $\operatorname{Pic}(S)$ and $\operatorname{Pic}(X)$. Recall that $\rho(X) \leq \rho(S)$. We denote by $K_{X} \in \operatorname{Pic}(X)$ the canonical class, which may be identified with K_{S}. The intersection of two divisors of $\operatorname{Pic}(S)$ or $\operatorname{Pic}(X)$ will always denote the usual intersection in $\operatorname{Pic}(S)$.

We will use the classical notions of morphisms, rational maps, isomorphisms and automorphisms between real or complex varieties. Moreover, if X_{1} and X_{2} are two real varieties, an isomorphism between real parts $X_{1}(\mathbb{R}) \xrightarrow{\psi} X_{2}(\mathbb{R})$ is a birational $\operatorname{map} \psi: X_{1} \rightarrow X_{2}$ such that ψ (respectively ψ^{-1}) is regular at any point of $X_{1}(\mathbb{R})$ (respectively of $X_{2}(\mathbb{R})$). This endows $X_{1}(\mathbb{R})$ with a structure of a germ of algebraic variety defined over \mathbb{R} (as in BCR98, 3.2.6]), whereas the structure of X_{1} is those of an algebraic variety.

Considering geometry's on algebraic variety defined over \mathbb{R}, this notion of isomorphism between real parts gives an intermediate geometry in between the biregular geometry and the birational geometry. For example, let $\alpha: X_{1}(\mathbb{R}) \rightarrow X_{2}(\mathbb{R})$ be an isomorphism, and $\varepsilon: Y_{1} \rightarrow X_{1}, \eta: Y_{2} \rightarrow X_{2}$ be two birational maps. Then the $\operatorname{map} \psi:=\varepsilon^{-1} \alpha \eta$ is a well-defined birational map. Then ψ can be an isomorphism $Y_{1}(\mathbb{R}) \rightarrow Y_{2}(\mathbb{R})$ even if nor ε, nor η is an isomorphism between real parts. In the same vein, let $\alpha: X_{1}(\mathbb{R}) \rightarrow X_{2}(\mathbb{R})$ be an isomorphism, and let $\eta_{1}: Y_{1} \rightarrow X_{1}$ and $\eta_{2}: Y_{2} \rightarrow X_{2}$ be two birational morphisms which are the blow-ups of only real points (which may be proper or infinitely near points of X_{1} and X_{2}). If α sends the points blown-up by η_{1} on the points blown-up by η_{2}, then $\beta=\left(\eta_{2}\right)^{-1} \alpha \eta_{1}: Y_{1}(\mathbb{R}) \rightarrow Y_{2}(\mathbb{R})$ is an isomorphism.

Using Aut and Bir to denote respectively the group of automorphisms and birational self-maps of a variety, we have the following inclusions for the groups associated to $X=(S, \sigma)$:

By \mathbb{P}^{n} we mean the projective n-space, which may be complex or real depending on the context. It is unique as a complex variety - written $\mathbb{P}_{\mathbb{C}}^{n}$. However, as a real variety, \mathbb{P}^{n} may either be $\mathbb{P}_{\mathbb{C}}^{n}$ endowed with the standard anti-holomorphic involution, written $\mathbb{P}_{\mathbb{R}}^{n}$, or only when n is odd, $\mathbb{P}_{\mathbb{C}}^{n}$ with a special involution with no real points, written $\left(\mathbb{P}^{n}, \emptyset\right)$. To lighten notation, and since we never speak about $\left(\mathbb{P}^{1}, \emptyset\right)(\mathbb{R})$ we write $\mathbb{P}^{1}(\mathbb{R})$ for $\mathbb{P}_{\mathbb{R}}^{1}(\mathbb{R})$.

3. Minimal surfaces and minimal conic bundles

The aim of this section is to reduce our study of geometrically rational surfaces to surfaces which admits a minimal conic bundle structure.
Definition 3.1. A surface X is said to be minimal if any birational morphism from X to a (nonsingular) surface is an isomorphism.

If X is real, this is equivalent to say that there is no real (-1)-curve and no pair of disjoint conjugate imaginary (-1)-curves on X.

Let us precise the notion of conic bundle. Since we only deal with geometrically rational surfaces, the basis of our conic bundles is always geometrically rational.
Definition 3.2. A conic bundle is a pair (X, π) where X is a surface and π is a morphism $X \rightarrow \mathbb{P}^{1}$, where any fibre of π is isomorphic to a plane conic.

Note that if (X, π) is complex, a general fibre of π is isomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$, and a singular fibre consists of the union of two intersecting lines which are (-1)-curves of X (the double line is not allowed, the surface X being nonsingular). If (X, π) is real, a fibre over a real point of \mathbb{P}^{1} may be isomorphic to $\mathbb{P}_{\mathbb{R}}^{1}$ or to $\left(\mathbb{P}^{1}, \emptyset\right)$, or to a singular fibre with two irreducible components which can be two real components, or two conjugated imaginary components intersecting in 1 real point.

We will assume in the sequel that if X is real, then the basis is $\mathbb{P}_{\mathbb{R}}^{1}$ (and not $\left.\left(\mathbb{P}^{1}, \emptyset\right)\right)$. This avoids certain conic bundles with no real points.
Definition 3.3. If (X, π) and $\left(X^{\prime}, \pi^{\prime}\right)$ are two conic bundles, a birational map of conic bundles $\psi:(X, \pi) \rightarrow\left(X^{\prime}, \pi^{\prime}\right)$ is a birational map $\psi: X \rightarrow X^{\prime}$ such that there exist an automorphism α of \mathbb{P}^{1} with $\pi^{\prime} \circ \phi=\pi \circ \alpha$.

This notion specialises to birational morphisms and to automorphisms of conic bundles. We denote by $\operatorname{Aut}(X, \pi)$ (respectively $\operatorname{Bir}(X, \pi))$ the group of automorphisms (respectively birational self-maps) of the conic bundle (X, π). Observe that $\operatorname{Aut}(X, \pi)=\operatorname{Aut}(X) \cap \operatorname{Bir}(X, \pi)$. Similarly, when (X, π) is real we define by $\operatorname{Aut}(X(\mathbb{R}), \pi)$ the $\operatorname{group} \operatorname{Aut}(X(\mathbb{R})) \cap \operatorname{Bir}(X, \pi)$.

Definition 3.4. A conic bundle (X, π) is said to be minimal if any birational morphism of conic bundles $(X, \pi) \rightarrow\left(X^{\prime}, \pi^{\prime}\right)$ is an isomorphism.

Note that a real conic bundle (X, π) is minimal if and only if the two irreducible components of any real singular fibre of π are imaginary. Compare to the complex case where (X, π) is minimal if and only if there is no singular fibre.

Any geometrically rational real surface Y is obtained by a finite sequence of blow-ups (centred at a real point or at a pair of conjugate imaginary points) from a minimal real surface X. The following classical theorem describes the possibilities for the surface X.

Recall that a surface X is a del Pezzo surface if the anti-canonical divisor $-K_{X}$ is ample. The same definition applies for X real or complex.

Theorem 3.5. If X is a minimal geometrically rational real surface such that $X(\mathbb{R}) \neq \emptyset$, then one and exactly one of the following holds:
(1) X is rational: it is isomorphic to $\mathbb{P}_{\mathbb{R}}^{2}$, to the quadric $Q_{0}:=\{(x: y: z: t) \in$ $\left.\mathbb{P}_{\mathbb{R}}^{3} \mid x^{2}+y^{2}+z^{2}=t^{2}\right\}$, or to a real Hirzebruch surface $\mathbb{F}_{n}, n \neq 1$;
(2) X is a del Pezzo surface of degree 1 or 2 with $\rho(X)=1$;
(3) there exists a minimal conic bundle structure $\pi: X \rightarrow \mathbb{P}^{1}$ with an even number of singular fibres $2 r \geq 4$. Moreover, $\rho(X)=2$.

Remark 3.6. If (S, σ) is a minimal geometrically rational real surface such that $S^{\sigma}=\emptyset$, then S is an Hirzebruch surface of even index.

Proof. Follows from the work of Comessatti Com12, (see also Mani67, Isk79, Sil89. Chap. V], or Kol97).

Proposition 3.7 (Topology of the real part). In each case of the former theorem, we have:
(1) X is rational if and only if $X(\mathbb{R})$ is connected. When X is moreover minimal, then $X(\mathbb{R})$ is homeomorphic to one of the following: the real projective plane, the sphere, the torus, or the Klein bottle.
(2) When X is a minimal del Pezzo surface of degree 1, it satisfies $\rho(X)=1$, and $X(\mathbb{R})$ is the disjoint union of one real projective plane and 4 spheres. If X is a minimal del Pezzo surface of degree 2 with $\rho(X)=1$, then $X(\mathbb{R})$ is the disjoint union of 4 spheres.
(3) If X is non-rational and is endowed with a minimal conic bundle with $2 r$ singular fibres, then $X(\mathbb{R})$ is the disjoint union of r spheres, $r \geq 2$.
Proof. For the first assertion, see [Sil89, Corollary VI(6.5)], for the other ones, see e.g. Sil89, Chap. V] or Kol97].

The proofs of Corollary 1.3 and of Theorem 1.5 will split into the cases listed in Theorem 3.5. The rational case is treated in HM07]. The next proposition states the case when X is a minimal del Pezzo surface with $\rho=1$. The remaining part
of the paper is mainly devoted to the case when X is endowed with a minimal real conic bundle.

Proposition 3.8. Let X, Y be two minimal geometrically rational real surfaces. Assume that X is not rational and satisfy $\rho(X)=1$ (but $\rho(Y)$ may be equal to 1 or 2).
(1) If X is a del Pezzo surface of degree 1, then any birational map $X \rightarrow Y$ is an isomorphism. In particular,

$$
\operatorname{Aut}(X)=\operatorname{Aut}(X(\mathbb{R}))=\operatorname{Bir}(X)
$$

(2) If X is a del Pezzo surface of degree 2, X is birational to Y if and only X is isomorphic to Y. Moreover, all the base-points of the elements of $\operatorname{Bir}(X)$ are real, and

$$
\operatorname{Aut}(X)=\operatorname{Aut}(X(\mathbb{R})) \subsetneq \operatorname{Bir}(X)
$$

Proof. Assume the existence of a birational map $\psi: X \rightarrow Y$. If ψ is not an isomorphism, we decompose ψ into elementary links

$$
X=X_{0} \xrightarrow{\psi_{1}} X_{1} \xrightarrow[\rightarrow]{\psi_{2}} \cdots \xrightarrow[\rightarrow-1]{\psi_{n-1}} X_{n-1} \xrightarrow{\psi_{n}} X_{n}=Y
$$

as in Isk96, Theorem 2.5]. It follows from the description of the links of [sk96, Theorem 2.6] that for any link $\psi_{i}: X_{i-1} \rightarrow X_{i}, X_{i-1}$ and X_{i} are isomorphic del Pezzo surfaces of degree 2, and that ψ_{i} is equal to $\beta \eta \alpha \eta^{-1}$, where η is the blowup $X^{\prime} \rightarrow X_{i-1}$ of a real point of X_{i-1}, X^{\prime} is a del Pezzo surface of degree 1, $\alpha \in \operatorname{Aut}\left(X^{\prime}\right)$ is the Bertini involution of the surface, and $\beta: X_{i+1} \rightarrow X_{i}$ is an isomorphism.

Therefore, Y is isomorphic to X. Moreover, if X has degree $1, \psi$ is an isomorphism. If X has degree $2, \psi$ is decomposed into conjugates of Bertini involutions, so each of its base-points is real. This proves that if $\psi \in \operatorname{Aut}(X(\mathbb{R}))$ then $\psi \in \operatorname{Aut}(X)$. Furthermore, conjugates of Bertini involutions belong to $\operatorname{Bir}(X)$ but not to $\operatorname{Aut}(X)=\operatorname{Aut}(X(\mathbb{R}))$.
Corollary 3.9. Let X_{0} be a minimal non-rational geometrically rational real surface with $\rho\left(X_{0}\right)=1$, and let $\eta: X \rightarrow X_{0}$ be a birational morphism.

Then, $\operatorname{Aut}(X(\mathbb{R}))$ is countable. Moreover, if X_{0} is a del Pezzo surface of degree 1, then $\operatorname{Aut}(X(\mathbb{R}))$ is finite.
Proof. Without changing the isomorphism class of $X(\mathbb{R})$ we may assume that η is the blow-up of only real points (which may belong to X_{0} as proper or infinitely near points). Since any base-point of any element of $\operatorname{Bir}\left(X_{0}\right)$ is real (Proposition 3.8), the same is true for any element of $\operatorname{Bir}(X)$. In particular, $\operatorname{Aut}(X(\mathbb{R}))=\operatorname{Aut}(X)$. The group $\operatorname{Aut}(X)$ acts on $\operatorname{Pic}(X) \cong \mathbb{Z}^{n}$, where $n=\rho(X) \geq 1$. This action gives rise to an homomorphism $\theta: \operatorname{Aut}(X) \rightarrow \operatorname{GL}(n, \mathbb{Z})$. Let us prove that θ is injective. Indeed, if $\alpha \in \operatorname{Ker}(\theta)$, then α is conjugate by η to an element of $\alpha_{0} \in \operatorname{Aut}\left(X_{0}\right)$ which acts trivially on $\operatorname{Pic}\left(X_{0}\right)$. Writing S_{0} the complex surface obtaining by forgetting the real structure of X_{0}, S_{0} is the blow-up of 7 or 8 points in general position of $\mathbb{P}_{\mathbb{C}}^{2}$. Thus $\alpha_{0} \in \operatorname{Aut}\left(X_{0}\right) \subset \operatorname{Aut}\left(S_{0}\right)$ is the lift of an automorphism of $\mathbb{P}_{\mathbb{C}}^{2}$ which fixes 7 or 8 points, no 3 collinear, hence is the identity.

The morphism θ is injective, and this shows that $\operatorname{Aut}(X(\mathbb{R}))=\operatorname{Aut}(X)$ is countable. Moreover, if X_{0} is a del Pezzo surface of degree 1, then $\operatorname{Bir}\left(X_{0}\right)=\operatorname{Aut}\left(X_{0}\right)$ (by Proposition 3.8). Since $\operatorname{Aut}\left(X_{0}\right)$ is finite, $\operatorname{Aut}(X(\mathbb{R})) \subset \operatorname{Bir}(X)$ is also finite.

4. Exceptional conic bundles

Definition 4.1. If (X, π) is a real conic bundle, $I(X, \pi) \subset \mathbb{P}^{1}(\mathbb{R})$ denotes the image by π of the set $X(\mathbb{R})$ of real points of X.

It is well-known that $I(X, \pi)$ is the union of a finite number of intervals (which may be \emptyset or $\mathbb{P}^{1}(\mathbb{R})$), and that it determines the birational class of (X, π). (In the next section, we will prove that in fact $I(X, \pi)$ determines the birational class of X, and thus that $I(X)$ is well-defined.)

In this section, we study the real conic bundles, and especially the minimal ones. We prove that $I(X, \pi)$ also determines the equivalence class of $(X(\mathbb{R}), \pi)$ among the minimal conic bundles, and give the proof of Theorem 1.5 in the case of conic bundles (Corollary 4.17). Doing this, we will give proofs of the well-known facts on $I(X, \pi)$ cited above.

The following lemma gives some useful information about sections of real conic bundles. It is strongly inspired from the complex analogue, that can be found for example in Bla07, Section 3].
Lemma 4.2. Let (X, π) be a minimal real conic bundle.
Then, the number of singular fibres of π is even, and is equal to $8-\left(K_{X}\right)^{2}$. Denoting by $2 r \geq 0$ this number, the following hold:
(1) if $r>0$, then π admits no real section;
(2) if s is a section distinct from its conjugate \bar{s}, then $s^{2} \geq-r$ and $s \cdot \bar{s}=s^{2}+r$.

Proof. Let m be the number of singular fibres of π and denote by (S, π) the complex conic bundle obtained from (X, π) by forgetting the real structure of X.

If $m>0$, any section of π intersects exactly one component of each singular fibre. Since (X, π) is minimal, no such component can be real, thus there is no real section.

Let s be a section, and \bar{s} be its conjugate, and assume that $s \neq \bar{s}$ (which is always true if $m>0$). Let us denote by η the birational morphism that contracts one component in any singular fibre of π, which is the one which intersects \bar{s}. Then, η is defined over \mathbb{R} if and only if $m=0$ (and in this case it is an isomorphism). Moreover, $\eta:(S, \pi) \rightarrow \mathbb{F}_{n}$ is a birational morphism of conic bundles, for some integer $n \in \mathbb{N}$. Denote by $E \in \operatorname{Pic}\left(\mathbb{F}_{n}\right)$ the divisor of a section with self-intersection $-n$ (which is unique if $n \neq 0$), and by f the divisor of a general fibre, the curves $\eta(s)$ and $\eta(\bar{s})$ are respectively equivalent to $E+a f$ and $E+b f$, for some integers a and b.

We compute

$$
\begin{array}{rlclll}
\eta(s)^{2} & = & (E+a f)^{2} & & -n+2 a, \\
\eta(\bar{s})^{2} & = & (E+b f)^{2} & & -n+2 b, \\
\eta(s) \cdot \eta(\bar{s}) & = & (E+a f) \cdot(E+b f) & & -n+a+b,
\end{array}
$$

and find that $\eta(s) \cdot \eta(\bar{s})=1 / 2 \cdot\left(\eta(s)^{2}+\eta(\bar{s})^{2}\right)$.
Because the m irreducible curves contracted by η intersect \bar{s} transversally and do not intersect s, we have $\eta(s)^{2}=s^{2}, \eta(\bar{s})^{2}=\bar{s}^{2}+m$ and $\eta(s) \cdot \eta(\bar{s})=s \cdot \bar{s}$. Observe that $\bar{s}^{2}=s^{2}$, so $s \cdot \bar{s}=1 / 2 \cdot\left(2 s^{2}+m\right)$. This implies that m is even, equal to $2 r$ for some non-negative integer r and that $s \cdot \bar{s}=s^{2}+r$. Since $s \neq \bar{s}$, the number $s \cdot \bar{s}$ is non-negative, so $s^{2} \geq-r$.

Since η contracts exactly m curves and $\left(K_{\mathbb{F}_{n}}\right)^{2}=8, m$ equals $8-\left(K_{X}\right)^{2}$.

Denoting by $-n$ the minimal self-intersection of the sections in a minimal real conic bundle with $2 r$ singular fibres, the above lemma shows that $n \leq r$. According to Bla07. Lemma 3.3], we also have $1 \leq n$, and S is obtained by blowing up some points on \mathbb{F}_{1} or \mathbb{F}_{0}. The simplest cases of conic bundles, which are the most general, are those for which n is equal to 1 (in particular when X is a del Pezzo surface). The most special cases are when $n=r$, which are interesting as for any given union of a finite number of intervals V, there is only one such conic bundle (X, π) such that $I(X, \pi)=V$ (this will be proved in Lemma 4.8 below).
Definition 4.3. A conic bundle (X, π) is called an exceptional conic bundle if π admits a section of self-intersection $-r$ where $2 r$ is the number of singular fibres.

This definition was already introduced in [DI06] and Bla08]. If (S, π) is a minimal exceptional complex conic bundle with at least 4 singular fibres, $\operatorname{Aut}(S, \pi)=$ $\operatorname{Aut}(S)$ is a maximal algebraic subgroup of $\operatorname{Bir}(S)$ (Bla08).

