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Sébastien Hénaff, Ina Taralova
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1 Introduction

In some engineering applications, such as chaotic encryption, chaotic maps have to exhibit required
spectral and statistical properties close to those of random signals [1] [2]. In order to evaluate
the latter features, statistical tests developed for random number generators (RNG) can also be
applied to chaotic maps, in order to gather evidence that the map generates ”good” chaotic signals,
i.e. having a considerable degree of randomness. To address this particular problem, different
statistical tests for the systematic evaluation of the randomness of cryptographic random number
generators can be applied, among which the most popular NIST (National Institute of Standards
and Technology) [3] tests. In this paper we present the analysis of a new ultra weakly coupled
maps system introduced by Lozi in [4]. This paper is organised as follow : section two presents the
considered map. Section three study its statistical properties and section four study its evolution
with parameter variation. A conclusion ends this paper.

2 System under study

In [4], a new coupled map system was introduced. The N th order function F under consideration
can be written as :

(x1(n + 1), x2(n + 1), . . . , xN (n + 1)) = F (x1(n), x2(n), . . . , xN (n))
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(1)

where Λ is the triangular function.

Λ(x) =

{

2x + 1 if x < 0
−2x + 1 else
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As introduced by Lozi in [4], the maps are weakly coupled choosing ǫ1 = 10−14 et ǫi = iǫ1. The
states evolves in the interval : [−1; 1]N . In the definition, the output signal x̄ to be transmitted is
constructed choosing a particular sampling of the states {x1; x2; ...; xn} of the system F :

x̄(q) =



























x1(n) if xN (n) ∈ [T1, T2]
x2(n) if xN (n) ∈ [T2, T3]

...
xN−1(n) if xN (n) ∈ [TN−1, 1]

(2)

with −1 < T1 < T2 < ... < TN−1. q denotes the index of the signal x̄ and n is associated to the
original map F . The notation n(q) is used to represent the index of the original map. The index
of the generated pseudo-random signal in such a way that for a second order, x̄(q) = x1(n(q)).

3 System Analysis

3.1 Signal

The spectrum X of a signal x is defined as :

X(k) = FT (x)(k)

The spectrum of the signal x1 generated is represented in figure 1. It can be quantified by
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Figure 1: spectrum X1

the autocorrelation of the signal. The correlation of two real signals x and y is calculated by the
following expression :

Γxy(τ) =
∑

n

x(n + τ)y(n)

it is related to the spectra X and Y of the signals x and y by the relation :

Γxy = TF−1(XY ∗)

The autocorrelation Γx is plotted in figure 2. The autocorrelation of a pseudo-random signal is
close to a Dirac peak. The tests which have been carried out show that the system generates a
wide-band signal before, as well as after the sampling of equation (2). The presented curves are
those of the signal before the sampling.
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Figure 2: autocorrelation of x1

3.2 Lyapunov Exponents

The Lyapunov Exponents (LE) quantify the sensitivity to the initial conditions using the average
of the Jacobians matrix. If f ′ is the Jacobian matrix, then, the Lyapunov exponents are :

λi = lim
N→∞

1

N
ln |vpi(f

′(x(N))f
′(x(N−1))...f

′(x(1)))|

where f is the investigated function, f ′ is the corresponding Jacobian, and x represents the system
state. The signal xN is uniformly distributed in the interval [−1, 1], therefore we select in average
one point out of hundred iterates if T1 = 0.98. The LE of the global system have to be redefined.
To do this, let consider the system H, defined in second order by :

H : (y1(q + 1), y2(q + 1)) = H(y1(q), y2(q))

