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Introduction

In some engineering applications, such as chaotic encryption, chaotic maps have to exhibit required spectral and statistical properties close to those of random signals [START_REF] Alvarez | Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems[END_REF] [START_REF] Noura | Assad Efficient cascaded 1-D and 2-D chaotic generators[END_REF]. In order to evaluate the latter features, statistical tests developed for random number generators (RNG) can also be applied to chaotic maps, in order to gather evidence that the map generates "good" chaotic signals, i.e. having a considerable degree of randomness. To address this particular problem, different statistical tests for the systematic evaluation of the randomness of cryptographic random number generators can be applied, among which the most popular NIST (National Institute of Standards and Technology) [START_REF] Rukhin | A statistical test suite for pseudorandom numbers for cryptographic applications[END_REF] tests. In this paper we present the analysis of a new ultra weakly coupled maps system introduced by Lozi in [START_REF] Lozi | New enhanced chaotic number generators[END_REF]. This paper is organised as follow : section two presents the considered map. Section three study its statistical properties and section four study its evolution with parameter variation. A conclusion ends this paper.

System under study

In [START_REF] Lozi | New enhanced chaotic number generators[END_REF], a new coupled map system was introduced. The N th order function F under consideration can be written as :

(x 1 (n + 1), x 2 (n + 1), . . . , x N (n + 1)) = F (x 1 (n), x 2 (n), . . . , x N (n))

     x 1 (n + 1) x 2 (n + 1)
. . .

x N (n + 1)      =      1 -(N -1)ǫ 1 ǫ 1 . . . ǫ 1 ǫ 2 1 -(N -1)ǫ 2 . . . ǫ 2 . . . . . . . . . . . . ǫ N ǫ N . . . 1 -(N -1)ǫ N           Λ(x 1 (n)) Λ(x 2 (n)) . . . Λ(x N (n))      (1)
where Λ is the triangular function.

Λ(x) = 2x + 1 if x < 0 -2x + 1 else
As introduced by Lozi in [START_REF] Lozi | New enhanced chaotic number generators[END_REF], the maps are weakly coupled choosing ǫ 1 = 10 -14 et ǫ i = iǫ 1 . The states evolves in the interval : [-1; 1] N . In the definition, the output signal x to be transmitted is constructed choosing a particular sampling of the states {x 1 ; x 2 ; ...; x n } of the system F :

x(q) =              x 1 (n) if x N (n) ∈ [T 1 , T 2 ] x 2 (n) if x N (n) ∈ [T 2 , T 3 ] . . . x N -1 (n) if x N (n) ∈ [T N -1 , 1] (2) 
with -1 < T 1 < T 2 < ... < T N -1 . q denotes the index of the signal x and n is associated to the original map F . The notation n(q) is used to represent the index of the original map. The index of the generated pseudo-random signal in such a way that for a second order, x(q) = x 1 (n(q)).

3 System Analysis

Signal

The spectrum X of a signal x is defined as :

X(k) = F T (x)(k)
The spectrum of the signal x 1 generated is represented in figure 1. It can be quantified by 

Γ xy = T F -1 (XY * )
The autocorrelation Γ x is plotted in figure 2. The autocorrelation of a pseudo-random signal is close to a Dirac peak. The tests which have been carried out show that the system generates a wide-band signal before, as well as after the sampling of equation [START_REF] Noura | Assad Efficient cascaded 1-D and 2-D chaotic generators[END_REF]. The presented curves are those of the signal before the sampling. 

Lyapunov Exponents

The Lyapunov Exponents (LE) quantify the sensitivity to the initial conditions using the average of the Jacobians matrix. If f ′ is the Jacobian matrix, then, the Lyapunov exponents are :

λ i = lim N →∞ 1 N ln |vp i (f ′ (x (N ) )f ′ (x (N -1) )...f ′ (x (1) ))|
where f is the investigated function, f ′ is the corresponding Jacobian, and x represents the system state. The signal x N is uniformly distributed in the interval [-1, 1], therefore we select in average one point out of hundred iterates if T 1 = 0.98. The LE of the global system have to be redefined.