Lemma 4.4. Let (X, π) be a minimal real conic bundle. Then, (X, π) is exceptional if and only if there exist two conjugate sections s and \bar{s} which do not intersect.

Proof. Denote by $2 r$ the number of singular fibres of π. According to Lemma 4.2 , for any imaginary section $s, s \cdot \bar{s}=0 \Leftrightarrow s^{2}=-r$.

If s and \bar{s} do not intersect then $s^{2}=-r$, whence (X, π) is exceptional.
Conversely, assume that s is a section of self-intersection $-r$. If s is imaginary, then $s \cdot \bar{s}=0$. Otherwise, $r=0$ (Lemma 4.2) and therefore $X=\left(\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}, \sigma\right)$ for a certain anti-holomorphic involution σ. We may thus choose another section s^{\prime} which is imaginary and which has self-intersection 0 .

Lemma 4.5. Let (X, π) be a real conic bundle. Then, there exists a minimal exceptional real conic bundle $\left(X^{\prime}, \pi^{\prime}\right)$ and a birational map of conic bundles

$$
(X, \pi) \longrightarrow\left(X^{\prime}, \pi^{\prime}\right) .
$$

Proof. We may assume that (X, π) is minimal. Take a section s of π. If s intersects its conjugate \bar{s} into a real point p (respectively into a pair of imaginary points q_{1} and q_{2}), then blow-up the point p (respectively q_{1} and q_{2}), and contract the strict transform of the fibre of the points blown-up. Continuing this way, we obtain a birational map of conic bundles $\phi:(X, \pi) \rightarrow\left(X^{\prime}, \pi^{\prime}\right)$ such that $\left(X^{\prime}, \pi^{\prime}\right)$ is minimal and $\phi(s)$ does not intersect its conjugate. Applying Lemma 4.4, $\left(X^{\prime}, \pi^{\prime}\right)$ is an exceptional conic bundle.

The following construction gives a normal form for the exceptional conic bundles associated to a given finite union of intervals bounded by an even number of points. Lemma 4.7 asserts the existence, and Lemma 4.8 provides the unicity.

Construction 4.6. Let $J=\left(J_{1}, J_{2}\right)$ be a pair of two disjoint finite subsets of \mathbb{R} with the same number of elements (i.e. $J_{1}, J_{2} \subset \mathbb{R}, J_{1} \cap J_{2}=\emptyset$ and $\# J_{1}=\# J_{2}$).

We associate to J three homogeneous polynomials P_{1}, P_{2}, P, a set $V_{J} \subset \mathbb{P}^{1}(\mathbb{R})$, three maps $\eta_{J}, \sigma_{J}, \alpha_{J}$, a complex conic bundle $\left(S_{J}, \pi_{J}\right)$ and a real conic bundle $\left(X_{J}, \pi_{J}\right)$. The polynomials are the following:

$$
\begin{aligned}
P_{1}\left(x_{1}, x_{2}\right) & =\prod_{a \in J_{1}}\left(x_{1}-a x_{2}\right) \\
P_{2}\left(x_{1}, x_{2}\right) & =\prod_{a \in J_{2}}\left(x_{1}-a x_{2}\right) \\
P\left(x_{1}, x_{2}\right) & =P_{1}\left(x_{1}, x_{2}\right) \cdot P_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

The set V_{J} equals $\left\{\left(x_{1}: x_{2}\right) \mid P\left(x_{1}, x_{2}\right) \leq 0\right\} \subset \mathbb{P}^{1}(\mathbb{R})$, the map $\eta_{J}: S_{J} \rightarrow \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$, is the blow-up of the points

$$
\left\{((x: 1),(0: 1)) \mid x \in J_{1}\right\} \cup\left\{((x: 1),(1: 0)) \mid x \in J_{2}\right\}
$$

the morphism π_{J} is $\mathrm{pr}_{1} \circ \eta_{J}$. The maps α_{J} and σ_{J} are self-maps of S_{J}, which are the lifts by η_{J} of the following self-maps of $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$.

$$
\begin{aligned}
& \alpha_{J}^{\prime}:\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \rightarrow\left(\left(x_{1}: x_{2}\right),\left(-y_{2} \cdot P_{1}\left(x_{1}, x_{2}\right): y_{1} \cdot P_{2}\left(x_{1}, x_{2}\right)\right),\right. \\
& \sigma_{J}^{\prime}:\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \rightarrow\left(\left(\overline{x_{1}}: \overline{x_{2}}\right),\left(-\overline{y_{2}} \cdot P_{1}\left(\overline{x_{1}}, \overline{x_{2}}\right): \overline{y_{1}} \cdot P_{2}\left(\overline{x_{1}}, \overline{x_{2}}\right)\right) .\right.
\end{aligned}
$$

The following lemma shows that σ_{J} is an anti-holomorphic involution of S_{J}. We write $X_{J}=\left(S_{J}, \sigma_{J}\right)$ the corresponding real surface.

Lemma 4.7. Let us take the notation of Construction 4.6. Then, α_{J} and σ_{J} are respectively an holomorphic and an anti-holomorphic involution of $\left(S_{J}, \pi_{J}\right)$. The real conic bundle $\left(X_{J}, \pi_{J}\right)$ (with $X_{J}=\left(S_{J}, \sigma_{J}\right)$) is minimal and exceptional, and satisfies $I\left(X_{J}, \pi_{J}\right)=V_{J}$. Moreover, the singular fibres of π_{J} are the fibres of $(x: 1)$, $x \in J_{1} \cup J_{2}$.

Proof. Denote by r the number of elements of J_{1} (which is also the number of elements of J_{2}). The map α_{J}^{\prime} is a birational involution of $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$, which is defined over \mathbb{R}, and whose base-points are precisely the $2 r$ points $\{((x: 1),(0: 1)) \mid x \in$ $\left.J_{1}\right\} \cup\left\{((x: 1),(1: 0)) \mid x \in J_{2}\right\}$ blown-up by η_{J}. Since α_{J}^{\prime} is an involution and η_{J} is the blow-up of all of its base-points, $\alpha_{J}=\eta^{-1} \alpha_{J}^{\prime} \eta$ is an automorphism of S, which belongs to $\operatorname{Aut}(S, \pi)$.

The conic bundle $\left(S_{J}, \pi_{J}\right)$ is exceptional, since the strict transform of the sections $\mathbb{P}^{1} \times(0: 1)$ and $\mathbb{P}^{1} \times(1: 0)$ have self-intersection $-r$. Moreover, its singular fibres correspond to the fibres of the points blown-up by η_{J}, so the fibres of the points $(x: 1) \in \mathbb{P}_{\mathbb{R}}^{1}, x \in J_{1} \cap J_{2}$. Denote by τ the lift by η_{J} of the usual anti-holomorphic involution $\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \mapsto\left(\left(\overline{x_{1}}: \overline{x_{2}}\right),\left(\overline{y_{1}}: \overline{y_{2}}\right)\right)$. Since $\alpha_{J} \in \operatorname{Aut}(S, \pi)$ commutes with τ, the map $\sigma_{J}=\alpha_{J} \tau=\tau \alpha_{J}$ is an anti-holomorphic involution of S. Since $X_{J}=\left(S_{J}, \sigma_{J}\right)$ and σ_{J} exchanges the two components of any singular fibre, the real conic bundle $\left(X_{J}, \pi_{J}\right)$ is minimal, and is exceptional as $\left(S_{J}, \pi_{J}\right)$ is.

By construction, σ_{J} is the lift by η_{J} of the map σ_{J}^{\prime} described in Construction 4.6. Let $\left(x_{1}: x_{2}\right)$ be a point of $\mathbb{P}_{\mathbb{R}}^{1}$; we want to prove that the fibre $f=\pi^{-1}\left(\left(x_{1}: x_{2}\right)\right)$ contains a real point (i. e. a point fixed by σ_{J}) if and only if $\left(x_{1}: x_{2}\right) \in V_{J}$, which is equivalent to say that $P\left(x_{1}, x_{2}\right) \leq 0$. If $\left(x_{1}: x_{2}\right)=\left(a_{i}: 1\right) \in V$ for some i, then f is singular, and its unique singular point is real. Otherwise, η restricts to an isomorphism from f to $\eta(f)$. It follows that f has a real point if and only if there exists $\left(y_{1}: y_{2}\right) \in \mathbb{P}_{\mathbb{C}}^{1}$ such that $\left(y_{1}: y_{2}\right)=\left(-\overline{y_{2}} P_{1}\left(x_{1}, x_{2}\right): \overline{y_{1}} P_{2}\left(x_{1}, x_{2}\right)\right)$, which is equivalent to $y_{1} \overline{y_{1}} P_{2}\left(x_{1}, x_{2}\right)=-y_{2} \overline{y_{2}} P_{1}\left(x_{1}, x_{2}\right)$. This is possible if and only if $P\left(x_{1}, x_{2}\right)=P_{1}\left(x_{1}, x_{2}\right) \cdot P_{2}\left(x_{1}, x_{2}\right) \leq 0$, which means that $\left(x_{1}: x_{2}\right) \in V_{J}$. This achieves to prove the equality $I(X, \pi)=V_{J}$.

In the following, Assertion (1) is well-known, whereas the other assertions (and in particular (4)) are new, and are one of the basic ingredients in the proof of the remaining results of the section.

Lemma 4.8. Let $\left(Y, \pi_{Y}\right)$ be a minimal exceptional real conic bundle.
(1) $I\left(Y, \pi_{Y}\right)$ is the union of a finite union of closed intervals. The boundary points of the intervals correspond to the singular fibres of π_{Y}.
(2) If π_{Y} has no singular fibre, $\left(Y, \pi_{Y}\right)$ is either isomorphic to $\left(\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}, \mathrm{pr}_{1}\right)$ or to $\left(\mathbb{P}_{\mathbb{R}}^{1} \times\left(\mathbb{P}^{1}, \emptyset\right), \mathrm{pr}_{1}\right)$.
(3) If π_{Y} has at least one singular fibre, it is isomorphic to $\left(X_{J}, \pi_{J}\right)$, for some $J=\left(J_{1}, J_{2}\right)$, as in Construction 4.6.
(4) If $\left(Z, \pi_{Z}\right)$ is a minimal exceptional real conic bundle with $I\left(Z, \pi_{Z}\right)=I\left(Y, \pi_{Y}\right)$, there exists an isomorphism $\phi:\left(Z, \pi_{Z}\right) \rightarrow\left(Y, \pi_{Y}\right)$ satisfying $\pi_{Z}=\pi_{Y} \circ \phi$ (i.e. ϕ acts trivially on the basis).

Proof. Denote by $2 r$ the number of singular fibres of π_{Y} (which is even, since $\left(Y, \pi_{Y}\right)$ is minimal, see Lemma 4.2).

Assume first that $r=0$, which implies that $\left(Y, \pi_{Y}\right)$ is a real form of $\left(\mathbb{P}_{\mathbb{C}}^{1} \times\right.$ $\left.\mathbb{P}_{\mathbb{C}}^{1}, \operatorname{pr}_{1}\right)$, hence is isomorphic to $\left(\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}, \operatorname{pr}_{1}\right)$ or to $\left(\mathbb{P}_{\mathbb{R}}^{1} \times\left(\mathbb{P}^{1}, \emptyset\right), \mathrm{pr}_{1}\right)$; this proves Assertion (1) and (2).

Assume now that $r>0$, and denote by s and \bar{s} two conjugate imaginary sections of π_{Y} of self-intersection $-r$. Let us write $\pi=\gamma \circ \pi_{Y}$, for some $\gamma \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$, such that $\pi^{-1}((1: 0))$ is not a singular fibre. The singular fibres of π are above the points $\left(a_{1}: 1\right), \ldots,\left(a_{2 r}: 1\right)$, where the a_{i} are distinct real numbers. Let $J=\left(J_{1}, J_{2}\right)$ be a partition of $\left\{a_{1}, \ldots, a_{2 r}\right\}$ into two sets of r points. Let η_{Y} be the birational morphism (not defined over \mathbb{R}) which contracts the component of $\pi^{-1}\left(\left(a_{i}: 1\right)\right)$ which intersects s if $a_{i} \in J_{1}$ and which intersects \bar{s} if $a_{i} \in J_{2}$. Then, the images of s and \bar{s} are two sections of self-intersection 0 . Thus we may assume that η_{Y} is a birational morphism of conic bundles $(S, \pi) \rightarrow\left(\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}, \mathrm{pr}_{1}\right)$, where S is the complex surface obtained by forgetting the real structure of Y, pr_{1} is the projection on the first factor, and where $\eta_{Y}(s)$ and $\eta_{Y}(\bar{s})$ are equal to $\mathbb{P}_{\mathbb{C}}^{1} \times(0: 1)$ and $\mathbb{P}_{\mathbb{C}}^{1} \times(1: 0)$.

Using the notation of Construction 4.6 associated to $J=\left(J_{1}, J_{2}\right), \eta_{Y}$ is the blow-up of the $2 r$ points of $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$, which are exactly the points blown-up by $\eta_{J}: S_{J} \rightarrow \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$. We may therefore assume that $Y=\left(S_{J}, \sigma_{Y}\right)$, for some antiholomorphic involution σ_{Y} on S_{J}, and that $\pi=\pi_{J}$ and $\eta_{Y}=\eta_{J}$.

The map $\sigma_{Y} \circ \sigma_{J}^{-1}$ belongs to $\operatorname{Aut}\left(S_{J}, \pi_{J}\right)$ and acts trivially on the basis, since σ_{J} and σ_{Y} have the same action on the basis. Moreover, $\sigma_{Y} \circ \sigma_{J}^{-1}$ preserves any curve contracted by η_{J} and is therefore the lift by η_{J} of $\beta:\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \mapsto$ $\left(\left(x_{1}: x_{2}\right),\left(\mu y_{1}: y_{2}\right)\right)$ for some $\mu \in \mathbb{C}^{*}$. It follows that $\eta_{J} \circ \sigma_{Y} \circ \eta_{J}^{-1}=\beta \circ \sigma_{J}^{\prime}$ is the map

$$
\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \rightarrow\left(\left(\overline{x_{1}}: \overline{x_{2}}\right),\left(-\mu \cdot \overline{y_{2}} P_{1}\left(\overline{x_{1}}, \overline{x_{2}}\right): \overline{y_{1}} P_{2}\left(\overline{x_{1}}, \overline{x_{2}}\right)\right)\right) .
$$

Since σ_{Y} is an involution, μ belongs to \mathbb{R}. Then, for any point $\left(x_{1}: x_{2}\right) \in \mathbb{P}_{\mathbb{R}}^{1}$, the fibre $\pi^{-1}\left(\left(x_{1}: x_{2}\right)\right)$ contains points fixed by σ_{Y} if and only if there exist $\left(y_{1}: y_{2}\right) \in \mathbb{P}_{\mathbb{C}}^{1}$ such that $y_{1} \overline{y_{1}} P_{2}\left(x_{1}, x_{2}\right)=-y_{2} \overline{y_{2}} \cdot \mu P_{1}\left(x_{1}, x_{2}\right)$. Consequently, $I(Y, \pi)$ is equal to V_{J} if $\mu>0$ and to the adherence of $\mathbb{P}_{\mathbb{R}}^{1} \backslash V_{J}$ if $\mu<0$. This proves (1).

Moreover, this also shows that $I(Y, \pi)$ is not the whole $\mathbb{P}^{1}(\mathbb{R})$. We could thus have chosen from the beginning the map γ so that $(0: 1) \notin I(Y, \pi)$. This implies that $I(Y, \pi)=V_{J}$ and $\mu>0$. Choosing $\lambda \in \mathbb{C}^{*}$ with $\lambda \cdot \bar{\lambda}=\mu$ and writing $\gamma:\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \mapsto\left(\left(x_{1}: x_{2}\right),\left(\lambda y_{1}: y_{2}\right)\right)$, we get $\beta \circ \sigma_{J}^{\prime}=\gamma \circ \sigma_{J}^{\prime} \circ \gamma^{-1}$. It follows that $\eta_{J}^{-1} \circ \gamma \circ \eta_{J} \in \operatorname{Aut}(S, \pi)$ conjugates σ_{J} to $\sigma_{Y}=\eta_{J}^{-1} \circ\left(\beta \sigma_{J}\right) \circ \eta_{J}$, and therefore induces an isomorphism of real conic bundles $\left(X_{J}, \pi_{J}\right) \rightarrow(Y, \pi)$, which is the identity on the basis.

In particular, $\left(X_{J}, \pi_{J}\right)$ is isomorphic to (Y, π) and thus to $\left(Y, \pi_{Y}\right)$, and gives Assertion (3). Moreover, if $\left(Z, \pi_{Z}\right)$ is another conic bundle with $I\left(Z, \pi_{Z}\right)=I(Y, \pi)$, the above description also yields the existence of an isomorphism $\left(X_{J}, \pi_{J}\right) \rightarrow(Z, \gamma \circ$ $\left.\pi_{Z}\right)$ which acts trivially on the basis. Therefore, there exists an isomorphism $(Z, \gamma \circ$ $\left.\pi_{Z}\right) \rightarrow(Y, \pi)$ which acts trivially on the basis, and thus the same is true for $\left(Z, \pi_{Z}\right)$ and (Y, π_{Y}), so Assertion (4) is proved.

It remains to proves (4) when $r=0$. Since $I\left(Z, \pi_{Z}\right)$ is equal to (Y, π), it is equal to \emptyset or $\mathbb{P}_{\mathbb{R}}^{1}$, hence the number of singular fibres of π_{Z} is 0 by (3) (or using (1)). This means that $\left(Z, \pi_{Z}\right)$ is a real form of $\left(\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}, \mathrm{pr}_{1}\right)$. Either (Y, π) and $\left(Z, \pi_{Z}\right)$ are both isomorphic to $\left(\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}, \mathrm{pr}_{1}\right)$ or to $\left(\mathbb{P}_{\mathbb{R}}^{1} \times\left(\mathbb{P}^{1}, \emptyset\right), \mathrm{pr}_{1}\right)$. Assertion (4) is obvious in both cases.

Lemma 4.9. Let (X, π) be a minimal exceptional real conic bundle. The image of the homomorphism $\theta: \operatorname{Aut}(X, \pi) \rightarrow \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ given by the action on the base is equal to

$$
\left\{\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right) \mid \alpha(I(X, \pi))=I(X, \pi)\right\} .
$$

Proof. Any element of $\beta \in \operatorname{Aut}(X, \pi)$ preserves $X(\mathbb{R})$, thus $\theta(\beta)$ preserves $\pi(X(\mathbb{R}))=$ $I(X, \pi)$.

Conversely, let $\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ be a non-trivial element such that $\alpha(I(X, \pi))=$ $I(X, \pi)$. It remains to prove the existence of $\beta \in \operatorname{Aut}(X, \pi)$ such that $\theta(\beta)=\alpha$. If π has no singular fibre, this is obvious since (X, π) is a real form of $\left(\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}, \operatorname{pr}_{1}\right)$. Otherwise, there are $2 r$ singular fibres, with $r>0$, which correspond to the $2 r$ boundary points of $I(X, \pi)$ (Lemma 4.8); we denote by $F \subset I(X, \pi)$ this set of points, which is invariant by α.

Let us prove that we may decompose F into two sets of r points, each one being invariant by α. There are three kinds of non-trivial elements of $\operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$:
(1) translations (elements with one fixed point),
(2) rotations (elements with two fixed points, both imaginary), and
(3) symmetries (elements with two real fixed points).