The states (y1; y2) are defined by : y1(q) = x1(n(q)) et y2(q) = x2(n(q)). In other words, only
the states of F remaining after the sampling (2) are kept. The values used for the simulations are
the following : considering the second order function, T1 = 0.98, with the third order function,
(T1, T2) = (0.98, 0.99) and with the fourth order function , (T1, T2, T3) = (0.98, 0.987, 0.993). The
results are the same whatever the initial conditions, since the chaotic attractor fills entirely the
phase space. Table 1 compares the Lyapunov Exponent values for different system orders. This
value does not vary with the system order, but is increased by a factor of one hundred when the
global system (2) is considered, taking into account that approximately one point out of 100 iterates
is kept. The LE are defined as the speed of deviation of two trajectories initialised in the same
vicinity. Therefore the LE of FoF should be twice bigger compared to the LE of F . Keeping in
mind that the iterates of (1) are in average selected one out of hundered, then the LE of H are one
hundered times more important as shown in table 1.

3.3 Signal repartition analysis

According to [4], the following quantifiers are used :
1) Ec1 : Norm L1 of the deviation between the signal distribution and the uniform distribution
2) Ec2 : Deviation from the uniform distribution according to the norm L2

The quantifiers are used for the signal repartition analysis in all dimensions. The table 2 com-
pares the signal distributions for different system dimensions. In order to have comparable results,
a histogram with a constant number of intervals has to be considered whatever the dimension of
the phase space. For this kind of histogram, the results are identical whatever the dimension.

The second test compares the signal distributions in the phase space(xn,xn+p), p ∈ [1; 1000] and
in dimension three : (xn,xn+p,xn+2p), p ∈ [1; 1000] up to dimension 4. The results show that the

3

ha
l-0

03
68

84
4,

 v
er

si
on

 1
 - 

17
 M

ar
 2

00
9



Table 1: Lyapunov exponents value

system order 2 3 4

system F λ1 0.693 0.693 0.693

λ2 0.693 0.693 0.693

λ3 0.693 0.693

λ4 0.693

system H λ1 69.3 69.3 69.3

λ2 69.3 69.3 69.3

λ3 69.3 69.3

λ4 69.3

Table 2: system distribution vs distribution dimension

dimension Ec1 Ec2

2 1, 7.10−5 1, 38.10−3

3 1, 7.10−5 1, 38.10−3

4 1, 8.10−5 1, 40.10−3

6 1, 7.10−5 1, 38.10−3

7 1, 8.10−5 1, 42.10−3
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standard deviation is between 10.9 and 11.8, Ec1 is between 1.710−5 and 1.810−5. Ec2 is between
1.3310−3 and 1.4410−3. Finally, we don’t notice a significant deviation, the distributions remaining
homogeneous.

The third test in table 3 consists in comparing the results for different systems. The first signal
is the signal under investigation, the second is the signal composed of the numbers of pi, and the
third is a random signal generated by matlab. The calculation of the histogram is adapted to the
specificity of the signal pi : it is calculated over 10 intervals by dimension, which explains the
differences between the obtained values and the previous ones, but also the differences between two
dimensions.

Table 3: distribution comparaison in fonction of systems

dimension signal Ec1 Ec2

1 2nd order system 3, 54.10−4 1, 35.10−3

3rd order system 2, 92.10−4 1, 05.10−3

4th order system 2, 24.10−4 8, 82.10−4

pi 1, 90.10−4 7, 43.10−4

computer random signal 2, 43.10−4 9, 03.10−4

2 2nd order system 8, 6.10−5 1, 06.10−3

3rd order system 8, 8.10−5 1, 06.10−3

4th order system 8, 1.10−5 1, 01.10−3

pi 7, 7.10−5 9, 71.10−4

computer random signal 8, 4.10−5 1, 08.10−3

3 2nd order system 2, 5.10−5 9, 91.10−4

3rd order system 2, 6.10−5 1, 01.10−3

4th order system 2, 5.10−5 9, 97.10−4

pi 2, 5.10−5 9, 79.10−4

computer random signal 2, 5.10−5 9, 89.10−4

3.4 Hurst exponents

The Hurst exponents quantify the repetitivity (short) of a long time evolving sequence. They are
calculated by the expression :

R/S(n) =
n

∑

k=1

(s(k) − s)