To do this, let consider the system H, defined in second order by :

H : (y 1 (q + 1), y 2 (q + 1)) = H(y 1 (q), y 2 (q))
The states (y 1 ; y 2 ) are defined by : y 1 (q) = x 1 (n(q)) et y 2 (q) = x 2 (n(q)). In other words, only the states of F remaining after the sampling (2) are kept. The values used for the simulations are the following : considering the second order function, T 1 = 0.98, with the third order function, (T 1 , T 2 ) = (0.98, 0.99) and with the fourth order function , (T 1 , T 2 , T 3 ) = (0.98, 0.987, 0.993). The results are the same whatever the initial conditions, since the chaotic attractor fills entirely the phase space. Table 1 compares the Lyapunov Exponent values for different system orders. This value does not vary with the system order, but is increased by a factor of one hundred when the global system (2) is considered, taking into account that approximately one point out of 100 iterates is kept. The LE are defined as the speed of deviation of two trajectories initialised in the same vicinity. Therefore the LE of F oF should be twice bigger compared to the LE of F . Keeping in mind that the iterates of (1) are in average selected one out of hundered, then the LE of H are one hundered times more important as shown in table 1.

Signal repartition analysis

According to [START_REF] Lozi | New enhanced chaotic number generators[END_REF], the following quantifiers are used : 1) Ec 1 : Norm L 1 of the deviation between the signal distribution and the uniform distribution 2) Ec 2 : Deviation from the uniform distribution according to the norm L 2

The quantifiers are used for the signal repartition analysis in all dimensions. The table 2 compares the signal distributions for different system dimensions. In order to have comparable results, a histogram with a constant number of intervals has to be considered whatever the dimension of the phase space. For this kind of histogram, the results are identical whatever the dimension.

The second test compares the signal distributions in the phase space(x n ,x n+p ), p ∈ [1; 1000] and in dimension three : (x n ,x n+p ,x n+2p ), p ∈ [1; 1000] up to dimension 4. The results show that the standard deviation is between 10.9 and 11.8, Ec 1 is between 1.710 -5 and 1.810 -5 . Ec 2 is between 1.3310 -3 and 1.4410 -3 . Finally, we don't notice a significant deviation, the distributions remaining homogeneous.

The third test in table 3 consists in comparing the results for different systems. The first signal is the signal under investigation, the second is the signal composed of the numbers of pi, and the third is a random signal generated by matlab. The calculation of the histogram is adapted to the specificity of the signal pi : it is calculated over 10 intervals by dimension, which explains the differences between the obtained values and the previous ones, but also the differences between two dimensions. computer random signal 2, 43.10 -4 9, 03.10 -4 2 2nd order system 8, 6.10 -5 1, 06.10 -3

3rd order system 8, 8.10 -5 1, 06.10 -3

4th order system 8, 1.10 -5 1, 01.10 -3 pi 7, 7.10 -5 9, 71.10 -4 computer random signal 8, 4.10 -5 1, 08.10 -3 3 2nd order system 2, 5.10 -5 9, 91.10 -4 3rd order system 2, 6.10 -5 1, 01.10 -3

4th order system 2, 5.10 -5 9, 97.10 -4 pi 2, 5.10 -5 9, 79.10 -4 computer random signal 2, 5.10 -5 9, 89.10 -4

Hurst exponents

The Hurst exponents quantify the repetitivity (short) of a long time evolving sequence. They are calculated by the expression :