Since α preserves a finite set of at least 2 points, α is not a translation. If α is a rotation it has finite order n, and all its orbits on $\mathbb{P}^{1}(\mathbb{R})$ have order n. Thus, F decomposes into m orbits of n points, with $m n=2 r$. If n is even, we decompose each orbit in two sets, and if m is even, we decompose the set of orbits into two sets. The remaining case is when α is a symmetry. In well-chosen coordinates, α is the map $(x: y) \mapsto(\lambda x: y)$ for some $\lambda \in \mathbb{R}^{*}$. If $\lambda \neq-1$, then α has infinite order, hence $F=\{(0: 1),(1: 0)\}$, which decomposes into two sets of one point. If $\lambda=-1$, then $(0: 1)$ and $(1: 0)$ are not boundary points; we decompose F into two sets, the points $(x: y)$ with $x / y>0$ and the others.

Now, $F=F_{1} \cup F_{2}$, where each set F_{i} is invariant by α. Let us choose $\gamma \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ such that (1:0) $\notin \gamma(I(X, \pi))=I(X, \gamma \pi)$, so the set $\gamma(I(X, \pi))$ may be viewed as a subset of $\left\{(x: 1) \in \mathbb{P}^{1}(\mathbb{R}) \mid x \in \mathbb{R}\right\}$. The sets $\gamma\left(F_{1}\right)$ and $\gamma\left(F_{2}\right)$ correspond therefore to two sets J_{1}, J_{2} of r real numbers. Using the notation of Construction 4.6 with $J=\left(J_{1}, J_{2}\right)$, there exists an isomorphism $\phi:\left(X_{J}, \pi_{J}\right) \rightarrow(X, \gamma \pi)$ such that $\pi_{J}=\gamma \pi \circ \phi\left(\right.$ Lemma 4.8). Write $\delta=\gamma \alpha \gamma^{-1}=\left(x_{1}: x_{2}\right) \rightarrow\left(a x_{1}+b x_{2}: c x_{1}+d x_{2}\right)$, for some real numbers a, b, c, d with $a d-b c \neq 0$. The map δ leaves invariant the roots of $P_{i}\left(x_{1}, x_{2}\right)=\prod_{a \in J_{i}}\left(x_{1}-a x_{2}\right)$, for each i, so $P_{i}\left(a x_{1}+b x_{2}, c x_{1}+d x_{2}\right)=\chi_{i} \cdot P_{i}\left(x_{1}, x_{2}\right)$, for some $\chi_{i} \in \mathbb{R}^{*}$. Moreover, since δ leaves V_{J} invariant, $\chi_{1} \cdot \chi_{2}$ is positive. Denote
by ψ^{\prime} the following automorphism of $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$:

$$
\psi^{\prime}:\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \rightarrow\left(\left(a x_{1}+b x_{2}: c x_{1}+d x_{2}\right),\left(\lambda y_{1}: y_{2}\right)\right)
$$

where $\lambda \in \mathbb{R}$ is such that $\lambda^{2}=\chi_{2} / \chi_{1}$. Then, ψ^{\prime} commutes with σ_{J}^{\prime}. Recall that σ_{J}^{\prime} is the following self-map of $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$

$$
\sigma_{J}^{\prime}:\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \rightarrow\left(\left(\overline{x_{1}}: \overline{x_{2}}\right),\left(-\overline{y_{2}} \cdot P_{1}\left(\overline{x_{1}}, \overline{x_{2}}\right): \overline{y_{1}} \cdot P_{2}\left(\overline{x_{1}}, \overline{x_{2}}\right)\right)\right.
$$

Since $\eta_{J}: S_{J} \rightarrow \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$ is the blow-up of the points $\left\{((x: 1),(0: 1)) \mid x \in J_{1}\right\} \cup$ $\left\{((x: 1),(1: 0)) \mid x \in J_{2}\right\}$, which are preserved by ψ^{\prime}, this one lifts to an automorphism $\psi=\eta_{J}^{-1} \psi^{\prime} \eta_{J}$ of $\left(S_{J}, \pi_{J}\right)$. Moreover, ψ^{\prime} commutes with σ_{J}^{\prime}, so ψ belongs to $\operatorname{Aut}\left(X_{J}, \pi_{J}\right)$. It remains to choose $\beta=\phi \psi \phi^{-1} \in \operatorname{Aut}(X, \gamma \pi)=\operatorname{Aut}(X, \pi)$. Since $\pi_{J} \psi=\delta \pi_{J}=\left(\gamma \alpha \gamma^{-1}\right) \circ \pi_{J}$ and $\pi_{J}=\gamma \pi \phi$, we have $\gamma \pi \phi \psi=\gamma \alpha \pi \phi$. This proves that $\pi \beta=\alpha \pi$, which means that $\theta(\beta)=\alpha$.

Lemma 4.10. Let us take the notation of Construction 4.6, for some $J=\left(J_{1}, J_{2}\right)$. Denote by A the real affine hypersurface of \mathbb{R}^{3} given by

$$
y^{2}+z^{2}=-\prod_{a \in J_{1} \cup J_{2}}\left(x-a_{i}\right)
$$

then the map $\psi:(x, y, z) \rightarrow\left(\eta_{J}\right)^{-1}\left(\left((x: 1),\left(y-\mathbf{i} z: \prod_{a \in J_{2}}(x-a)\right)\right)\right.$ is an embedding $A \rightarrow X_{J}$ defined over \mathbb{R} which induces an isomorphism

$$
A(\mathbb{R}) \rightarrow X_{J}(\mathbb{R})
$$

Proof. Denote by $B \subset \mathbb{C}^{3}$ the affine hypersurface of equation $y^{2}+z^{2}=-P(x, 1)$ (recall that $P(x, 1)=\prod_{a \in J_{1} \cup J_{2}}\left(x-a_{i}\right)$), and by $\pi_{B}: B \rightarrow \mathbb{C}$ the map $(x, y, z) \mapsto x$. Let $A=\left(B, \sigma_{B}\right)$, where σ_{B} sends (x, y, z) onto $(\bar{x}, \bar{y}, \bar{z})$. Denote by $\theta: B \rightarrow \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$ the map that sends (x, y, z) onto $\left((x: 1),\left(y-\mathbf{i} z: P_{2}(x, 1)\right)\right)$ if $P_{2}(x, 1) \neq 0$ and onto $\left((x: 1),\left(-P_{1}(x, 1): y+\mathbf{i} z\right)\right)$ if $P_{1}(x, 1) \neq 0$. Then θ is a birational morphism, and θ^{-1} sends $\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right)$ on

$$
\left(\frac{x_{1}}{x_{2}}, \frac{1}{2}\left(\frac{y_{1}}{y_{2}} P_{2}\left(x_{1}, x_{2}\right)-\frac{y_{2}}{y_{1}} P_{1}\left(x_{1}, x_{2}\right)\right), \frac{\mathbf{i}}{2}\left(\frac{y_{1}}{y_{2}} P_{2}\left(x_{1}, x_{2}\right)+\frac{y_{2}}{y_{1}} P_{1}\left(x_{1}, x_{2}\right)\right)\right) .
$$

Observe that $\sigma_{J}^{\prime} \theta=\sigma_{B} \theta$. In consequence, $\psi=\left(\eta_{J}\right)^{-1} \circ \theta$ is a real birational $\operatorname{map} A \rightarrow X_{J}$.

Moreover, ψ is an isomorphism from A to the complement in S_{J} of the union of $\pi^{-1}((1: 0))$ and the pull-back by η of $\mathbb{P}^{1} \times(0: 1)$ and $\mathbb{P}^{1} \times(1: 0)$. Indeed let $x_{0} \in \mathbb{C}$. If $x_{0} \in \mathbb{C}$ is such that $P\left(x_{0}, 1\right) \neq 0$, then θ restricts to an isomorphism from $\pi_{B}^{-1}\left(x_{0}\right)$ to $\left\{\left(\left(x_{0}: 1\right),\left(y_{1}: y_{2}\right)\right) \in \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \mid y_{1} y_{2} \neq 0\right\} \cong \mathbb{C}^{*}$. If $P\left(x_{0}, 1\right)=0$, then $x_{0} \in J_{1} \cup J_{2}$, and the fibre $\pi_{B}^{-1}\left(x_{0}\right)$ consists of two lines of \mathbb{C}^{2} which intersect, given by $y=\mathbf{i} z$ and $y=-\mathbf{i} z$. If $x_{0} \in J_{1}$, then the line $y+\mathbf{i} z=0$ is sent isomorphically by θ onto the fibre $\left\{\left(\left(x_{0}: 1\right),\left(y_{1}: y_{2}\right)\right) \in \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \mid y_{2} \neq 0\right\} \cong \mathbb{C}^{*}$, and the line $y-\mathbf{i} z$ is contracted on the point $\left(\left(x_{0}: 1\right),(0: 1)\right)$. The map ψ sends thus isomorphically $\pi_{B}^{-1}\left(x_{0}\right)$ onto the fibre $\pi^{-1}\left(\left(x_{0}: 1\right)\right)$ minus the two points corresponding to the two sections of self-intersection $-r$. The situation when $x_{0} \in J_{2}$ is similar. Finally, we see that ψ induces an isomorphism between B and the complement in S_{J} of the two sections of self-intersection $-r$ (the strict transforms by η^{-1} of $\mathbb{P}^{1} \times(0: 1)$ and $\left.\mathbb{P}^{1} \times(1: 0)\right)$, and the fibre of $\pi^{-1}((1: 0))$. Since these 3 curves do not have any real point, ψ induces an isomorphism $A(\mathbb{R}) \rightarrow X_{J}(\mathbb{R})$.

Corollary 4.11. Let (X, π) be a minimal exceptional real conic bundle. There exists an affine real variety $A \subset X$ isomorphic to the affine surface of \mathbb{R}^{3} given by

$$
y^{2}+z^{2}=Q(x),
$$

where Q is a real polynomial with only simple roots, all real. Moreover, $I(X, \pi)$ is the closure of $\left\{(x: 1) \in \mathbb{P}_{\mathbb{R}}^{1} \mid Q(x) \geq 0\right\}$, and $\left.\pi\right|_{A}$ is the projection $(x, y, z) \mapsto x$.
Proof. Denote by $2 r$ the number of singular fibres of π. If $r>0$, then (X, π) is isomorphic to $\left(X_{J}, \pi_{J}\right)$ for some $J=\left(J_{1}, J_{2}\right)$ (Lemma 4.8); the result follows then from Lemma 4.10. If $r=0,(X, \pi)$ is isomorphic to $\left(\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}, \mathrm{pr}_{1}\right)$ or to $\left(\mathbb{P}_{\mathbb{R}}^{1} \times\left(\mathbb{P}^{1}, \emptyset\right), \mathrm{pr}_{1}\right)$ (Lemma 4.8). Taking $Q(x)=1$ or $Q(x)=-1$ gives the result.

We can now deduce the following important result, due to Comessatti Com12. See also Kol97, Theorem 4.5].
Proposition 4.12. Let (X, π) and $\left(X^{\prime}, \pi^{\prime}\right)$ be two real conic bundles, and let $\alpha \in$ $\operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$. Then, the following are equivalent.
(1) There exists a birational map $\varphi: X \rightarrow X^{\prime}$ such that $\pi^{\prime} \varphi=\alpha \pi$.
(2) $\alpha(I(X, \pi))=I\left(X^{\prime}, \pi^{\prime}\right)$.

In particular, (X, π) and $\left(X^{\prime}, \pi^{\prime}\right)$ are birational if and only if there exists an automorphism of $\mathbb{P}_{\mathbb{R}}^{1}$ that sends $I(X, \pi)$ on $I\left(X^{\prime}, \pi^{\prime}\right)$.
Proof. (1) $\Rightarrow(2)$: The map φ restricts to an isomorphism $X \backslash F \rightarrow X^{\prime} \backslash F^{\prime}$ where F and F^{\prime} consist of finite sets of fibres of π and π^{\prime}. In consequence, α sends $I(X, \pi) \backslash \pi(F)$ on $I\left(X^{\prime}, \pi^{\prime}\right) \backslash \pi\left(F^{\prime}\right)$. Since $\pi(F)$ and $\pi\left(F^{\prime}\right)$ are finite, α sends $I(X, \pi)$ on $I\left(X^{\prime}, \pi^{\prime}\right)$.
$(2) \Rightarrow(1):$ We may assume that the conic bundles (X, π) and $\left(X^{\prime}, \pi^{\prime}\right)$ are minimal. By Lemma 4.5, both conic bundles may be supposed to be exceptional. Since $I(X, \alpha \pi)=I\left(X^{\prime}, \pi^{\prime}\right)$, Lemma 4.8 yields the existence of an isomorphism $\varphi: X \rightarrow X^{\prime}$ such that $\pi^{\prime} \varphi=\alpha \pi$.

We can now give the well-known description of $I(X, \pi)$ announced before.
Corollary 4.13. Let (X, π) be a real conic bundle.
(1) $I(X, \pi)$ is a finite union of closed intervals of $\mathbb{P}_{\mathbb{R}}^{1}\left(\right.$ which may be \emptyset or $\left.\mathbb{P}_{\mathbb{R}}^{1}\right)$.
(2) The images by π of the singular fibres of π are the boundary points of the intervals of $I(X, \pi)$.
(3) The r connected components of $X(\mathbb{R})$ surject by π on r closed intervals of $\mathbb{P}^{1}(\mathbb{R})$.
Proof. According to Proposition 4.12, these condition are independent of the birational class of (X, π). Since (X, π) is birational to a minimal exceptional conic bundle (Lemma 4.5), it suffices to prove the result when (X, π) is minimal and exceptional. This is a direct consequence of Lemmas 4.7 and 4.8.

The remaining part of the section is devoted to strengthen the results asserting the existence of a birational equivalence between surfaces by proving the existence of an isomorphism between real parts. The following lemma is the key ingredient of this improvement.
Lemma 4.14. Let (X, π) be a minimal exceptional real conic bundle, with at least one singular fibre. Let q be a real point belonging to a nonsingular fibre.

Then, there exists a section s of π whose unique real point is q, and such that s and its conjugate \bar{s} intersect transversally at q.

Proof. Denote by $r \geq 1$ the number of intervals of V. Up to an automorphism of $\mathbb{P}_{\mathbb{R}}^{1}$, we may assume that $(1: 0) \notin V$. We denote by $\left(a_{1}: 1\right), \ldots,\left(a_{2 r}: 1\right) \in \mathbb{P}_{\mathbb{R}}^{1}$ the boundary points of the intervals, and assume that $a_{1}<a_{2}<\cdots<a_{2 r}$. We write $p=(b: 1)$ and up to an automorphism of $\mathbb{P}_{\mathbb{R}}^{1}$, we can assume that $\left.b \in\right] a_{1}, a_{2}\left[, a_{1}=0\right.$, and $b=1$. We denote by P the real polynomial $P(x)=\prod_{i=1}^{2 r}\left(x-a_{i}\right)$. Observe that for $x \in \mathbb{R}, P(x) \leq 0$ if and only if $(x: 1) \in V$, and write $c=P(b)=P(1)<0$.

We fix $Q_{m}(x)=c \cdot x^{2 m}$ for any positive integer m. Let us prove that for some large m, we have $Q_{m}(x)=P(x)$ if and only if $x \in\left\{a_{1}, b\right\}=\{0,1\}$. There exists m_{0} such that $\frac{d Q_{m}}{d x}(1)<\frac{d P}{d x}(1)$ for $m \geq m_{0}$. Moreover, $\frac{d Q_{m}}{d x}(0)=0>\frac{d P}{d x}(0)$. Thus, there exist $\left.\varepsilon_{1}, \varepsilon_{2} \in\right] 0 ; 1\left[\right.$ such that $Q_{m}(x)>P(x)$ for any $m \geq m_{0}$ and any $x \in] 0, \varepsilon_{1}[\cup] \varepsilon_{2}, 1\left[\right.$. Since the sequence $\left(Q_{m}(x)\right)_{m>0}$ converges uniformly to 0 on the compact $\left[\varepsilon_{1}, \varepsilon_{2}\right]$, there exists $m_{1} \geq m_{0}$ such that $Q_{m}(x)>P(x)$ for any $m \geq m_{1}$ and any $x \in] 0,1\left[\right.$. Using the same argument on the interval [$1, a_{2}$], we find $m_{2} \geq m_{1}$ such that $Q_{m}(x)<P(x)$ for any $m \geq m_{2}$ and any $\left.\left.x \in\right] 1, a_{2}\right]$. Then, choosing $m \geq m_{2}$ sufficiently big, we get $Q_{m}\left(a_{2}\right)<\min _{x \in \mathbb{R}} P(x)$, and thus $Q_{m}(x)<P(x)$ for any $x \in]-\infty, 0[\cup] 1, \infty\left[\right.$. It follows that $P(x)$ and $Q(x)=Q_{m}(x)$ are equal if and only if $x \in\left\{a_{1}, b\right\}$.

Let us use the notation of Construction 4.6 associated to $J=\left(J_{1}, J_{2}\right)$ with $J_{1}=\left\{a_{1}, \ldots, a_{r}\right\}$ and $J_{2}=\left\{a_{r+1}, \ldots, a_{2 r}\right\}$. Then, since $V=V_{J}$, we may assume that $(X, \pi)=\left(X_{J}, \pi_{J}\right)$ (Lemma 4.8). Recall that $X_{J}=\left(S_{J}, \sigma_{J}\right)$, where $\eta_{J}: S_{J} \rightarrow$ $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$ is the blow-up of the $2 r$ points

$$
\left\{((x: 1),(0: 1)) \mid x \in J_{1}\right\} \cup\left\{((x: 1),(1: 0)) \mid x \in J_{2}\right\}
$$

and σ_{J} is the lift by η_{J} of the following self-maps of $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$ (written here on the affine plane $\left.\left\{((x: 1),(y: 1)) \in \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1} \mid x, y \in \mathbb{C}\right\}\right)$

$$
\sigma_{J}^{\prime}:(x, y) \longrightarrow\left(\bar{x},-\frac{P_{1}(\bar{x}, 1)}{P_{2}(\bar{x}, 1)} \cdot \frac{1}{\bar{y}}\right),
$$

where $P_{1}(x, 1) \cdot P_{2}(x, 1)=P(x)$.
Note that none of the points at infinity (i.e. not in the affine plane described above) is real, and that η_{J} induces a bijection between the set of real points of S which belong to smooth fibres and the set

$$
\left\{(x, y) \in \mathbb{C}^{2} \mid x \in \mathbb{R}, x \notin\left\{a_{1}, \ldots, a_{2 r}\right\} \text { and } y \cdot \bar{y}=-P_{1}(x, 1) / P_{2}(x, 1)\right\}
$$

The image by η_{J} of the point $q \in \pi^{-1}(p) \subset S$ is thus equal to (b, y_{b}) for some $y_{b} \in \mathbb{C}$ satisfying $y_{b} \cdot \overline{y_{b}}=-P_{1}(b, 1) / P_{2}(b, 1)=-P(b) /\left(P_{2}(b, 1)\right)^{2}=-c / P_{2}(b, 1)^{2}$. Denote by $\lambda \in \mathbb{C}[x]$ a complex polynomial such that $\lambda(x) \cdot \overline{\lambda(x)}=-Q(x)$ (always possible since $Q(x) \leq 0$ for any $x \in \mathbb{R})$. Since $\lambda(b) \cdot \overline{\lambda(b)}=-Q(b)=-c$, the complex number $\xi=\lambda(b) /\left(y_{b} \cdot P_{2}(b, 1)\right)$ is such that $\xi \bar{\xi}=1$. Replacing $\lambda(x)$ by $\lambda(x) / \xi$, we may assume that $y_{b}=\lambda(b) / P_{2}(b, 1)$.