The Hurst exponent is then defined as being the slope of the curve ln(R/S)/ln(n). An exponent
equal to 0.5 indicates that the signal is random. If the exponent is H > 0.5, the signal is said to
be persistent, and its points have a tendency to follow the previous one. If H < 0.5, the signal is
anti-persistent, this is the opposite case. The Hurst exponents have been calculated for the three
different systems as shown in table 4. Finally, the studied system presents the same caracteristics
to pi.
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Table 4: Hurst exponents

signal 30 000 points 100 000 points

2nd order system 0.509 0.530

3rd order system 0.514 0.522

4th order system 0.511 0.528

pi 0.549 0.522

computer random signal 0.522 0.510

3.5 Statistical Analysis

The National Institute of Standards and Technology (NIST) has developed a statistical test suite for
the systematic evaluation of the randomness of cryptographic random number generators (RNG) [3].
These tests are statistical tests which allow to investigate the degree of randomness for binary
sequences produced by random number generators (RNG). The presented tests are applied over
100 series of data of the system (2) composed of 1 000 000 points. The sequence validates the tests
if each small series validates a list of elementary tests for exemple the spectrum distribution, the
long term redundancy. The data appearing in table 5 represent the probability that the analyzed
data are random so ideally, all probabilities are equal to one. Certain tests propose several different
probabilities, and only the worst (i.e. the weakest) ones are reported.

Table 5: NIST tests

S1 S2 S3 S4 S5

Frequency 0.978072 0.474986 0.319084 0.867692 0.699313

BlockFrequency 0.055361 0.719747 0.122325 0.883171 0.455937

CumulativeSums 0.262249 0.275709 0.834308 0.275709 0.213309

Runs 0.334538 0.275709 0.334538 0.249284 0.946308

LongestRun 0.066882 0.455937 0.867692 0.798139 0.699313

Rank 0.971699 0.350485 0.911413 0.224821 0.779188

FFT 0.066882 0.002758 0.055361 0.013569 0.004301

OverlappingTemplate 0.213309 0.102526 0.867692 0.534146 0.534146

Universal 0.319084 0.000000 0.037566 0.350485 0.719747

ApproximateEntropy 0.419021 0.000000 0.236810 0.834308 0.137282

RandomExcursions 0.000600 0.006990 0.000001 0.000320 0.000045

RandomExcursionsVariant 0.058984 0.016717 0.006990 0.096578 0.054199

Serial 0.055361 0.000000 0.971699 0.798139 0.137282

LinearComplexity 0.911413 0.048716 0.554420 0.739918 0.678686
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In the notation of the table, the system S1 represents the forth order system, with parameters
ǫ1 = 10−9 and a sampling T1 = 0.99. The system S2 represents the forth order system, with
parameters ǫ1 = 10−9 and the sampling T1 = 0.9. The third system S3 is a fourth order one with
parameters ǫ1 = 10−5 and a sampling T1 = 0.99. The other parameters of the three previous
systems are defined by ǫi = iǫ1 and the parameters T2 et T3 are defined in order to distribute them
equitably in the space [T1; 1]. Finally S4 et S5 are respectively generated by the function random
of the computer and by the Frey system [5].

By comparing S1 and S2, the results show that the data series generated by the system (1) are
improved when the sampling is more selective, which goes in the same sense that the Lyapunov
exponents analysis. On the other hand, the system exhibits properties comparable to the random
generator of the computer and the system of Frey.

4 Parameter analysis

All the previous statistical analyses have been carried out for a particular parameter values. How-
ever, in order to be used in chaotic encryption, the system has to exhibit desirable properties for
a large set of parameter values (which form the encryption key). This section aims at determin-
ing which is the set of acceptable parameter values. From the definition, the system (1) can be
used only in the parameter space ǫk ∈ [0; 1

N
] where N is the order of the system in such a way

that the system states remain in the space [−1; 1] but the statistical criteria (signal distribution,
spectrum) as well as the ones from the dynamical systems theory (sensitivity to the initial condi-
tions, parameter sensitivity) have to bring additional conditions to define the acceptable parameter
regions.