R/S(n) = n k=1 (s(k) -s)
The Hurst exponent is then defined as being the slope of the curve ln(R/S)/ln(n). An exponent equal to 0.5 indicates that the signal is random. If the exponent is H > 0.5, the signal is said to be persistent, and its points have a tendency to follow the previous one. If H < 0.5, the signal is anti-persistent, this is the opposite case. The Hurst exponents have been calculated for the three different systems as shown in table 4. Finally, the studied system presents the same caracteristics to pi. In the notation of the table, the system S 1 represents the forth order system, with parameters ǫ 1 = 10 -9 and a sampling T 1 = 0.99. The system S 2 represents the forth order system, with parameters ǫ 1 = 10 -9 and the sampling T 1 = 0.9. The third system S 3 is a fourth order one with parameters ǫ 1 = 10 -5 and a sampling T 1 = 0.99. The other parameters of the three previous systems are defined by ǫ i = iǫ 1 and the parameters T 2 et T 3 are defined in order to distribute them equitably in the space [T 1 ; 1]. Finally S 4 et S 5 are respectively generated by the function random of the computer and by the Frey system [START_REF] Frey | Chaotic digital encoding: an approach to secure communication[END_REF].

By comparing S 1 and S 2 , the results show that the data series generated by the system (1) are improved when the sampling is more selective, which goes in the same sense that the Lyapunov exponents analysis. On the other hand, the system exhibits properties comparable to the random generator of the computer and the system of Frey.

Parameter analysis

All the previous statistical analyses have been carried out for a particular parameter values. However, in order to be used in chaotic encryption, the system has to exhibit desirable properties for a large set of parameter values (which form the encryption key). This section aims at determining which is the set of acceptable parameter values. From the definition, the system (1) can be used only in the parameter space ǫ k ∈ [0; 1 N ] where N is the order of the system in such a way that the system states remain in the space [-1; 1] but the statistical criteria (signal distribution, spectrum) as well as the ones from the dynamical systems theory (sensitivity to the initial conditions, parameter sensitivity) have to bring additional conditions to define the acceptable parameter regions.

Signal distribution

The uniform distribution of a pseudo-random signal is an elementary feature. The analysis of the signal distribution generated by [START_REF] Alvarez | Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems[END_REF] for small parameter values have already been studied in [START_REF] Lozi | New enhanced chaotic number generators[END_REF] but our purpose here is to study the same system for a large set of parameter values. In this case, the property of uniform distribution has to be satisfied on the whole domain where the function is defined. However, by varying the parameter combinations, the features have been deteriorated. The evolution of the signal values generated for increasing ǫ 1 values is represented in figure 3. When the parameter ǫ 1 becomes higher than 10 -3 , the generated signal does not fulfill the whole interval [-1; 1]. That's why tests of validity of distribution uniformity are carried out in order to determine an exploitable parameter space.

The approach consists in applying the same tests as the ones presented in [START_REF] Lozi | New enhanced chaotic number generators[END_REF] but for a larger set of parameter values. Following this criterion, the system parameters have to remain smaller than 10 -3 so that the distribution of the points was uniform.

Lyapunov exponents evolution and bifurcations

The analysis of the Lyapunov exponents allows to identify, among others, the parameter regions exhibiting bifurcations. In order to identify them, the Lyapunov exponents have been calculated for a set of parameters. A sudden change of their values would indicate a bifurcation. The simulations show that the Lyapunov exponents vary continuously, which excludes bifurcations in the selected parameter space, as shown in figure 4. The set of simulations is carried out in the parameter space ǫ 1 ∈ [0; 0.1] and ǫ 2 = 2ǫ 3 = 4ǫ 4 = 4.10 -5 for the third order system. In this figure, the three exponents λ 2 , λ 3 and λ 4 have the same constant value. 

Conclusion

This paper presented the dynamical and statistical analysis of a weakly coupled maps system introduced by Lozi. The model is a deterministic one, but exhibits spectral properties (spectrum, correlation and autocorrelation) close to those of random signals, and successfully passed all the statistical tests for closeness to random signals (NIST). In addition, if a particular sampling is applied, the Lyapunov exponent is shown to increase. The analyses of the spectral properties, the statistical (NIST) tests, the signal repartition and the Hurst exponents show very satisfactory results. In addition, it can be concluded that the data series generated by the system (1) are improved when the sampling is more selective, which goes in the same sense that the Lyapunov exponents analysis. Finally, is can be concluded that the proposed system exhibits properties comparable to those of the random number generators.
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 1 Figure 1: spectrum X 1 the autocorrelation of the signal. The correlation of two real signals x and y is calculated by the following expression : Γ xy (τ ) = n
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 2 Figure 2: autocorrelation of x 1
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 344 Figure 3: Signal evolution x 1 for ǫ 1 ∈ [10 -5 ; 0.25], (ǫ 2 , ǫ 3 , ǫ 4 ) = (10 -3 , 10 -4 , 10 -5 )