The image of the rational map $x \mapsto \eta^{-1}\left(\left(x, \frac{\lambda(x)}{P_{2}(x, 1)}\right)\right)$ is a section $s \subset S$. Its conjugate $\bar{s}=\sigma(s)$ is the image of the map $x \mapsto \eta^{-1}\left(\left(\bar{x},-\frac{P_{1}(\bar{x}, 1)}{\overline{\lambda(x)}}\right)\right)$. The real points of s are images of a real number $x \in \mathbb{R}$ such that $\lambda(x) \cdot \overline{\lambda(x)}=-P_{1}(x) \cdot P_{2}(x)=$ $-P(x)$. As we saw before, there are only two possibilities for x, which are $x=b$ or $x=a_{1}$. The image of the latter is not a real point on S (because the section cannot pass through the singular point of the fibre). The only real point of s is then $\eta^{-1}\left(\left(b, \frac{\lambda(b)}{P_{2}(b, 1)}\right)\right)=\eta^{-1}\left(\left(b, y_{b}\right)\right)=q$.

Since $Q(x)=\lambda(x) \cdot \overline{\lambda(x)}$ and $P(x)$ have distinct derivatives in $x=b$, the two sections s and \bar{s} intersect transversally at the point q.

Proposition 4.15. Let (X, π) be a minimal real conic bundle with at least one singular fibre. Then, there exists a minimal exceptional real conic bundle $\left(X^{\prime}, \pi^{\prime}\right)$ such that $(X(\mathbb{R}), \pi)$ and $\left(X^{\prime}(\mathbb{R}), \pi^{\prime}\right)$ are isomorphic.

Remark 4.16. The result is false without the assumption on the number of singular fibres. Indeed, there is no isomorphism between $\left(\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}\right)(\mathbb{R})$ and $\mathbb{F}^{1}(\mathbb{R})$, since the first one is homeomorphic to the torus $S^{1} \times S^{1}$ and the second one is homeomorphic to the Klein bottle.

Proof. According to Lemma 4.5, there exists a minimal exceptional real conic bundle $\left(X^{\prime}, \pi^{\prime}\right)$ and a birational map of conic bundles $\varphi:\left(X^{\prime}, \pi^{\prime}\right) \rightarrow(X, \pi)$. Let us decompose φ into $\varphi=\phi_{m} \circ \cdots \circ \phi_{1}$, where $\phi_{i}:\left(X_{i-1}, \pi_{i-1}\right) \rightarrow\left(X_{i}, \pi_{i}\right)$ is a birational map of conic bundles, which consists of the blow-up of a real point or two imaginary conjugate points, followed by the contraction of the strict transform of the corresponding fibre(s). The real conic bundles $\left(X^{\prime}, \pi^{\prime}\right)=\left(X_{0}, \pi_{0}\right),\left(X_{1}, \pi_{1}\right)$, $\left(X_{2}, \pi_{2}\right), \ldots,\left(X_{m}, \pi_{m}\right)=(X, \pi)$ are all minimal.

Let us prove by induction on j that there exists a birational map of conic bundles $\psi_{j}:\left(X^{\prime}, \pi^{\prime}\right) \rightarrow\left(X_{j}, \pi_{j}\right)$ which induces an isomorphism $X^{\prime}(\mathbb{R}) \rightarrow X_{j}(\mathbb{R})$. If $j=0$, we choose the identity for ψ_{0}. Assume that $j>0$. If ϕ_{j} blows-up two imaginary conjugate points, it suffices to choose $\psi_{j}=\phi_{j} \circ \psi_{j-1}$. Otherwise, ϕ_{j} blows-up a real point $q \in X_{i-1}(\mathbb{R})$ that belongs to a smooth fibre of π_{i-1} and contracts the strict transform of its fibre. The point $\left(\psi_{j-1}\right)^{-1}(q)$ is real, and belongs to a smooth fibre of $\pi_{0}=\pi^{\prime}$. According to Lemma 4.14, there exists a section s of X^{\prime} whose unique real point is q and such that s and \bar{s} intersect transversally at $\left(\psi_{j-1}\right)^{-1}(q)$. It follows that $\phi_{j} \psi_{j-1}(s)$ and $\phi_{j} \psi_{j-1}(\bar{s})$ only intersect into imaginary conjugate points. Blowing-up all of these points, and contracting the strict transforms of the fibres, and repeating the process if needed, we get a birational map of conic bundles α from $\left(X_{j}, \pi_{j}\right)$ to a minimal conic bundle $(\hat{X}, \hat{\pi})$, such that $\alpha \phi_{j} \psi_{j-1}(s)$ and $\alpha \phi_{j} \psi_{j-1}(\bar{s})$ do not intersect. By Lemma 4.4, $(\hat{X}, \hat{\pi})$ is then an exceptional conic bundle. From the unicity of such conic bundles (Lemma 4.8), there exists an isomorphism of conic bundles $\beta:(\hat{X}, \hat{\pi}) \rightarrow\left(X^{\prime}, \pi^{\prime}\right)$. Since α induces an isomorphism $X_{j}(\mathbb{R}) \rightarrow \hat{X}(\mathbb{R})$, we may choose $\phi_{j}=\beta \circ \alpha$.

Corollary 4.17. Let $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ be two minimal conic bundles, and assume that either X or Y is not rational.

Let $\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$; for any birational map $\beta: X \rightarrow Y$ such that $\pi_{Y} \beta=\alpha \pi_{X}$, there exists an isomorphism $\gamma: X(\mathbb{R}) \rightarrow Y(\mathbb{R})$ such that $\pi_{Y} \gamma=\alpha \pi_{X}$.

In particular, $\left(X(\mathbb{R}), \pi_{X}\right)$ and $\left(Y(\mathbb{R}), \pi_{Y}\right)$ are isomorphic if and only if $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are birational.

Proof. Since $\left(X, \pi_{X}\right)$ is birational to $\left(Y, \pi_{Y}\right)$ and both are minimal, the number of singular fibres of π_{X} and π_{Y} is the same, equal to $2 r$ for some non-negative integer r. Moreover, X and Y being not rational, $r>0$. Applying Proposition 4.15, we may assume that both $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are minimal exceptional real conic bundles. Since $\pi_{Y} \gamma=\alpha \pi_{X}, \alpha\left(I\left(X, \pi_{X}\right)\right)=I\left(X, \alpha \pi_{X}\right)=I\left(Y, \pi_{Y}\right)$ (Proposition 4.12). In this case, Lemma 4.8 yields the existence of an isomorphism $\gamma: X \rightarrow Y$ such that $\pi_{Y} \gamma=\alpha \pi_{X}$.

We end this section by an easy corollary of the preceding result.
Corollary 4.18. Let (X, π) and $\left(Y, \pi_{Y}\right)$ be two minimal conic bundles. Then, the following are equivalent:
(1) $(X(\mathbb{R}), \pi)$ and $(Y(\mathbb{R}), \pi)$ are isomorphic;
(2) (X, π) is birational to (Y, π) and $X(\mathbb{R})$ is isomorphic to $Y(\mathbb{R})$.

Proof. The implication $(1) \Rightarrow(2)$ is evident. Let us prove the converse.
Since $\left(X, \pi_{X}\right)$ is birational to $\left(Y, \pi_{Y}\right)$ and both are minimal, the number of singular fibres of π_{X} and π_{Y} is the same, equal to $2 r$ for some non-negative integer r.

Suppose that $r=0$, which means that X is an Hirzebruch surfaces \mathbb{F}_{m} for some m and that $Y=\mathbb{F}_{n}$ for some n. Since $X(\mathbb{R})$ is isomorphic to $Y(\mathbb{R})$, we have $m \equiv n$ $\bmod 2$. It is easy to prove that $(X(\mathbb{R}), \pi)$ and $(Y(\mathbb{R}), \pi)$ are isomorphic, by taking elementary links at two imaginary distinct fibres (see for example Mang06, Proof of Theorem 6.1]).

Suppose now that $r>0$. Applying Proposition 4.15, we may assume that both $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are minimal exceptional real conic bundles. Since $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are birational, we may assume that $I\left(X, \pi_{X}\right)=I\left(Y, \pi_{Y}\right)$, up to an automorphism of $\mathbb{P}_{\mathbb{R}}^{1}$ (Proposition 4.12). Then, $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are isomorphic (Lemma 4.8).

5. Conic bundles on del Pezzo surfaces

In the preceding section we studied real conic bundles structures. In this section, we focus on surfaces admitting distinct minimal conic bundles. We will see that these surfaces are necessarily del Pezzo surfaces (Lemma 5.3). We begin by the description of all possible minimal real conic bundles occurring on del Pezzo surfaces.

Lemma 5.1. Let V be is a subset of $\mathbb{P}^{1}(\mathbb{R})$, then the following are equivalent:
(1) there exists a minimal real conic bundle (X, π) such that X is a del Pezzo surface and $I(X, \pi)=V$;
(2) the set V is a union of closed intervals, and $\# V \leq 3$.

Proof. The part (1) $\Rightarrow(2)$ is easy. Indeed, if (X, π) is minimal, we know from Lemma 4.2 that its number of singular fibres is even, denoted $2 r$, and that $2 r=$ $8-\left(K_{X}\right)^{2}$. Since $-K_{X}$ is ample, $K_{X}^{2} \geq 1$, thus $r \leq 3$. We conclude by Corollary 4.13 which asserts that $I(X, \pi)$ is the union of r closed intervals .

Let us prove the converse. If $V=\mathbb{P}^{1}(\mathbb{R})$ or $V=\emptyset$, we take (X, π) to be $\left(\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}, \mathrm{pr}_{1}\right)$, where pr_{1} is the projection on the first factor, endowed with the anti-holomorphic map that sends $\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right)$ onto $\left(\left(\overline{x_{1}}: \overline{x_{2}}\right),\left(\pm \overline{y_{2}}: \overline{y_{1}}\right)\right)$.

Assume now that V is neither empty nor equal to $\mathbb{P}^{1}(\mathbb{R})$. Up to automorphism of $\mathbb{P}_{\mathbb{R}}^{1}$, there exist $a_{1}<a_{2}<\ldots<a_{2 r} \in \mathbb{R}$ with $1 \leq r \leq 3$ such that

$$
V=\bigcup_{i=1}^{r}\left\{(x: 1) \mid x \in\left[a_{2 i-1}, a_{2 i}\right] \subset \mathbb{R}\right\}
$$

We use the notation of Construction 4.6 associated to $J=\left(J_{1}, J_{2}\right)$ with $J_{1}=$ $\left\{a_{1}, \ldots, a_{r}\right\}$ and $J_{2}=\left\{a_{r+1}, \ldots, a_{2 r}\right\}$, and observe that $V=V_{J}$. Let $S_{0}:=S_{J}$, $\pi_{0}:=\pi_{J}$ and $X_{0}:=X_{J}$. The real conic bundle $\left(X_{0}, \pi_{0}\right)$ is exceptional, and $I\left(X_{0}, \pi_{0}\right)=V_{J}=V($ Lemma 4.7 $)$.

If $r=1, \eta_{J}: S_{0} \rightarrow \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$ is the blow-up of two points which do not lie on the same fibre of any projection, S_{0} is thus a del Pezzo surface of degree 6; choosing $(X, \pi)=\left(X_{0}, \pi_{0}\right)$ achieves the proof.

Assume now that $2 \leq r \leq 3$. Let $\alpha_{0}:=\alpha_{J} \in \operatorname{Aut}\left(S_{0}, \pi_{0}\right)$ and $\sigma_{0}:=\sigma_{J}$ be the holomorphic and anti-holomorphic involutions of S_{0}. Recall that α_{0} is the lift by η_{J} of the birational involution

$$
\alpha_{J}^{\prime}:\left(\left(x_{1}: x_{2}\right),\left(y_{1}: y_{2}\right)\right) \rightarrow\left(\left(x_{1}: x_{2}\right),\left(-y_{2} \prod_{i=1}^{r}\left(x_{1}-a_{i} x_{2}\right): y_{1} \prod_{i=r+1}^{2 r}\left(x_{1}-a_{i} x_{2}\right)\right)\right)
$$

of $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$. Then, α_{0} acts trivially on the basis, fixes two points in each nonsingular fibre and fixes only one point in each singular fibre (the singular point). We write $\Gamma_{0} \subset S_{0}$ the curve fixed by τ_{0}, which is the strict transform of the curve of $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$ given by the equation

$$
\left(y_{1}\right)^{2} \cdot \prod_{i=r+1}^{2 r}\left(x_{1}-a_{i} x_{2}\right)+\left(y_{2}\right)^{2} \cdot \prod_{i=1}^{r}\left(x_{1}-a_{i} x_{2}\right)=0
$$

The curve Γ_{0} is a double covering of $\mathbb{P}_{\mathbb{C}}^{1}$ by means of π_{0}, ramified over the $2 r$ points $\left(a_{i}: 1\right)$. Thus $\Gamma_{0}(\mathbb{R}) \subset X_{0}(\mathbb{R})$ is the union of r ovals, which surject by π_{0} on the r closed intervals of $I\left(X_{0}, \pi_{0}\right)=V$.

Denote by $p_{0} \in \Gamma_{0}(\mathbb{R})$ a real point such that $\pi_{0}\left(p_{0}\right)$ is not a boundary point. We call ψ_{0} the blow-up of p_{0}, followed by the contraction of the strict transform of its fibre. Then, ψ_{0} is a birational map of conic bundles $\left(S_{0}, \pi_{0}\right) \rightarrow\left(S_{1}, \pi_{1}\right)$, where $\pi_{1}=\pi_{0} \psi_{0}^{-1}$. Since p_{0} is fixed by both σ_{0} and α_{0}, we get an anti-holomorphic involution $\sigma_{1}=\psi_{0} \sigma_{0} \psi_{0}^{-1}$ on S_{1}, and an holomorphic involution $\alpha_{1}=\psi_{0} \alpha_{0} \psi_{0}^{-1}$ that commutes with σ_{1}. We write $X_{1}=\left(S_{1}, \sigma_{1}\right)$ and choose a point $p_{1} \in X_{1}(\mathbb{R})$ that belongs to a smooth fibre of π_{1} and that does not belong to s_{1} or $\overline{s_{1}}$ (this latter condition only avoids the base-point of ψ_{0}^{-1}). Similarly as before, we call ψ_{1} the blow-up of p_{1}, followed by the contraction of the strict transform of its fibre, and obtain a birational map of conic bundles $\psi_{1}:\left(X_{1}, \pi_{1}\right) \rightarrow\left(X_{2}, \pi_{2}\right)$ with $\pi_{2}=\pi_{1} \psi_{1}^{-1}$. Observe that $I\left(X_{2}, \pi_{2}\right)=I\left(X_{1}, \pi_{1}\right)=I\left(X_{0}, \pi_{0}\right)=V$.

We claim that if $r=2$, then S_{1} is a del Pezzo surface and that if $r=3$ and p_{1} is well chosen, then S_{2} is a del Pezzo surface. Assuming this, it suffices to let $(X, \pi):=\left(X_{i}, \pi_{i}\right)$ for $i=1$ or $i=2$ to conclude the proof.

Let us prove the claim. Denote by s_{0} and $\overline{s_{0}}$ the exceptional sections of π_{0}, which are the strict transforms by η_{J}^{-1} of $\mathbb{P}_{\mathbb{C}}^{1} \times(0: 1)$ and $\mathbb{P}_{\mathbb{C}}^{1} \times(1: 0)$. Denote by s_{i} and $\overline{s_{i}}$ the strict transforms of s_{0} and $\overline{s_{0}}$ on S_{i}. Since p_{i} does not belong to s_{i} or $\overline{s_{i}}$ for $i=0,1$, we have $s_{i}^{2}={\overline{s_{i}}}^{2}=-r+i$ for $i=1,2$.

We prove now that any section of π_{1} distinct from s_{1} or $\overline{s_{1}}$ has self-intersection ≥-1, and that there are finitely many sections of self-intersection -1 . Denote by $C_{1} \subset S_{1}$ a section of π_{1}, of self-intersection $C_{1}^{2} \leq-1$, which is distinct from s_{1} or $\overline{s_{1}}$. The strict transform on S_{0} of C_{1} is written C_{0}, and has self-intersection $C_{1}^{2} \pm 1$, depending whether C_{0} passes through p_{0} or not. The curve $\eta_{J}\left(C_{0}\right) \subset \mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$ is a section of pr_{1}, linearly equivalent to $f_{2}+d f_{1}$, where f_{i} denotes the divisor of the fibre or pr_{i} and d is a non-negative integer. We have $\eta_{J}\left(C_{0}\right)^{2}=2 d$ and $\eta_{J}\left(C_{0}\right) \cdot \eta_{J}\left(s_{0}\right)=d$. Denote by $m_{1}, \ldots, m_{2 r}$ the multiplicities of $\eta_{J}\left(C_{0}\right)$ at the points blown-up by η_{J} - where m_{i} corresponds to the point in the fibre $\operatorname{pr}_{1}^{-1}\left(\left(a_{i}: 1\right)\right)$. Then $m_{i} \in\{0,1\}$ for each $i, C_{0} \cdot s_{0}=d-\sum_{i=1}^{r} m_{i} \geq 0$ and $C_{0} \cdot \overline{s_{0}}=d-\sum_{i=r+1}^{2 r} m_{i} \geq 0$
since C_{0} is distinct from s_{0} and $\overline{s_{0}}$, whence $C_{0}^{2}=2 d-\sum_{i=1}^{2 r} m_{i} \geq 0$. Since $C_{1}^{2} \leq-1$ and $C_{0}^{2}=C_{1}^{2} \pm 1$, the only possibility is that $C_{0}^{2}=0, C_{1}^{2}=-1$ and that C_{0} passes through p_{0}. Moreover, the possibilities for the m_{i} are finite (at most $2^{2 r}$), and for each possibility, there is exactly one pencil of curves of S_{0} equivalent to C_{0}, and C_{0} is the only curve of the pencil which passes through p_{0}.

Therefore, if $r=2$, every section of π_{1} has self-intersection ≥-1. If $r=3$, choosing for $p_{1} \in X_{1}(\mathbb{R})$ a point that does not belong to any of the sections of π_{1} with self-intersection -1 , every section of π_{2} has self-intersection ≥-1.

We prove now that if $r=2$, then S_{1} is a del Pezzo surface. Recall that $s_{1}^{2}=$ ${\overline{s_{1}}}^{2}=-1$. Denote by η_{1} the contraction of the component of the singular fibres of π_{1} which intersect s_{1}. Then, η_{1} is a birational morphism (not defined over \mathbb{R}) from S_{1} to \mathbb{F}_{1}, which sends $\overline{s_{1}}$ on the exceptional section of \mathbb{F}_{1}. Composing η_{1} with the contraction of this curve on a point $p_{1} \in \mathbb{P}_{\mathbb{C}}^{2}$, we see that S_{1} is the blow-up of 5 points p_{1}, \ldots, p_{5} in $\mathbb{P}_{\mathbb{C}}^{2}$, that the fibres of π_{1} are sent on the lines passing through p_{1}, and that no two of the p_{i} for $i \geq 2$ are collinear with p_{1}. Then S_{1} is a del Pezzo surface if and only if no three of the points p_{i} for $i \geq 2$ are collinear. This amounts to ask that no section of π_{1} has self-intersection ≤-2, and was proved above. Then, S_{1} is a del Pezzo surface.