4.1 Signal distribution

The uniform distribution of a pseudo-random signal is an elementary feature. The analysis of the
signal distribution generated by (1) for small parameter values have already been studied in [4]
but our purpose here is to study the same system for a large set of parameter values. In this case,
the property of uniform distribution has to be satisfied on the whole domain where the function
is defined. However, by varying the parameter combinations, the features have been deteriorated.
The evolution of the signal values generated for increasing ǫ1 values is represented in figure 3. When
the parameter ǫ1 becomes higher than 10−3, the generated signal does not fulfill the whole interval
[−1; 1]. That’s why tests of validity of distribution uniformity are carried out in order to determine
an exploitable parameter space.

The approach consists in applying the same tests as the ones presented in [4] but for a larger
set of parameter values. Following this criterion, the system parameters have to remain smaller
than 10−3 so that the distribution of the points was uniform.

4.2 Lyapunov exponents evolution and bifurcations

The analysis of the Lyapunov exponents allows to identify, among others, the parameter regions
exhibiting bifurcations. In order to identify them, the Lyapunov exponents have been calculated for
a set of parameters. A sudden change of their values would indicate a bifurcation. The simulations
show that the Lyapunov exponents vary continuously, which excludes bifurcations in the selected
parameter space, as shown in figure 4. The set of simulations is carried out in the parameter space
ǫ1 ∈ [0; 0.1] and ǫ2 = 2ǫ3 = 4ǫ4 = 4.10−5 for the third order system. In this figure, the three
exponents λ2, λ3 and λ4 have the same constant value.
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Figure 3: Signal evolution x1 for ǫ1 ∈ [10−5; 0.25], (ǫ2, ǫ3, ǫ4) = (10−3, 10−4, 10−5)
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Figure 4: Lyapunov exponents evolution ǫ1 ∈ [0; 0.1],ǫ2 = 2ǫ3 = 4ǫ4 = 4.10−5
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5 Conclusion

This paper presented the dynamical and statistical analysis of a weakly coupled maps system
introduced by Lozi. The model is a deterministic one, but exhibits spectral properties (spectrum,
correlation and autocorrelation) close to those of random signals, and successfully passed all the
statistical tests for closeness to random signals (NIST). In addition, if a particular sampling is
applied, the Lyapunov exponent is shown to increase. The analyses of the spectral properties,
the statistical (NIST) tests, the signal repartition and the Hurst exponents show very satisfactory
results. In addition, it can be concluded that the data series generated by the system (1) are
improved when the sampling is more selective, which goes in the same sense that the Lyapunov
exponents analysis. Finally, is can be concluded that the proposed system exhibits properties
comparable to those of the random number generators.

References

[1] G. Alvarez and S. Li, Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems.
International Journal of Bifurcation and Chaos (IJBC), Vol. 16 (2006), Pages 2129-2151.

[2] H. Noura, S. H?naff, I. Taralova and S. El Assad Efficient cascaded 1-D and 2-D chaotic gen-

erators. Second IFAC Conference on Analysis and Control of Chaotic Systems, (2009)

[3] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel,
D. Banks, A. Heckert, J. Dray, S. Vo, A statistical test suite for pseudorandom numbers for

cryptographic applications, NIST Special Publication Vol. 366 (2001)

[4] R. Lozi, New enhanced chaotic number generators. Indian journal of industrial and applied
mathematics, Vol. 1 No. 1 (2008), Pages 1-23.

[5] D.R.Frey, Chaotic digital encoding: an approach to secure communication. IEEE Trans.Circuits
Syst. II, Volume 40, Issue 10 (1993), Pages 660-666.

9

ha
l-0

03
68

84
4,

 v
er

si
on

 1
 - 

17
 M

ar
 2

00
9