Table 1 :

 1 Lyapunov exponents value

	system order	2	3	4
	system F λ 1 0.693 0.693 0.693
	λ 2 0.693 0.693 0.693
	λ 3		0.693 0.693
	λ 4			0.693
	system H λ 1 69.3	69.3	69.3
	λ 2 69.3	69.3	69.3
	λ 3		69.3	69.3
	λ 4			69.3
	Table 2: system distribution vs distribution dimension
	dimension	Ec 1	Ec 2	
	2 1, 7.10 -5 1, 38.10 -3
	3 1, 7.10 -5 1, 38.10 -3
	4 1, 8.10 -5 1, 40.10 -3
	6 1, 7.10 -5 1, 38.10 -3
	7 1, 8.10 -5 1, 42.10 -3

Table 3 :

 3 

		distribution comparaison in fonction of systems
	dimension	signal	Ec 1	Ec 2
	1	2nd order system 3, 54.10 -4 1, 35.10 -3
		3rd order system 2, 92.10 -4 1, 05.10 -3
		4th order system 2, 24.10 -4 8, 82.10 -4
		pi 1, 90.10 -4 7, 43.10 -4

Table 4

 4 The National Institute of Standards and Technology (NIST) has developed a statistical test suite for the systematic evaluation of the randomness of cryptographic random number generators (RNG)[START_REF] Rukhin | A statistical test suite for pseudorandom numbers for cryptographic applications[END_REF]. These tests are statistical tests which allow to investigate the degree of randomness for binary sequences produced by random number generators (RNG). The presented tests are applied over 100 series of data of the system (2) composed of 1 000 000 points. The sequence validates the tests if each small series validates a list of elementary tests for exemple the spectrum distribution, the long term redundancy. The data appearing in table 5 represent the probability that the analyzed data are random so ideally, all probabilities are equal to one. Certain tests propose several different probabilities, and only the worst (i.e. the weakest) ones are reported.

	: Hurst exponents			
	signal 30 000 points 100 000 points	
	2nd order system	0.509	0.530		
	3rd order system	0.514	0.522		
	4th order system	0.511	0.528		
	pi	0.549	0.522		
	computer random signal	0.522	0.510		
	3.5 Statistical Analysis				
	Table 5: NIST tests			
	S 1	S 2	S 3	S 4	S 5
	Frequency 0.978072 0.474986 0.319084 0.867692 0.699313
	BlockFrequency 0.055361 0.719747 0.122325 0.883171 0.455937
	CumulativeSums 0.262249 0.275709 0.834308 0.275709 0.213309
	Runs 0.334538 0.275709 0.334538 0.249284 0.946308
	LongestRun 0.066882 0.455937 0.867692 0.798139 0.699313
	Rank 0.971699 0.350485 0.911413 0.224821 0.779188
	FFT 0.066882 0.002758 0.055361 0.013569 0.004301
	OverlappingTemplate 0.213309 0.102526 0.867692 0.534146 0.534146
	Universal 0.319084 0.000000 0.037566 0.350485 0.719747
	0.419021 0.000000 0.236810 0.834308 0.137282
	RandomExcursions 0.000600 0.006990 0.000001 0.000320 0.000045
	RandomExcursionsVariant 0.058984 0.016717 0.006990 0.096578 0.054199
	Serial 0.055361 0.000000 0.971699 0.798139 0.137282
	LinearComplexity 0.911413 0.048716 0.554420 0.739918 0.678686