We prove now that if $r=3$, then S_{2} is a del Pezzo surface for a well chosen p_{1}. The technique is similar; recall that $s_{2}^{2}={\overline{s_{2}}}^{2}=-1$ and denote by $\eta_{2}: S_{2} \rightarrow \mathbb{F}_{1}$ the contraction of the component of each singular fibre of π_{2} which intersects s_{2}. Then $\eta_{2}\left(\overline{s_{2}}\right)$ is the exceptional section of \mathbb{F}_{1}. Contracting it on $p_{1} \in \mathbb{P}_{\mathbb{C}}^{2}, S_{2}$ is the blow-up of 7 points $p_{1}, \ldots, p_{7} \in \mathbb{P}_{\mathbb{C}}^{2}$. Since no section of π_{2} has self-intersection ≤-2, no three of the seven points are collinear. Then S_{2} is a del Pezzo surface if and only if there is no conic passing through 6 of the 7 points. If the conic passes through p_{1}, its proper transform on S_{2} would be a section of self-intersection ≤-2. It suffices thus to avoid the possibility of a conic $D \subset \mathbb{P}_{\mathbb{C}}^{2}$ that passes through p_{2}, \ldots, p_{7} and not through p_{1}. If such a D exists, its strict transform on S_{2} is a bisection which has self-intersection -2 , and does not intersect $\overline{s_{2}}$, where the base-point of ψ_{1}^{-1} lies (the base-point belongs to $s_{2} \cap \overline{s_{2}}$ since $p_{1} \notin s_{1} \cup \overline{s_{1}}$).

Consequently, the strict transform of D on S_{1} is a curve $D_{1} \subset S_{1}$ which has multiplicity 2 at p_{1}, and has self-intersection 2 . This implies that D_{1} is linearly equivalent to the anti-canonical divisor $-K_{S_{1}}$; indeed, contracting a component of a singular fibre that touches $\overline{s_{1}}$, then contracting $\overline{s_{1}}$ and all the components of the other singular fibres that touch s_{1} gives a birational morphism $S_{1} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$, that sends D_{1} on a cubic passing once through all the points blown-up. Then, the holomorphic involution α_{1} acts on the linear system $\left|-K_{S_{1}}\right|$, which has dimension $m \geq 2$ (it corresponds to cubics of $\mathbb{P}_{\mathbb{C}}^{2}$ passing through 7 points) and the induced map

$$
\zeta: S_{1} \xrightarrow[\rightarrow-K_{S_{1}} \mid]{\mid-\mathbb{P}^{m}}
$$

is equivariant.
Since the general fibres of ζ have genus 1 and the curve Γ_{1} fixed by α_{1} has genus 2 (it is a double covering of \mathbb{P}^{1} ramified over 6 points), then Γ_{1} is not contained in a fibre, whence α_{1} acts trivially on \mathbb{P}^{m} (in fact, the interested reader can show that $m=2$, that ζ is a double covering and that α_{0} exchanges the two points in each fibre). In consequence, D_{1} is invariant by α_{1}, so its singular point p_{1} is fixed by α_{1}. It suffices to choose p_{1} not lying on Γ_{1} and S_{2} is a del Pezzo surface.

Recall the following classical result, that will be useful in the sequel.
Lemma 5.2. Let $\pi: S \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ be a complex conic bundle, and assume that S is a del Pezzo surface, with $\left(K_{X}\right)^{2}=9-m \leq 7$. Then, there exists a birational morphism $\eta: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ which is a blow-up of m points p_{1}, \ldots, p_{m} and which sends the fibres of π onto the lines passing through p_{1}. The curves of self-intersection -1 of S are

- the exceptional curves $\eta^{-1}\left(p_{1}\right), \ldots, \eta^{-1}\left(p_{m}\right)$;
- the strict transforms of the lines passing through 2 of the p_{i};
- the conics passing through 5 of the p_{i};
- the cubics passing through 8 of the p_{i} and being singular at one of these.

Proof. Denote by ε the contraction of one component in each singular fibre of π. Then, ε is a birational morphism of conic bundles - not defined over \mathbb{R} - from S to a del Pezzo surface which is also an Hirzebruch surface. Changing the contracted components, we may assume that ε is a map $S \rightarrow \mathbb{F}_{1}$. Contracting the exceptional section onto a point $p_{1} \in \mathbb{P}_{\mathbb{C}}^{2}$, we get a birational map $\eta: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ which is the blow-up of m points p_{1}, \ldots, p_{m} of $\mathbb{P}_{\mathbb{C}}^{2}$, and which sends the fibres of π_{1} onto the lines passing through p_{1}. The description of the (-1)-curves is well-known and may be found for example in Dem76.

Lemma 5.3. Let $\pi_{1}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ be a minimal real conic bundle. Then, the following conditions are equivalent:

1) There exist a real conic bundle $\pi_{2}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$, such that π_{1} and π_{2} induce distinct foliations on $X(\mathbb{C})$.
2) Either X is isomorphic to $\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}$, or X is a del Pezzo surface of degree 2 or 4 .
Moreover, if the conditions are satisfied, then the following occur:
a) The map π_{2} is unique, up to an automorphism of $\mathbb{P}_{\mathbb{R}}^{1}$.
b) There exist $\alpha \in \operatorname{Aut}(X)$ and $\beta \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ such that $\pi_{1} \alpha=\beta \pi_{2}$. Moreover, if X is a del Pezzo surface of degree 2, α may be chosen to be the Geiser involution.
c) Denoting by $f_{1}, f_{2} \subset \operatorname{Pic}(X)$ the divisors of the general fibre of respectively π_{1} and π_{2}, we have $f_{1}+f_{2}=-c K_{X}$ where $c=4 /\left(K_{X}\right)^{2} \in \mathbb{N} \cdot \frac{1}{2}$.
Proof. Assume the existence of π_{2}, and denote by f_{i} the divisor of the fibre of π_{i} for $i=1,2$. We have $\left(f_{1}\right)^{2}=\left(f_{2}\right)^{2}=0$ and by adjunction formula $f_{1} \cdot K_{X}=f_{2} \cdot K_{X}=$ -2 , where K_{X} is the canonical divisor. Let us write $d=\left(K_{X}\right)^{2}$.

Since $\left(X, \pi_{1}\right)$ is minimal, $\operatorname{Pic}(X)$ has rank 2 , hence $f_{1}=a K_{X}+b f_{2}$, for some $a, b \in \mathbb{Q}$. Computing $\left(f_{1}\right)^{2}$ and $f_{1} \cdot K_{X}$ we find respectively $0=a^{2} d-4 a b=$ $a(a d-4 b)$ and $-2=a d-2 b$. If $a=0$, we find $f_{1}=f_{2}$, a contradiction. Thus, $4 b=a d$ and $2 b=a d+2$, which yields $b=-1$ and $a d=-4$, so $f_{1}+f_{2}=-4 / d \cdot K_{X}$. This shows that f_{2} is uniquely determined by f_{1}.

Denote as usual by S the complex surface associated to X. Let $C \in \operatorname{Pic}(S)$ be an effective divisor, with reduced support, and let us prove that $C \cdot\left(f_{1}+f_{2}\right)>0$. Since C is effective, $C \cdot f_{1} \geq 0$ and $C \cdot f_{2} \geq 0$. If $C \cdot f_{1}=0$, then the support of C is contained in one fibre of π_{1}. If C is a multiple of f_{1}, then $C \cdot f_{2}>0$; otherwise, C is a multiple of a (-1)-curve contained in a singular fibre of f_{1}, and the orbit of C by the anti-holomorphic involution is equal to a multiple of f_{1}, whence $C \cdot f_{2}>0$.

Since $f_{1}+f_{2}$ is ample, and $f_{1}+f_{2}=-4 / d \cdot K_{X}$ either K_{X} or $-K_{X}$ is ample. The surface X being geometrically rational, the former cannot occur, whence $d>0$.

If S is isomorphic to $\mathbb{P}_{\mathbb{C}}^{1} \times \mathbb{P}_{\mathbb{C}}^{1}$, the existence of π_{1}, π_{2} shows that X is isomorphic to $\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}$. Otherwise, K_{X} is not a multiple in $\operatorname{Pic}\left(X_{\mathbb{C}}\right)$ and thus d is equal to 1,2 or 4 . The number of singular fibres being even and equal to $8-\left(K_{X}\right)^{2}$ by Lemma 4.2 , the only possibilities are then 2 and 4.

We have proved that 1) implies 2), a), and c).
Assume now that $X=(S, \sigma)$ is $\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}$ or a del Pezzo surface of degree 2 or 4 . We construct an automorphism α of X which does not belong to $\operatorname{Aut}(X, \pi)$. Then, by taking $\pi_{2}=\pi_{1} \alpha$ we get assertion 1$)$. Taking into account the unicity of π_{2}, we get b).

If X is $\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}$, the two conic bundles are given by the projections on each factor, and we can get for α the swap of the factors.

If X is a del Pezzo surface of degree 2, the anti-canonical map $\zeta: X \rightarrow \mathbb{P}^{2}$ is a double covering ramified along a smooth quartic, cf. e.g. Dem76. Let α be the involution associated to the double covering $-\alpha$ is classically called the Geiser involution. It fixes a smooth quartic, hence cannot preserve any conic bundle.

The remaining case is when X is a del Pezzo surface of degree 4. By Lemma 5.2, there is a birational map $\eta: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ which is the blow-up of five points p_{1}, \ldots, p_{5} of $\mathbb{P}_{\mathbb{C}}^{2}$, no three being collinear and which sends the fibres of π_{1} on the lines passing through p_{1}. There are 16 exceptional curves (curves isomorphic to $\mathbb{P}_{\mathbb{C}}^{1}$ of selfintersection (-1)) on S :

- $E_{1}=\eta^{-1}\left(p_{1}\right), \ldots, E_{5}=\eta^{-1}\left(p_{5}\right)$ (5 curves);
- the strict transforms of the lines passing through p_{i} and p_{j}, denoted by $L_{i j}$ (10 curves);
- the strict transform of the conic passing through the five points, denoted by Γ.
Note that the four singular fibres of π_{1} are $E_{i} \cup L_{i j}, i=2, \ldots, 5$, and that σ exchanges thus E_{i} and $L_{i j}$ for $i=1, \ldots, 5$. The intersection form being preserved, this implies that σ acts on the 16 exceptional curves as

$$
\left(E_{2} L_{12}\right)\left(E_{3} L_{13}\right)\left(E_{4} L_{14}\right)\left(E_{5} L_{15}\right)\left(E_{1} \Gamma\right)\left(L_{23} L_{45}\right)\left(L_{24} L_{35}\right)\left(L_{25} L_{34}\right) .
$$

After a linear change of coordinates, we may assume that $p_{1}=(1: 1: 1)$, $p_{2}=(1: 0: 0), p_{3}=(0: 1: 0), p_{4}=(0: 0: 1)$ and $p_{5}=(a: b: c)$ for some $a, b, c \in \mathbb{C}^{*}$. Denote by ϕ the birational involution $(x: y: z) \rightarrow(a y z: b x z: c x y)$ of $\mathbb{P}_{\mathbb{C}}^{2}$. Since the base-points of ϕ are p_{2}, p_{3}, p_{4} and since ϕ exchanges p_{1} and p_{5}, the $\operatorname{map} \varphi=\eta^{-1} \phi \eta$ is an automorphism of S. Its action on the 16 exceptional curves is given by the permutation

$$
\left(\begin{array}{ll}
L_{23} & E_{4}
\end{array}\right)\left(\begin{array}{ll}
L_{24} & E_{3}
\end{array}\right)\left(\begin{array}{ll}
L_{34} & E_{2}
\end{array}\right)\left(\begin{array}{ll}
L_{12} & L_{25}
\end{array}\right)\left(\begin{array}{ll}
L_{13} & L_{35}
\end{array}\right)\left(L_{14} L_{45}\right)\left(\Gamma L_{15}\right)\left(E_{1} E_{5}\right) .
$$

Observe that the actions of φ and σ on the set of 16 exceptional curves commute. This means that $\varphi \sigma \varphi^{-1} \sigma^{-1}$ is an holomorphic automorphism of S which preserves any of the 16 curves. It is the lift of an automorphism of $\mathbb{P}_{\mathbb{C}}^{2}$ that fixes the 5 points p_{1}, \ldots, p_{5} and hence is the identity. Consequently, φ and σ commute, so $\varphi \in \operatorname{Aut}(X)$. Since ϕ sends a general line passing though p_{1} onto a conic passing through $p_{2}, \ldots, p_{5}, \phi$ belongs to $\operatorname{Aut}(X) \backslash \operatorname{Aut}(X, \pi)$.

Corollary 5.4. Let X be a minimal geometrically rational real surface, which is not rational. Then, the following are equivalent:
(1) $\# X(\mathbb{R})=2$ or $\# X(\mathbb{R})=3$;
(2) There exists a geometrically rational real surface $Y(\mathbb{R})$ isomorphic to $X(\mathbb{R})$, and such that Y admits two minimal conic bundles $\pi_{1}: Y \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{2}: Y \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ inducing distinct foliations on $Y(\mathbb{C})$.

Proof. $[(2) \Rightarrow(1)]$ By Lemma 5.3, Y is then a del Pezzo surface, which has degree 2 or 4 since Y is not rational. This implies that $\# Y(\mathbb{R})=2$ or $\# Y(\mathbb{R})=3$ by Proposition 3.7.
$[(1) \Rightarrow(2)]$. According to Theorem 3.5 and Proposition 3.7, (1) implies the existence of a minimal real conic bundle structure $\pi_{X}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ with 4 or 6 singular fibres. This condition is equivalent to the fact that $I\left(X, \pi_{X}\right)$ is the union of 2 or 3 intervals (Corollary 4.13). According to Lemma 5.1, there exists a minimal real conic bundle $\left(Y, \pi_{1}\right)$ such that Y is a del Pezzo surface and $I\left(Y, \pi_{1}\right)=I\left(X, \pi_{X}\right)$. Proposition 4.12 and Corollary 4.17 show that $\left(X(\mathbb{R}), \pi_{X}\right)$ and $\left(Y, \pi_{1}\right)$ are isomorphic. Moreover Lemma 5.3 yields the existence of π_{2}.

6. Equivalence of surfaces versus equivalence of conic bundles

This section is devoted to the proof of Theorem 1.5. It remains to solve the conic bundle case, which is done in Theorem 6.3. First of all, we correct an existing inaccuracy in the literature; in Kol97, Exercice 5.8] or [Sil89, VI.3.5], it is asserted that all minimal real conic bundles with four singular fibres belong to a unique birational equivalence class. To the contrary, the following general result, which includes the case with four singular fibres, occurs:
Theorem 6.1. Let $\pi_{X}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{Y}: Y \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ be two real conic bundles, and suppose that either X or Y is non-rational. Then, the following are equivalent:
(1) The two real surfaces X and Y are birational.
(2) The two real conic bundles $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are birational.
(3) There exists an automorphism of \mathbb{P}^{1} which sends $I\left(X, \pi_{X}\right)$ onto $I\left(Y, \pi_{Y}\right)$.

Moreover, if the number of singular fibres of π_{X} is at least 8 , then $\operatorname{Bir}(X)=$ $\operatorname{Bir}\left(X, \pi_{X}\right)$.

Remark 6.2. It is well-known that this result is false when X and Y are rational. Indeed, consider $\left(X, \pi_{X}\right)=\left(\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}, \mathrm{pr}_{1}\right)$ and $\left(Y, \pi_{Y}\right)$ be a real conic bundle with two singular fibres. The surfaces X and Y are birational, but the conic bundles $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are not.

Proof. The equivalence $(3) \Leftrightarrow(2)$ was proved in Proposition 4.12 and $(2) \Rightarrow(1)$ is evident.

We may assume that $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are minimal and that X is not rational, hence π_{X} has at least 4 singular fibres. Let $\psi: X \rightarrow Y$ a birational map, and decompose ψ into elementary links: $\psi=\psi_{n} \circ \cdots \circ \psi_{1}$ (see Isk96, Theorem 2.5]). Consider $\psi_{1}: X \rightarrow X_{1}$ the first link, which may be of type $I I$ or $I V$ only by [sk96, Theorem 2.6]. If ψ_{1} is of type $I I$, then ψ_{1} is a birational map of conic bundles $\left(X, \pi_{X}\right) \rightarrow\left(X_{1}, \pi_{1}\right)$ for some conic bundle structure $\pi_{1}: X_{1} \rightarrow \mathbb{P}^{1}$. If ψ_{1} is of type $I V$, then ψ_{1} is an isomorphism $X \rightarrow X_{1}$ and the link is precisely a change of conic bundle structure from π_{X} to $\pi_{1}: X_{1} \rightarrow \mathbb{P}^{1}$, which induce distinct foliations on $X(\mathbb{R})$. Applying Lemma 5.3, X is a del Pezzo surfaces of degree 2 or 4 , and there exist automorphisms $\alpha \in \operatorname{Aut}(X)$ and $\beta \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ such that $\pi_{1} \psi_{1} \alpha=\beta \pi_{2}$, whence (X, π) is isomorphic to $\left(X_{1}, \pi_{1}\right)$. We proceed by induction on the number of elementary links to conclude that $\left(X, \pi_{X}\right)$ is birational to $\left(Y, \pi_{Y}\right)$. Moreover,
if π_{X} has at least 8 singular fibres, then no link of type $I V$ may occur, so ψ is a birational map of conic bundles $\left(X, \pi_{X}\right) \rightarrow\left(Y, \pi_{Y}\right)$.

When the conic bundles are minimal, we can strengthen Theorem 6.1 to get an isomorphism between the real parts.

Theorem 6.3. Let $\pi_{X}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{Y}: Y \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ be two minimal real conic bundles, and suppose that either X or Y is non-rational. Then, the following are equivalent:
(1) X and Y are birational.
(2) $X(\mathbb{R})$ and $Y(\mathbb{R})$ are isomorphic.
(3) $\left(X(\mathbb{R}), \pi_{X}\right)$ and $\left(Y(\mathbb{R}), \pi_{Y}\right)$ are isomorphic.

Proof. The implications $(3) \Rightarrow(2) \Rightarrow(1)$ being evident, it suffices to prove $(1) \Rightarrow$ (3). Since X and Y are not rational, both π_{X} and π_{Y} have at least one singular fibre. Applying Proposition 4.15, we may assume that both $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are minimal exceptional real conic bundles. Then, since $\left(X, \pi_{X}\right)$ and $\left(Y, \pi_{Y}\right)$ are birational (Theorem 6.1), we may assume that $I\left(X, \pi_{X}\right)=I\left(Y, \pi_{Y}\right)$, up to an automorphism of $\mathbb{P}_{\mathbb{R}}^{1}$. Then Lemma 4.8 shows that $\left(X, \pi_{X}\right)$ is isomorphic to $\left(Y, \pi_{Y}\right)$.

We are now able to prove Theorem 1.5 concerning minimal surfaces.
Proof of Theorem 1.5. Let X and Y be two minimal geometrically rational real surfaces, and assume that either X or Y is non-rational.

If $X(\mathbb{R})$ and $Y(\mathbb{R})$ are isomorphic, it is clear that X and Y are birational. Let us prove the converse.

Theorem 3.5 lists all the possibilities for X. If $\rho(X)=1$ or $\rho(Y)=1$, Proposition 3.8 shows that X is isomorphic to Y. Otherwise, since neither X nor Y is rational, there exist minimal conic bundle structures on X and on Y. From Theorem 6.3, we conclude that $X(\mathbb{R})$ is isomorphic to $Y(\mathbb{R})$.

To go further with non-minimal surfaces, we need to know when the group $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive for X minimal. This is done in the next sections.

7. Very transitive actions

Thanks to the work done in Section it is easy to apply the techniques of HM07 to prove that $\operatorname{Aut}(X(\mathbb{R}))$ is fiberwise very transitive on a real conic bundle. After describing the transitivity of $\operatorname{Aut}(X(\mathbb{R}))$ on the tangent space of a general point, we set the main result of that section: $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive on connected components when X is minimal and admits two conic bundle structures (Proposition 7.5). We end the section by giving a characterisation of surfaces X for which $\operatorname{Aut}(X(\mathbb{R}))$ is able to mix the connected components of $X(\mathbb{R})$.

Lemma 7.1. Let (X, π) be a minimal real conic bundle over $\mathbb{P}_{\mathbb{R}}^{1}$ with at least one singular fibre. Let $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be two n-tuples of distinct points of $X(\mathbb{R})$, and let $\left(b_{1}, \ldots, b_{m}\right)$ be m points of $I(X, \pi)$. Assume that $\pi\left(p_{i}\right)=\pi\left(q_{i}\right)$ for each i, that $\pi\left(p_{i}\right) \neq \pi\left(p_{j}\right)$ for $i \neq j$ and that $\pi\left(p_{i}\right) \neq b_{j}$ for any i and any j.

Then, there exists $\alpha \in \operatorname{Aut}(X(\mathbb{R}))$ such that $\alpha\left(p_{i}\right)=q_{i}$ for every $i, \pi \alpha=\pi$ and $\left.\alpha\right|_{\pi^{-1}\left(b_{i}\right)}$ is the identity for every i.

Remark 7.2. The same result holds for minimal real conic bundles with no singular fibre, see BH07, 5.4]. The following proof uses twisting maps, see below, which were introduced in HM07] to prove that the action of the automorphism group $\operatorname{Aut}\left(S^{2}\right)$ on the quadric sphere $S^{2}:=\left\{(x: y: z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=0\right\}$ is very transitive.

Proof. By Proposition 4.15, we may assume that (X, π) is exceptional. Moreover, Corollary 4.11 yields the existence of an affine real surface $A \subset X$ isomorphic to the hypersurface of \mathbb{R}^{3} given by

$$
y^{2}+z^{2}=-\prod_{i=1}^{2 r}\left(x-a_{i}\right)
$$

for some $a_{1}, \ldots, a_{2 r} \in \mathbb{R}$ with $a_{1}<a_{2}<\cdots<a_{2 r}$, where $\left.\pi\right|_{A}$ corresponds to the projection $(x, y, z) \mapsto x$, and where the inclusion $A \subset X$ induces an isomorphism $A(\mathbb{R}) \rightarrow X(\mathbb{R})$.

For $i=1, \ldots, n$, let us denote by $\left(x_{i}, y_{i}, z_{i}\right)$ the coordinates of p_{i} in $A \subset \mathbb{R}^{3}$ and by $\left(u_{i}, v_{i}, w_{i}\right)$ the ones of q_{i}. From hypothesis, we have $x_{i}=u_{i}$ for all i, thus we get $y_{i}^{2}+z_{i}^{2}=v_{i}^{2}+w_{i}^{2}$ for all i. Let $\Phi_{i} \in \mathrm{SO}_{2}(\mathbb{R})$ be the rotation sending $\left(x_{i}, y_{i}\right)$ to $\left(u_{i}, v_{i}\right)$. Then by HM07, Lemma 2.2], there exists an algebraic map $\Phi:\left[a_{1}, a_{2 r}\right] \rightarrow \mathrm{SO}_{2}(\mathbb{R})$ such that $\Phi\left(x_{i}\right)=\Phi_{i}$ for $i=1, \ldots, n$ and $\Phi\left(b_{i}\right)$ is the identity for $i=1, \ldots, m$. Let us recall the proof; since $\mathrm{SO}_{2}(\mathbb{R})$ is isomorphic to the unit circle $S^{1}:=\left\{(x: y: z) \in \mathbb{P}^{2}(\mathbb{R}) \mid x^{2}+y^{2}=z^{2}\right\}$, it suffices to prove the statement for S^{1} instead of $\mathrm{SO}_{2}(\mathbb{R})$. Let Φ_{0} be a point of S^{1} distinct from $\Phi_{1}, \ldots, \Phi_{n}$ and from the identity. Since $S^{1} \backslash\left\{\Phi_{0}\right\}$ is isomorphic to \mathbb{R}, it suffices, finally, to prove the statement for \mathbb{R} instead of $\mathrm{SO}_{2}(\mathbb{R})$. The latter statement is an easy consequence of Lagrange polynomial interpolation.

Then the map defined by $\alpha:(x, y, z) \mapsto(x,(y, z) \cdot \Phi(x))$ induces an automor$\operatorname{phism} A(\mathbb{R}) \rightarrow A(\mathbb{R})$ called the twisting map of π associated to Φ. Moreover, $\alpha\left(p_{i}\right)=q_{i}$, for all $i, \pi \alpha=\pi,\left.\alpha\right|_{\pi^{-1}\left(b_{i}\right)}$ is the identity for every i, and π induces an automorphism $X(\mathbb{R}) \rightarrow X(\mathbb{R})$.

Lemma 7.3. Let (X, π) be a minimal real conic bundle over $\mathbb{P}_{\mathbb{R}}^{1}$ with at least one singular fibre. Let $p \in X$ be a point in a nonsingular fibre of π, and let $\Sigma \subset I(X, \pi)$ be a finite subset, with $\pi(p) \in \Sigma$. Denote by $\eta: Y \rightarrow X$ the blow-up of p, and by $E \subset Y$ the exceptional curve. Let $q \in E$ the point corresponding to the direction of the fibre of π passing through p.

Then, the lift of the group

$$
G=\left\{\alpha \in \operatorname{Aut}(X(\mathbb{R})), \pi \alpha=\pi|\alpha|_{\pi^{-1}(\Sigma)} \text { is the identity }\right\}
$$

by η is a subgroup $\eta^{-1} G \eta \subset \operatorname{Aut}(Y(\mathbb{R}))$ which fixes the point q, and acts transitively on $E \backslash q \cong \mathbb{A}_{\mathbb{R}}^{1}$.

Proof. Since G acts identically on $\pi^{-1}(\Sigma)$, it fixes p, and therefore lifts to $H=$ $\eta^{-1} G \eta \subset \operatorname{Aut}(Y(\mathbb{R}), \pi \eta)$, which preserves E. Moreover, G preserves the fibre of π passing through p, so H preserves its strict transform, which intersects transversally E at q, so q is fixed.

Let us prove now that the action of $\eta^{-1} G \eta$ on $E \backslash q$ is transitive. By Proposition 4.15, we may assume that (X, π) is exceptional. Then, we take an affine surface $A \subset X$, isomorphic to the hypersurface $y^{2}+z^{2}=P(x)$ of \mathbb{R}^{3} for some polynomial
P, such that $\left.A\right|_{\pi}$ is the projection $\operatorname{pr}_{x}:(x, y, z) \mapsto x$ and the inclusion $A \subset X$ gives an isomorphism $A(\mathbb{R}) \rightarrow X(\mathbb{R})$ (Corollary 4.11). Let us write $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ the coordinates of p. Since x is on a nonsingular fibre of π, then $P\left(x_{0}\right)>0$. Up to an affine automorphism of \mathbb{R}^{3}, and up to multiplication of P by some constant, we may assume that $x_{0}=0, P(0)=1, y_{0}=0$, and $z_{0}=0$.

To any real polynomial $\lambda \in \mathbb{R}[X]$, we associate the matrix

$$
\left(\begin{array}{cc}
\alpha(X) & \beta(X) \\
-\beta(X) & \alpha(X)
\end{array}\right) \in \mathrm{SO}_{2}(\mathbb{R}(X))
$$

where $\alpha=\frac{1-\lambda^{2}}{1+\lambda^{2}} \in \mathbb{R}(X)$ and $\beta=\frac{2 \lambda}{1+\lambda^{2}} \in \mathbb{R}(X)$. And corresponding to this matrix, we associate the map

$$
\psi_{\lambda}:(x, y, z) \mapsto(x, \alpha(x) \cdot y-\beta(x) \cdot z, \beta(x) \cdot y+\alpha(x) \cdot z)
$$

which belongs to $\operatorname{Aut}\left(A(\mathbb{R}), \operatorname{pr}_{x}\right)$. To impose that ψ_{λ} is the identity on $\left(\mathrm{pr}_{x}\right)^{-1}(\Sigma)$ is the same to ask that $\lambda(x)=0$ for each $(x: 1) \in \Sigma \subset \mathbb{P}^{1}(\mathbb{R})$, and in particular for $x=0$.

Denote by $\mathcal{O}=\mathbb{R}[x, y, z] /\left(y^{2}+z^{2}-P(x)\right)$ the ring of functions of A, by $\mathfrak{p} \subset \mathcal{O}$ the ideal of functions vanishing at p, by $\mathcal{O}_{\mathfrak{p}}$ the localisation, and by $\mathfrak{m} \subset \mathcal{O}_{\mathfrak{p}}$ the maximal ideal of $\mathcal{O}_{\mathfrak{p}}$. Then, the cotangent ring $T_{p, A}^{*}$ of p in A is equal to $\mathfrak{m} / \mathfrak{m}^{2}$, and is generated by the images $[x],[y],[z-1]$ of $x, y, z-1 \in \mathbb{R}[x, y, z]$. Since $P(0)=1$, we may write $P(x)=1+x Q(x)$, for some real polynomial Q. We compute
$[0]=\left[y^{2}+z^{2}-P(x)\right]=\left[y^{2}+(z-1)^{2}+2(z-1)-x Q(x)\right]=[2(z-1)-x Q(0)] \in \mathfrak{m} / \mathfrak{m}^{2}$.
We see that $[z-1]=[x Q(0) / 2]$, thus $\mathfrak{m} / \mathfrak{m}^{2}$ is generated by $[x]$ and $[y]$ as a \mathbb{R}-module. Since $\lambda(0)=0$, we can write $\lambda(x)=x \mu(x)$, for some real polynomial μ. The linear action of ψ_{λ} on the cotangent space $T_{p, A}^{*}$ fixes $[x]$ and sends $[y]$ onto

$$
\begin{aligned}
{[\alpha(x) \cdot y-\beta(x) \cdot z] } & =\left[\frac{\left(1-\lambda(x)^{2}\right) y-2 \lambda(x) z}{\lambda(x)^{2}+1}\right]=[y-2 \lambda(x)(1+x Q(0) / 2)] \\
& =[y-2 \mu(0) x]
\end{aligned}
$$

It suffices to change the derivative of λ at 0 (which is equal to $\mu(0)$), which may be any real number. Therefore, the action of G on the projectivisation of $T_{p, A}^{*}$, fixes a point (corresponding to $[x]$) but acts transitively on the complement of this point. Since E corresponds to the projectivisation of $T_{p, A}, G$ acts transitively on $E \backslash q$.

Lemma 7.4. Let X be a real projective surface endowed with two minimal conic bundles $\pi_{1}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{2}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ inducing distinct foliations on $X(\mathbb{C})$. Let F_{j} be a real fibre of $\pi_{j}, j=1,2$. If $F_{1}(\mathbb{R}) \cap F_{2}(\mathbb{R}) \neq \emptyset$, then at most one of the curves F_{j} can be singular.
Proof. Suppose the converse for contradiction. Then, F_{i} is the union of two (-1)curves $E_{i, 1}$ and $E_{i, 2}$, intersecting transversally at some point p_{i}. Since p_{i} is the only real point of F_{i}, we have $p_{1}=p_{2}$. Hence, $E_{2,1} \cdot F_{1} \geq 2$.

According to Lemma 5.3, X is a del Pezzo surface of degree 2 or 4. Denote by S the complex surface obtained by forgetting the real structure on X, and by $\eta: S \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ the birational map which is the blow-up of $p_{1}, \ldots, p_{m}, m=5$ or $m=7$, and which sends the fibres of π_{1} on lines passing through p_{1} (Lemma 5.2). The curves $E_{2,1}$ and $E_{2,2}$ having self-intersection -1 , these are the strict transform of lines or conics of \mathbb{P}^{2} passing through 3 or 5 of the p_{i}. Since both curves intersect the fibres of π_{1} into at least 2 points, the curves are conics not passing through p_{1}.

This means that $m=7$ and that the two conics intersect nowhere except at four of the points p_{2}, \ldots, p_{7}. This is impossible since $E_{2,1}$ and $E_{2,2}$ intersect at p.

We now use Lemma 7.1 to show that the action of $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive on connected components when X is a surface with two conic bundles.

Proposition 7.5. Let X be a real projective surface, which admits two minimal conic bundles $\pi_{1}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{2}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ inducing distinct foliations on $X(\mathbb{C})$.

Let $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be two n-tuples of distinct points of $X(\mathbb{R})$ such that p_{i} and q_{i} belong to the same connected component for each i. Then, there exists an element of $\operatorname{Aut}(X(\mathbb{R}))$ which sends p_{i} on q_{i} for each i, and which sends each connected component of $X(\mathbb{R})$ on itself.

Proof. When X is rational, the result follows from HM07, Theorem 1.4]. Thus we assume that X is non-rational, and in particular that $X(\mathbb{R})$ is non-connected.

From Lemma 7.4, any real point which is critical for one fibration is not critical for the second fibration. Otherwise speaking (recall that the fibrations are minimal) a real intersection point of a fibre F_{1} of π_{1} with a fibre F_{2} of π_{2} cannot be a singular point of F_{1} and of F_{2} at the same time. By Lemma 7.1 applied to $\left(X, \pi_{1}\right)$, and to $\left(X, \pi_{2}\right)$, we may assume without loss of generality that all points $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}$ belong to smooth fibres of π_{1} and to smooth fibres of π_{2}. We now use Lemma 7.1 to obtain an automorphism α of $\left(X(\mathbb{R}), \pi_{1}\right)$ such that $\pi_{2}\left(\alpha\left(p_{i}\right)\right) \neq \pi_{2}\left(\alpha\left(p_{j}\right)\right)$ and $\pi_{2}\left(\alpha\left(q_{i}\right)\right) \neq \pi_{2}\left(\alpha\left(q_{j}\right)\right)$ for $i \neq j$. Hence, we may suppose that $\pi_{2}\left(p_{i}\right) \neq \pi_{2}\left(p_{j}\right)$ and $\pi_{2}\left(q_{i}\right) \neq \pi_{2}\left(q_{j}\right)$ for $i \neq j$.

Likewise, using an automorphism of $\left(X(\mathbb{R}), \pi_{2}\right)$ we may suppose that $\pi_{1}\left(p_{i}\right) \neq$ $\pi_{1}\left(p_{j}\right)$ and $\pi_{1}\left(q_{i}\right) \neq \pi_{1}\left(q_{j}\right)$ for $i \neq j$.

We now show that for $i=1, \ldots, m$, there exists an element $\alpha_{i} \in \operatorname{Aut}(X(\mathbb{R}))$ that sends p_{i} on q_{i} and that restricts to the identity on the sets $\cup_{j \neq i}\left\{p_{j}\right\}$ and $\cup_{j \neq i}\left\{q_{j}\right\}$. Then, the composition of the α_{i} will achieve the proof. Observe that $\zeta=\pi_{1} \times \pi_{2}$ gives a finite surjective morphism $X \rightarrow \mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}$ which is 2-to-1 or 4-to-1 depending of the degree of X (follows from assertion (c) of Lemma 5.3). Denote by W the image of $X(\mathbb{R})$. The map $X(\mathbb{R}) \rightarrow W$ is a differential map, which has topological finite degree. Denote by W_{i} the connected component of W which contains both $\zeta\left(p_{i}\right)$ and $\zeta\left(q_{i}\right)$. Observe that W_{i} is contained in the square $I\left(X, \pi_{1}\right) \times I\left(X, \pi_{2}\right)$, and that for each point $x \in W_{i}$, the intersection of the horizontal and vertical lines (fibres of the two projections of $\mathbb{P}_{\mathbb{R}}^{1} \times \mathbb{P}_{\mathbb{R}}^{1}$) passing through x with W_{i} is either only $\{x\}$, when x is on the boundary of W_{i}, or is a bounded interval. Moreover, W_{i} is connected. Then, there exists a path from $\zeta\left(p_{i}\right)$ to $\zeta\left(q_{i}\right)$ which is a sequence of vertical or horizontal segments contained in W_{i}. We may furthermore assume that none of the segments is contained in $\left(\operatorname{pr}_{1}\right)^{-1}\left(\pi_{1}(a)\right)$ or $\left(\operatorname{pr}_{2}\right)^{-1}\left(\pi_{2}(a)\right)$ for any $a \in\left(\cup_{j \neq i}\left\{p_{j}\right\}\right) \cup\left(\cup_{j \neq i}\left\{q_{j}\right\}\right)$. Denote by r_{1}, \ldots, r_{l} the points of U that are sent on the singular points or ending points of the path, and by s_{1}, \ldots, s_{l} some points of $X(\mathbb{R})$ which are sent by ζ on r_{1}, \ldots, r_{l} respectively. Up to renumbering, $s_{1}=p_{i}, s_{l}=q_{i}$ and two consecutive points s_{j} and s_{j+1} are such that $\pi_{1}\left(s_{j}\right)=\pi_{1}\left(s_{j+1}\right)$ or $\pi_{2}\left(s_{j}\right)=\pi_{2}\left(s_{j+1}\right)$. We construct then α_{i} as a composition of $l-1$ maps, each one belonging either to $\operatorname{Aut}\left(X(\mathbb{R}), \pi_{1}\right)$ or $\operatorname{Aut}\left(X(\mathbb{R}), \pi_{2}\right)$ and sending s_{j} on s_{j+1}, and fixing the points $\left(\cup_{j \neq i}\left\{p_{j}\right\}\right) \cup\left(\cup_{j \neq i}\left\{q_{j}\right\}\right)$.

The following proposition describes the possible mixes of connected components.

Proposition 7.6. Let (X, π) be a minimal real conic bundle. Denote by I_{1}, \ldots, I_{r} the r connected components of $I(X, \pi)$, and by M_{1}, \ldots, M_{r} the r connected components of $X(\mathbb{R})$, where $I_{i}=\pi\left(M_{i}\right), M_{i}=\pi^{-1}\left(I_{i}\right) \cap X(\mathbb{R})$. If $\nu \in \operatorname{Sym}_{r}$ is a permutation of $\{1, \ldots, r\}$, the following are equivalent:
(1) there exists $\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ such that $\alpha\left(I_{i}\right)=I_{\nu(i)}$ for each i;
(2) there exists $\beta \in \operatorname{Aut}(X(\mathbb{R}), \pi)$ such that $\beta\left(M_{i}\right)=M_{\nu(i)}$ for each i;
(3) there exists $\beta \in \operatorname{Aut}(X(\mathbb{R}))$ such that $\beta\left(M_{i}\right)=M_{\nu(i)}$ for each i;
(4) there exist two real Zariski open sets $V, W \subset X$, and $\beta \in \operatorname{Bir}(X)$, inducing an isomorphism $V \rightarrow W$, such that $\beta\left(V(\mathbb{R}) \cap M_{i}\right)=W(\mathbb{R}) \cap M_{\nu(i)}$ for each i.
Moreover, the conditions are always satisfied when $r \leq 2$, and are in general not satisfied when $r \geq 3$.
Proof. The implications $(2) \Rightarrow(1)$ and $(2) \Rightarrow(3) \Rightarrow(4)$ are obvious.
Let us prove (1) $\Rightarrow(2)$. According to Proposition 4.15, we may assume that (X, π) is exceptional. The results follows from Lemma 4.9.

We prove now that if $r \leq 2$, Assertion (1) is always satisfied, hence all the conditions are equivalent (since all are true). When $r \leq 1$, take α to be the identity. When $r=2$, we make a linear change of coordinates to the effect that $I_{1}=\{(x: 1) \mid 0 \leq x \leq 1\}$ and I_{2} is bounded by $(1: 0)$ and $(\lambda: 1)$, for some $\lambda \in \mathbb{R}$, $\lambda>1$ or $\lambda<0$. Then, $\alpha:\left(x_{1}: x_{2}\right) \mapsto\left(\lambda x_{2}: x_{1}\right)$ is an involution which exchanges I_{1} and I_{2}.

It remains to prove the implication $(4) \Rightarrow(1)$ for $r \geq 3$. We decompose β into elementary links

$$
X=X_{0} \xrightarrow{\beta_{1}} X_{1} \xrightarrow{\beta_{2}} \cdots \xrightarrow{\beta_{n-1}} X_{n-1} \xrightarrow{\beta_{n}} X_{n}=X
$$

as in Isk96, Theorem 2.5]. It follows from the description of the links of Isk96, Theorem 2.6] that each of the links is of type $I I$ or $I V$, and that the links of type $I I$ are birational maps of conic bundles and the links of type $I V$ occur on del Pezzo surfaces of degree 2 .

In consequence, each of the X_{i} admits a conic bundle structure given by $\pi_{i}: X_{i} \rightarrow$ $\mathbb{P}_{\mathbb{R}}^{1}$, where $\pi_{0}=\pi_{n}=\pi$, and if β_{i} has type $I I$, it is a birational map of conic bundles $\left(X_{i-1}, \pi_{i-1}\right) \rightarrow\left(X_{i}, \pi_{i}\right)$, and if it has type $I V$, it is an isomorphism $X_{i-1} \rightarrow X_{i}$ which does not send the general fibre of π_{i-1} on those of π_{i}. In this latter case, since π_{i} and $\pi_{i-1} \beta_{i}$ have distinct general fibres, X_{i-1} and X_{i} are del Pezzo surfaces of degree 2, and the Geiser involution $\iota_{i-1} \in \operatorname{Aut}\left(X_{i-1}\right)$ exchanges the two general fibres (follows from Isk96, Theorem 2.6], but also from Lemma 5.3). This means that the map $\beta_{i} \circ \iota_{i-1}$, that we denote by γ_{i}, is an isomorphism of conic bundles $\left(X_{i-1}, \pi_{i-1}\right) \rightarrow\left(X_{i}, \pi_{i}\right)$.

Now, we prove by induction on the number of links of type $I V$ that β may be decomposed into compositions of elements of $\operatorname{Bir}(X, \pi)$ and maps of the form $\psi \iota \psi^{-1}$ where ψ is a birational map of conic bundles $(X, \pi) \rightarrow\left(X^{\prime}, \pi^{\prime}\right),\left(X^{\prime}, \pi^{\prime}\right)$ is a del Pezzo surface of degree 2 and $\iota \in \operatorname{Aut}\left(X^{\prime}\right)$ is the Geiser involution. If there is no link of type $I V, \beta$ preserves the conic bundle structure given by π. Otherwise, denote by β_{i} the first link of type $I V$, which is an isomorphism $\beta_{i}: X_{i} \rightarrow X_{i+1}$, and write $\beta_{i}=\gamma_{i} \circ \iota_{i-1}$ as before. We write $\psi=\beta_{i-1} \circ \cdots \circ \beta_{1}$, which is a birational map of conic bundles $\psi:(X, \pi) \rightarrow\left(X_{i}, \pi_{i}\right)$. Then, $\beta=\left(\beta_{n} \circ \cdots \circ \beta_{i+1} \circ \gamma_{i} \circ \psi\right)\left(\psi^{-1} \iota_{i-1} \psi\right)$. Applying the induction hypothesis on the map $\left(\beta_{n} \circ \cdots \circ \beta_{i+1} \circ \gamma_{i} \circ \psi\right) \in \operatorname{Bir}(X)$, we are done.

Now, observe that when $\left(X^{\prime}, \pi^{\prime}\right)$ is a minimal real conic bundle and X^{\prime} is a del Pezzo surface of degree 2, the map $\zeta: X^{\prime} \rightarrow \mathbb{P}_{\mathbb{R}}^{2}$ given by $\left|-K_{X^{\prime}}\right|$ is a double covering, ramified over a smooth quartic curve $\Gamma \subset \mathbb{P}_{\mathbb{R}}^{2}$ (see e.g. Dem76). Since (X, π) is minimal, π has 6 singular fibres (Lemma 4.2), so $I(X, \pi)$ is the union of three intervals and $X(\mathbb{R})$ is the union of 3 connected components (Corollary 4.13). This implies that $\Gamma(\mathbb{R})$ is the union of three disjoint ovals. A connected component M of $X(\mathbb{R})$ is homeomorphic to a sphere, and surjects by ζ to the interior of one of the three ovals. The Geiser involution (induced by the double covering) induces an involution on M, which fixes the preimage of the oval. This means that the Geiser involution sends any connected component of $X(\mathbb{R})$ on itself. Thus, in the decomposition of β into elements of $\operatorname{Bir}(X, \pi)$ and conjugate elements of Geiser involutions, the only relevant elements are those of $\operatorname{Bir}(X, \pi)$. There exists thus $\beta^{\prime} \in \operatorname{Bir}(X, \pi)$ which acts on the connected components of $X(\mathbb{R})$ in the same way as β. This shows that (4) implies (1).

We finish by proving that (1) is false in general, when $r \geq 3$. This follows from the fact that if Σ is a general finite subset of $2 r$ distinct points of $\mathbb{P}_{\mathbb{R}}^{1}$, the group $\left\{\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right) \mid \alpha(\Sigma)=\Sigma\right\}$ is trivial. Supposing this fact true, we obtain the result by applying it to the $2 r$ boundary points of $I(X, \pi)$. Let us prove the fact. The set of $2 r$-tuples of $\mathbb{P}_{\mathbb{R}}^{1}$ is an open subset W of $\left(\mathbb{P}_{\mathbb{R}}^{1}\right)^{2 r}$. For any non-trivial permutation $v \in \operatorname{Sym}_{2 r}$, we denote by $W_{v} \subset W$ the set of points $a=\left(a_{1}, \ldots, a_{2 r}\right) \in W$ such that there exists $\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ with $\alpha\left(a_{i}\right)=a_{v(i)}$ for each i. Let $a \in W_{v}$, and take two 4-tuples Σ_{1}, Σ_{2} of a_{i} 's with $\Sigma_{1} \neq \Sigma_{2}$ and $\Sigma_{2}=v\left(\Sigma_{1}\right)$ (this is possible since v is non-trivial). Then, the cross-ratio of the a_{i} 's in Σ_{1} and in Σ_{2} are the same. This implies a non-trivial condition on W. Consequently, W_{v} is contained in a closed subset of W. Doing this for all non-trivial permutations v, we obtain the result.

8. Real algebraic models

The aim of this section is to go further with non-minimal surfaces with 2 or 3 connected components. We begin to show how to separate infinitely near points to the effect that any such a surface $Y(\mathbb{R})$ is isomorphic to a blow-up $B_{a_{1}, \ldots, a_{m}} X(\mathbb{R})$ where X is minimal and a_{1}, \ldots, a_{m} are distinct proper points of $X(\mathbb{R})$. Then, we replace $X(\mathbb{R})$ by an isomorphic del Pezzo model (Corollary 5.4) and we use the fact that $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive on connected components for such an X (Proposition (7.5) to prove that in many cases, if two birational surfaces Y and Z have homeomorphic real parts then $Y(\mathbb{R})$ and $Z(\mathbb{R})$ are isomorphic. As a corollary, we get that in any cases, $\operatorname{Aut}(Y(\mathbb{R}))$ is very transitive on connected components.
Proposition 8.1. Let X be a minimal geometrically rational real surface, with $\# X(\mathbb{R})=2$ or $\# X(\mathbb{R})=3$, and let $\eta: Y \rightarrow X$ be a birational morphism.

Then there exists a blow-up $\eta^{\prime}: Y^{\prime} \rightarrow X$, whose centre is a finite number of distinct real proper points of X, and such that $Y^{\prime}(\mathbb{R})$ is isomorphic to $Y(\mathbb{R})$.

Moreover, we can assume that the isomorphism $Y(\mathbb{R}) \rightarrow Y^{\prime}(\mathbb{R})$ induces an homeomorphism $\eta^{-1}(M) \rightarrow\left(\eta^{\prime}\right)^{-1}(M)$ for each connected component M of $X(\mathbb{R})$.
Proof. According to Corollary 5.4, we may assume that X admits two minimal conic bundles $\pi_{1}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{2}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ inducing distinct foliations on $X(\mathbb{C})$. Preserving the isomorphism class of $Y(\mathbb{R})$, we may assume that the points in the centre of η are all real (such a point may be a proper point of $X(\mathbb{R})$ or an infinitely near point). Let us denote by $m\left(=K_{X}^{2}-K_{Y}^{2}\right)$ the number of those points. We prove the result by induction on m.

The cases $m=0$ and $m=1$ being obvious (take $\eta^{\prime}=\eta$), we assume that $m \geq 2$. We decompose η as $\eta=\theta \circ \varepsilon$, where $\varepsilon: Y \rightarrow Z$ is the blow-up of one real point $q \in Z$, and $\theta: Z \rightarrow Y$ is the blow-up of $m-1$ real points. By induction hypothesis, we may assume that θ is the blow-up of $m-1$ proper points of X, namely $a_{1}, \cdots, a_{m-1} \in X(\mathbb{R})$. Moreover, applying Proposition 7.5, we may move the points by an element of $\operatorname{Aut}(X(\mathbb{R}))$, and assume that $\pi_{1}\left(a_{i}\right) \neq \pi_{1}\left(a_{j}\right)$ and $\pi_{2}\left(a_{i}\right) \neq \pi_{2}\left(a_{j}\right)$ for $i \neq j$, and that the fibre of π_{1} passing through a_{i} and the fibre of π_{2} passing through a_{i} are nonsingular and transverse at a_{i}, for each i.

If $\theta(q) \notin\left\{a_{1}, \ldots, a_{m-1}\right\}$, then η is the blow-up of m distinct proper points of X, hence we are done. Otherwise, assume that $\theta(q)=a_{1}$. We write $E=\theta^{-1}\left(a_{1}\right) \subset Z$, and denote by $F_{i} \subset Z$ the strict pull-back by η of the fibre of π_{i} passing through a_{1}, for $i=1,2$. Then, F_{1} and F_{2} are two (-1)-curves which do not intersect. Hence, the point $q \in E$ belongs to at most one of the two curves, so we may assume that $q \notin F_{1}$. Denote by $\theta_{2}: Z \rightarrow X_{2}$ the contraction of the $m-1$ disjoint (-1)curves $F_{1}, \theta^{-1}\left(a_{2}\right), \ldots, \theta^{-1}\left(a_{m-1}\right)$. Since q does not belong to any of these curves, $\eta_{2}=\theta_{2} \circ \varepsilon$ is the blow-up of $m-1$ distinct proper points of X_{2}. It remains to find an isomorphism $\gamma: X_{2}(\mathbb{R}) \rightarrow X(\mathbb{R})$ such that for each connected component M of $X(\mathbb{R}), \gamma \eta_{2}$ sends $\eta^{-1}(M)$ on M.

Denoting $\pi^{\prime}=\pi_{1} \circ \theta \circ \theta_{2}^{-1}$, the map $\psi=\theta_{2} \circ \theta^{-1}$ is a birational map of conic bundles $\left(X, \pi_{1}\right) \rightarrow\left(X_{2}, \pi^{\prime}\right)$, which factorizes as the blow-up of a_{1}, followed by the contraction of the strict transform of the fibre passing through a_{1}. Therefore, the conic bundle $\left(X_{2}, \pi^{\prime}\right)$ is minimal. Since X is not rational and $\pi^{\prime} \psi=\pi_{1}$, Corollary 4.17 yields the existence of an isomorphism $\gamma: X_{2}(\mathbb{R}) \rightarrow X(\mathbb{R})$ such that $\pi_{1} \gamma=\pi^{\prime}$. Observe that $\gamma \eta_{2} \circ \eta^{-1}=\gamma \theta_{2} \circ \theta^{-1}=\gamma \psi$ is a birational map $X \rightarrow X$ which satisfies $\pi \circ\left(\gamma \eta_{2} \circ \eta^{-1}\right)=\pi$. Consequently, for any connected component M of $X(\mathbb{R})$, which corresponds to $\pi^{-1}(V) \cap X(\mathbb{R})$, for some interval $V \subset \mathbb{P}_{\mathbb{R}}^{1}$, we find $\pi\left(\gamma \eta_{2} \eta^{-1}(M)\right)=\pi(M)=V$, thus $\gamma \eta_{2}$ sends $\eta^{-1}(M)$ on M.

Corollary 8.2. Let X be a minimal geometrically rational real surface, such that $\# X(\mathbb{R})=2$ or $\# X(\mathbb{R})=3$, and let $\eta: Y \rightarrow X, \varepsilon: Z \rightarrow X$ be two birational morphisms. Denote by M_{1}, \ldots, M_{r} the connected components of $X(\mathbb{R})(r=2,3)$. Then, the following are equivalent:
(1) $\eta^{-1}\left(M_{i}\right) \subset Y(\mathbb{R})$ and $\varepsilon^{-1}\left(M_{i}\right) \subset Z(\mathbb{R})$ are homeomorphic for each i;
(2) there exists an isomorphism $Y(\mathbb{R}) \rightarrow Z(\mathbb{R})$ which induces an homeomorphism $\eta^{-1}\left(M_{i}\right) \rightarrow \varepsilon^{-1}\left(M_{i}\right)$ for each i.

Proof. (2) $\Rightarrow(1)$ being obvious, let us prove the converse. According to Proposition 8.1, we may assume that η and ε are the blow-ups of a finite number of distinct real proper points of X. Denote by Σ_{η} and Σ_{ε} these two finite sets. For each i, the fact that $\eta^{-1}\left(M_{i}\right) \subset Y(\mathbb{R})$ and $\varepsilon^{-1}\left(M_{i}\right) \subset Z(\mathbb{R})$ are homeomorphic implies that the numbers of points of $\Sigma_{\eta} \cap M_{i}$ and $\Sigma_{\varepsilon} \cap M_{i}$ coincide.

By Corollary 5.4 and Proposition 7.5, $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive on connected components of $X(\mathbb{R})$. In particular, there exists an element $\alpha \in \operatorname{Aut}(X(\mathbb{R}))$ such that $\alpha\left(M_{i}\right)=M_{i}$ for each i and $\alpha\left(\Sigma_{\eta}\right)=\Sigma_{\varepsilon}$. Then, $\psi=\varepsilon^{-1} \alpha \eta: Y(\mathbb{R}) \rightarrow Z(\mathbb{R})$ is the wanted isomorphism.

Corollary 8.3. Let Y be a geometrically rational real surface with $\# Y(\mathbb{R})=2$ or $\# Y(\mathbb{R})=3$. Let $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be two n-tuples of distinct points of $Y(\mathbb{R})$ such that p_{i} and q_{i} belong to the same connected component for each i.

Then, there exists an element $\alpha \in \operatorname{Aut}(Y(\mathbb{R}))$, which fixes each connected component of $Y(\mathbb{R})$ and such that $\alpha\left(p_{i}\right)=q_{i}$ for each i.

Proof. Let $\eta: Y \rightarrow X$ be a birational morphism to a minimal real surface X; observe that $\# X(\mathbb{R})=\# Y(\mathbb{R})$. According to Corollary 5.4, we may assume that X admits two minimal conic bundles $\pi_{1}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ and $\pi_{2}: X \rightarrow \mathbb{P}_{\mathbb{R}}^{1}$ inducing distinct foliations on $X(\mathbb{C})$. By Proposition 8.1, we can suppose that η is the blow-up of m distinct real proper points $a_{1}, \ldots, a_{m} \in X$. We prove the result by induction on m.

If $m=0$, which means that $X=Y$, the result follows from Proposition 7.5.
If $m>0$, denote by $\eta_{0}: Z \rightarrow X$ the blow-up of $a_{1}, \ldots, a_{m-1}\left(\eta_{0}\right.$ is the identity if $m=1$), and by $\eta_{1}: Y \rightarrow Z$ the blow-up of $b=\eta_{0}^{-1}\left(a_{r}\right)$.

Applying Proposition 7.5, we may assume that $\pi_{1}\left(a_{i}\right) \neq \pi_{1}\left(a_{j}\right)$ and $\pi_{2}\left(a_{i}\right) \neq$ $\pi_{2}\left(a_{j}\right)$ for $i \neq j$, and that the fibre of π_{1} passing through a_{i} and the fibre of π_{2} passing through a_{i} are nonsingular and transverse at a_{i}, for each i. Let us denote by $E \subset Y$ the exceptional curve $\eta_{1}^{-1}(b)$ of η_{1} and by F_{i} the strict transform on Y of the fibre of π_{i} passing through a_{m}, for $i=1,2$. Then E, F_{1} and F_{2} are three (-1)-curves, F_{1} and F_{2} do not intersect, and E intersect transversally each of the F_{i}. By induction hypothesis, we may use the lift of an element of $\operatorname{Aut}(Z(\mathbb{R}))$ which fixes b to assume that no one of the points p_{i} belongs to $F_{1} \backslash E, F_{2} \backslash E$ or to $\eta^{-1}\left(a_{i}\right)$ for $i=1, \ldots, m-1$. Then the group $G=\{\alpha \in$ $\operatorname{Aut}(X(\mathbb{R})) \mid \pi_{1} \alpha=\pi_{1}, \alpha$ fixes $\left.a_{1}, \ldots, a_{m}, \eta\left(p_{1}\right), \ldots, \eta\left(p_{n}\right)\right\}$, acts transitively on $E \backslash F_{1}$ (Lemma 7.3). Lifting a well-chosen element of this group in $\operatorname{Aut}(Y(\mathbb{R})$), we may move the points p_{i} and assume that no one of the p_{i} belongs to F_{2} (i.e. we can avoid $F_{2} \cap E$). Denote by $\eta^{\prime}: Y \rightarrow X^{\prime}$ the contraction of the disjoint (-1)-curves $F_{2}, \eta^{-1}\left(a_{1}\right), \ldots \eta^{-1}\left(a_{m-1}\right)$.

Then, the birational map $\psi=\eta^{\prime} \eta^{-1}: X \rightarrow X^{\prime}$ is a birational map of conic bundles $\left(X, \pi_{2}\right) \rightarrow\left(X^{\prime}, \pi^{\prime}\right)$, where $\pi^{\prime}=\pi_{2} \psi^{-1}$, which consists of the blow-up of a_{m}, followed by the contraction of the strict transform of the fibre passing through a_{m}. Therefore, the conic bundle $\left(X^{\prime}, \pi^{\prime}\right)$ is minimal. Since X is not rational, Corollary 4.17 yields the existence of an isomorphism $\gamma: X^{\prime}(\mathbb{R}) \rightarrow X(\mathbb{R})$ such that $\pi_{2} \gamma=\pi^{\prime}$. Therefore, there exists an element $\beta \in \operatorname{Aut}\left(X^{\prime}(\mathbb{R})\right)$ which fixes all the points blown-up by η^{\prime}, which fixes all the points $\left\{\eta^{\prime}\left(p_{i}\right), p_{i} \notin E\right\}$, and which sends the points $\left\{\eta^{\prime}\left(p_{i}\right), p_{i} \in E\right\}$ outside of $\eta^{\prime}(E)$. Applying the lift of β on $\operatorname{Aut}(Y(\mathbb{R}))$, we may assume that none of the points p_{i} belongs to E. Doing the same manipulation with the q_{i}, it remains to use the lift of an element of $\operatorname{Aut}(Z(\mathbb{R}))$ which fixes b and sends $\eta_{1}\left(p_{i}\right)$ on $\eta_{1}\left(q_{i}\right)$ for each i.

9. Proof of the main results

The proof of Theorem 1.5 was given at the end of Section 5 . Now, we deduce the others results stated in the introduction from the results of Sections 7 and 8 . The following lemma serves to prove most of them.

Lemma 9.1. Let (X, π) be a minimal real conic bundle, such that $I(X, \pi)$ is the union of r intervals I_{1}, \ldots, I_{r}, with $r=2$ or $r=3$.

Let $\eta_{Y}: Y \rightarrow X$ and $\eta_{Z}: Z \rightarrow X$ be two birational morphisms. For $i=1, \ldots, r$, we write $X_{i}=\pi^{-1}\left(I_{i}\right) \cap X(\mathbb{R}), Y_{i}=\eta_{Y}^{-1}\left(X_{i}\right) \cap Y(\mathbb{R})$ and $Z_{i}=\eta_{Z}^{-1}\left(X_{i}\right) \cap Z(\mathbb{R})$.

Let $p_{1}, \ldots, p_{n} \in Y(\mathbb{R}), q_{1}, \ldots, q_{n} \in Z(\mathbb{R})$ be two n-tuples of distinct points, and assume the existence of an homeomorphism $h: Y(\mathbb{R}) \rightarrow Z(\mathbb{R})$ which sends p_{i} on q_{i}
for each i, and sends Y_{i} on $Z_{\nu(i)}$, where $\nu \in \operatorname{Sym}_{r}$ is a permutation of $\{1, \ldots, r\}$. Then, the following are equivalent:
(1) There exists an isomorphism $\beta: Y(\mathbb{R}) \rightarrow Z(\mathbb{R})$ which sends Y_{i} on $Z_{\nu(i)}$ for each $i \in\{1, \ldots, r\}$ and sends p_{j} on q_{j} for each $j \in\{1, \ldots, n\}$.
(2) There exists an automorphism $\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right)$ which sends I_{i} on $I_{\nu(i)}$ for each $i \in\{1, \ldots, r\}$.
Moreover, both assertions are true if $r=2$, and false in general when $r=3$.
Proof. Observe that the X_{i} (respectively the Y_{i}, Z_{i}) are the connected components of $X(\mathbb{R})$ (respectively of $Y(\mathbb{R}), Z(\mathbb{R})$).
$[(1) \Rightarrow(2)]$ The map $\eta_{Z} \beta \eta_{Y}^{-1}$ is a birational self-map of X, which restricts to an isomorphism $\varphi: V \rightarrow W$, where V and W are two real Zariski open subsets of X. Moreover, the hypothesis on β implies that $\varphi\left(V(\mathbb{R}) \cap X_{i}\right)=W(\mathbb{R}) \cap X_{\nu(i)}$. The existence of α is provided by Proposition 7.6.
$[(2) \Rightarrow(1)]$ Proposition 7.6 yields the existence of $\gamma \in \operatorname{Aut}(X(\mathbb{R}), \pi)$ such that $\gamma\left(X_{i}\right)=X_{\nu(i)}$. We may thus assume that ν is the identity. According to Proposition 8.1, we may moreover suppose that η_{Y} and η_{Z} are the blow-ups of a finite set of disjoint real proper points of X. Since Y_{i} is homeomorphic to Z_{i} for each i, η_{Y} is the blow-up of a_{1}, \ldots, a_{m} and η_{Z} is the blow-up of b_{1}, \ldots, b_{m}, where a_{j} and b_{j} belong to the same connected component of $X(\mathbb{R})$ for each j. Then, there exists an element of $\operatorname{Aut}(X(\mathbb{R}))$ which preserves each connected component of X and sends a_{j} on b_{j} for each j (Corollary 8.3). We may thus assume that $Y=Z$, and conclude by applying Corollary 8.3 to Y.

The fact that (2) is true when $r=2$ and false in general when $r=3$ was proved in Proposition 7.6.

Proof of Theorem 1.1. Let Y be a nonsingular geometrically rational real projective surface, with $\# Y(\mathbb{R})=2$. Let $\left(p_{1}, \ldots, p_{n}\right)$ and $\left(q_{1}, \ldots, q_{n}\right)$ be two n-tuples of points which are compatible. We want to prove the existence of $\alpha \in \operatorname{Aut}(Y(\mathbb{R}))$ such that $\alpha\left(p_{i}\right)=q_{i}$ for each i.

If p_{i} and q_{i} are in the same connected component of $Y(\mathbb{R})$, the result follows from Corollary 8.3.

Otherwise, the compatibility means that the two components of $X(\mathbb{R})$ are homeomorphic and that p_{i} and q_{i} are in a distinct component for each i. Lemma 9.1 provides the existence of an element of $\operatorname{Aut}(Y(\mathbb{R}))$ which permutes the two connected components of $Y(\mathbb{R})$. This reduces the situation to the previous case.

Theorem 1.2 is Corollary 8.3 applied to the case of 3 connected components.
Proof of Corollary 1.3. We prove firstly that if X is not geometrically rational, then $\operatorname{Aut}(X(\mathbb{R}))$ is not very transitive. If X has Kodaira dimension 2, (surface of general type), it has only finitely many birational self-maps (see e.g. Uen75.) If X has Kodaira dimension 1, every birational self-map of X preserves the elliptic fibration induced by $\left|K_{X}\right|$. If X has Kodaira dimension 0 , and X is minimal, then $\operatorname{Bir}(X)=\operatorname{Aut}(X)$. The group $\operatorname{Aut}(X)$ is an algebraic group of dimension 1 or 2 (its neutral component is an elliptic curve or an Abelian surface). Thus, $\operatorname{Bir}(X)$ may not be 2-transitive. The case when X is not minimal is deduced from this case.

If X is a surface with Kodaira dimension $-\infty$, then X is uniruled. If furthermore, X is not geometrically rational and $X(\mathbb{R})$ is non-empty, then the Albanese map
$X \rightarrow C$ is a real ruling over a curve with genus $g(C)>0$, see e.g. [Sil89, V.(1.8)], and the Albanese map is preserved by any birational self-map.

Assume now that X is a geometrically rational surface. When $\# X(\mathbb{R})=1, X$ is rational; the fact that $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive is the main result of HM07. When $\# X(\mathbb{R})=2, \operatorname{Aut}(X(\mathbb{R}))$ is very transitive by Theorem 1.1.

When $\# X(\mathbb{R})>3$, we prove now that the group $\operatorname{Aut}(X(\mathbb{R}))$ is not transitive. Denote by $\eta: X \rightarrow X_{0}$ a birational morphism to a minimal real surface, and observe that $\# X_{0}(\mathbb{R})=\# X(\mathbb{R})>3$. Let us discuss the two cases for X_{0} given by Theorem 3.5. If X_{0} is a del Pezzo surface with $\rho\left(X_{0}\right)=1$, then $\operatorname{Aut}(X(\mathbb{R}))$ is countable (Corollary 3.9), thus $\operatorname{Aut}(X(\mathbb{R}))$ cannot be transitive. The other case is when $\rho\left(X_{0}\right)=2$. Then, X_{0} endows a real conic bundle structure $\left(X_{0}, \pi_{0}\right)$, and $\operatorname{Bir}\left(X_{0}\right)=\operatorname{Bir}\left(X_{0}, \pi_{0}\right)$ (Theorem 6.1). Since the action of $\operatorname{Bir}\left(X_{0}, \pi_{0}\right)$ on the basis of the conic bundle is finite (there are too much boundary points), neither $\operatorname{Aut}\left(X_{0}(\mathbb{R})\right)$ nor $\operatorname{Aut}(X(\mathbb{R}))$ may be transitive.

When $\# X(\mathbb{R})=3, \operatorname{Aut}(X(\mathbb{R}))$ is very transitive on connected components (Theorem 1.2). Thus, $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive if and only if for any homeomorphism $h: X(\mathbb{R}) \rightarrow X(\mathbb{R})$, there exists $\alpha \in \operatorname{Aut}(X(\mathbb{R}))$ which permutes the components of $X(\mathbb{R})$ in the same way that h does. The possibilities when this occur are described by Lemma 9.1. For example, when X is minimal, it admits a minimal real conic bundle structure (X, π) (Theorem 3.5 and Proposition 3.7), where π has 6 singular fibres. Then, $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive if and only if $\left\{\alpha \in \operatorname{Aut}\left(\mathbb{P}_{\mathbb{R}}^{1}\right) \mid \alpha(I(X, \pi)=I(X, \pi)\}\right.$ acts transitively on the three intervals of $I(X, \pi)$. This is true in some special cases, but false in general. When X is not minimal, $\operatorname{Aut}(X(\mathbb{R}))$ is very transitive for example when the three connected components of $X(\mathbb{R})$ are not homeomorphic 2-by-2, or when X is the blow-up of a minimal surface Y with a very transitive group $\operatorname{Aut}(Y(\mathbb{R}))$.

Proof of Theorem 1.4. Let X, Y be two geometrically rational real surfaces, and assume that $\# X(\mathbb{R}) \leq 2$. We assume that X is birational to Y and that $X(\mathbb{R})$ is homeomorphic to $Y(\mathbb{R})$, and prove that $X(\mathbb{R})$ is isomorphic to $Y(\mathbb{R})$.

Remark that all geometrically rational surfaces with connected real part are birational to each others, thus in this case the statement follows from the unicity of rational models BH07. We may thus assume that $\# X(\mathbb{R})=2$. Denote by $\eta_{X}: X \rightarrow X_{0}$ and $\eta_{Y}: Y \rightarrow Y_{0}$ birational morphisms to minimal real surfaces.

Since X_{0} and Y_{0} are birational, $X_{0}(\mathbb{R})$ and $Y_{0}(\mathbb{R})$ are isomorphic (Theorem 1.5), so we may assume that $X_{0}=Y_{0}$. The result now follows from Lemma 9.1.

Proof of Corollary 1.6. If M is connected, and M is non-orientable or M is orientable with genus $g(M) \leq 1$, then it admits a unique geometrically rational model by BH07, Corollary 8.1]. Moreover, this model is in fact rational.

Conversely let M be a compact \mathcal{C}^{∞}-surface and assume that M admits a unique geometrically rational model X. The existence of such a model implies, by Commessatti's theorem Com14, that any connected component of M is non-orientable or is orientable with genus $g \leq 1$. The unicity means that for any geometrically rational model Y of M, then $Y(\mathbb{R})$ is isomorphic to $X(\mathbb{R})$. In particular, this implies that all geometrically rational models of M belong to a unique birational class. From Theorem 6.1 and Proposition 3.8, this means that X is rational. It remains to observe that when X is rational, $X(\mathbb{R})$ is connected, and is either non-orientable or orientable of genus ≤ 1. When X is minimal, this follows from Proposition 3.7.

Then, blowing-up points on a surface either does nothing on the topology of the real part (if the points blown-up are imaginary), or it gives a non-orientable real part (if the points blown-up ar real).

We finish by a result on non-density. In KM08, it is proved that $\operatorname{Aut}(X(\mathbb{R}))$ is dense in $\operatorname{Diff}(X(\mathbb{R}))$ when X is a geometrically rational surface with $\# X(\mathbb{R})=1$ (or equivalently when X is rational). In the cited paper, it is said that $\# X(\mathbb{R})=2$ is probably the only other case where the density holds. The following collect the known results in this direction. The first two of them are new.

Proposition 9.2. Let X be a geometrically rational surface.

- If $\# X(\mathbb{R}) \geq 5$, then $\operatorname{Aut}(X(\mathbb{R}))$ is not dense in $\operatorname{Diff}(X(\mathbb{R}))$;
- if $\# X(\mathbb{R})=3$ or $\# X(\mathbb{R})=4$, then $\operatorname{Aut}(X(\mathbb{R}))$ is not dense in $\operatorname{Diff}(X(\mathbb{R}))$ for a general X, but could be dense in some special cases;
- if $\# X(\mathbb{R})=1$, then $\operatorname{Aut}(X(\mathbb{R}))$ is dense in $\operatorname{Diff}(X(\mathbb{R}))$.

Proof. The case $\# X(\mathbb{R})=1$ is the main result of KM08. Assume from now on that $\# X(\mathbb{R}) \geq 3$, and denote by $\eta: X \rightarrow X_{0}$ a birational morphism to a minimal real surface, and observe that $\# X_{0}(\mathbb{R})=\# X(\mathbb{R}) \geq 3$. Let us discuss the two cases for X_{0} given by Theorem 3.5.

Assume that X_{0} is a del Pezzo surface with $\rho\left(X_{0}\right)=1$. If the degree of X_{0} is 1 then $\operatorname{Bir}\left(X_{0}\right)$ is finite (Corollary 3.9), thus $\operatorname{Aut}(X(\mathbb{R}))$ cannot be dense. If X_{0} has degree 2 , then $\# X_{0}(\mathbb{R})=4$ (Proposition 3.7), so $\# X(\mathbb{R})=4$ too. Since $\operatorname{Aut}\left(X_{0}(\mathbb{R})\right)=\operatorname{Aut}\left(X_{0}\right)$ is finite, $\operatorname{Aut}\left(X_{0}(\mathbb{R})\right)$ cannot be dense (but maybe $\operatorname{Aut}(X(\mathbb{R}))$ could be).

The other case is when $\rho\left(X_{0}\right)=2$. Then, X_{0} endows a real conic bundle structure $\left(X_{0}, \pi_{0}\right)$. If $\# X(\mathbb{R})=\# X_{0}(\mathbb{R}) \geq 4$, then $\operatorname{Bir}\left(X_{0}\right)=\operatorname{Bir}\left(X_{0}, \pi_{0}\right)$ (Theorem 6.1), so $\operatorname{Aut}(X(\mathbb{R}))$ is not dense. If $\# X_{0}(\mathbb{R})=3$, then in general $\operatorname{Aut}\left(X_{0}(\mathbb{R})\right)$ does not exchanges the connected component of $X_{0}(\mathbb{R})$. Consequently, $\operatorname{Aut}\left(X_{0}(\mathbb{R})\right)$ is not dense (but maybe $\operatorname{Aut}(X(\mathbb{R}))$ could be, if the connected components of $X(\mathbb{R})$ are not homeomorphic).

References

[BH07] I. Biswas, J. Huisman, Rational real algebraic models of topological surfaces, Doc. Math. 12 (2007), 549-567
[Bla07] J. Blanc, Linearisation of finite Abelian subgroups of the Cremona group of the plane. Groups Geom. Dyn. (to appear) arXiv:math/0704.0537.
[Bla08] J. Blanc, Sous-groupes algébriques du groupe de Cremona. Transform. Groups (to appear) arXiv:math/0802.2689.
[BCR98] J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb. (3), vol. 36, Springer Verlag, 1998
[Com12] A. Comessatti, Fondamenti per la geometria sopra superfizie razionali dal punto di vista reale, Math. Ann. 73 (1912) 1-72.
[Com14] A. Comessatti, Sulla connessione delle superfizie razionali reali, Annali di Math. 23(3) (1914) 215-283.
[Dem76] M. Demazure, Surfaces de Del Pezzo II. Séminaire sur les singularités des surfaces, Palaiseau, France, (1976-1977), Lecture Notes in Mathematics, 777, 22-70.
[DI06] I.V. Dolgachev, V.A. Iskovskikh, Finite subgroups of the plane Cremona group. to appear in "Algebra, Arithmetic, and Geometry-Manin Festschrift" arXivmath/0610595v2
[Hir64] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-203; ibid., 205-326
[HM07] J. Huisman, F. Mangolte, The group of automorphisms of a real rational surface is n-transitive, Bull. London Math. Soc. (to appear) arXiv:0708. 3992 [math.AG]
[HM08] J. Huisman, F. Mangolte, Automorphisms of real rational surfaces and weighted blowup singularities, (submitted), arXiv:0804.3846 [math.AG]
[HM09] J. Huisman, F. Mangolte, Algebraic models of orientable surfaces, (in preparation),
[Isk79] V.A. Iskovskikh, Minimal models of rational surfaces over arbitrary fields. Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no 1, 19-43, 237.
[Isk96] V.A. Iskovskikh, Factorization of birational mappings of rational surfaces from the point of view of Mori theory. Uspekhi Mat. Nauk 51 (1996) no 4 (310), 3-72.
[Kol97] J. Kollár, Real algebraic surfaces, arXiv:alg-geom/9712003v1.
[Kol01] J. Kollár, The topology of real algebraic varieties, Current developments in mathematics 2000, 197-231, Int. Press, Somerville, MA, 2001
[KM08] J. Kollár, F. Mangolte, Cremona transformations and diffeomorphisms of surfaces, (submitted), arXiv:0809.3720 [math.AG]
[Mang06] F. Mangolte, Real algebraic morphisms on 2-dimensional conic bundles, Adv. Geom. 6 (2006), 199-213
[Mani67] Yu. Manin, Rational surfaces over perfect fields, II. Math. USSR - Sbornik 1 (1967), 141-168
[RV05] F. Ronga, T. Vust, Diffeomorfismi birazionali del piano proiettivo reale, Comm. Math. Helv. 80 (2005), 517-540
[Sil89] R. Silhol, Real algebraic surfaces, Springer Lecture Notes vol. 1392, 1989
[Tog73] A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 167-185
[Uen75] K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math. 439, Springer-Verlag, Berlin, 1975

Jérémy Blanc, Université de Genève, Section de mathématiques, 2-4 rue du Lièvre, Case postale 64, 1211 Genève 4, Suisse

E-mail address: Jeremy.Blanc@unige.ch
URL: http://www.unige.ch/~blancj
Frédéric Mangolte, Laboratoire de Mathématiques, Université de Savoie, 73376 Le Bourget du Lac Cedex, France. Tel.: +33 (0)4797586 60, Fax: +33 (0)479758142

E-mail address: mangolte@univ-savoie.fr
URL: http://www.lama.univ-savoie.fr/~mangolte

