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Abstract
In this note, we prove that every graph with maximum averaggrek less thalél’%
(resp. 22, 22 10y admits an edge-partition into a forest and a subgraph ofimax
degree 1 (resp. 2, 3, 4). This implies that these graphs hawes goloring number at
most 5, 6, 7, 8, respectively.

1 Introduction

Let G be a simple graph. Thgame coloring numbeof G is defined through a two-person
graph ordering game. Alice and Bob take turns choosingoestirom the set of unchosen
vertices ofG. This defines a linear ordér of the vertices of7 with = < y, if and only fif,

x is chosen beforg. Theback degreef a vertexx with respect taL is the number of its
neighborsy in G such thaty < z. The back degree af is the maximum back degree of a
vertex of G with respect tol.. Alice’s goal is to minimize the back degree bfand Bob’s
goal is to maximize it. Thgame coloring numbetol, (G) of G is defined to bé + 1, where

k is the minimum integer such that Alice has a strategy for ta@lg ordering game to ensure
that the back degree df is at mostk. Equivalentlyt is the maximum integer such that Bob
has a strategy for the graph ordering game to ensure thatathledegree of. is at leastk.
This notion was first formally defined in [5] as a tool to find Indlg to the game chromatic
number [1].

Recently, Zhu [6] proved that the game coloring number ofypéanar graph is at most
17. This result was improved in the case of planar graphslaige girth, by Borodiret al.
[2] and Heet al. [4]. These results are based on some structural propeftfarmar graphs
with large girth:

Theorem 1 (Borodin et. al. [2] + Heet. al. [4]) LetG be a planar graph with girth at least
g.
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1. If g > 9, thenG admits an edge-partition into a forest and a matching [2].

2. If ¢ > 7, thenG admits an edge-partition into a forest and a graph with maxim
degree 2 [4].

3. If g > 5, thenG admits an edge-partition into a forest and a graph with maxim
degree 4 [4].

Zhu established this upper bound of the game coloring number

Lemmal (Zhu [5]) Suppose that the graph has an edge-partition into two subgrap@'s
andGo, thencol,(G) < coly(G1) + A(Go).

Faigleet al. studied the game coloring number of a forest:
Lemma 2 (Faigleet al. [3]) LetT be a forest. Thenol,(T') < 4.
Hence combining these two lemmas with Theorem 1, we have

Corollary 1 ([2] + [4]) Every planar graph with girth at least 9 (resp. 7, 5) has gambc
ing number at most 5 (resp. 6, 8).

In this note, we study edge-partitions of sparse graphegmteaning of small maximum
average degree, and derive bounds on the game coloring numbe

The maximum average degree®f denoted byMad(G) is:
Mad(G) = max{2|E(H)|/|V(H)|, H S G}
Our main result is:
Theorem 2 LetG be a simple graph.

1. If Mad(G) < % thenG admits an edge-partition into a forest and a matching.
2. If Mad(G) < %, thenG admits an edge-partition into a forest and graph with maxi-
mum degree at most 2.

3. If Mad(@) < 2, thenG admits an edge-partition into a forest and graph with maxi-
mum degree at most 3.

4. If Mad(G) < %, thenG admits an edge-partition into a forest and graph with maxi-
mum degree at most 4.

In contrary to Theorem 1, Theorem 2 is not restricted to plgnaphs. We note however
that we can not infer Theorem 1 from Theorem 2, by using thalusequalityMad(G) <
2¢g/(g — 2) for every planar graply of girth at least.

Combining with Lemmas 1 and 2, we get:

Corollary 2 LetG be a simple graph.

1. If Mad(G) < 32, thencol,(G) < 5.
2. If Mad(G) < 29, thencol,(G) < 6.
3. If Mad(G) < 22, thencol,(G) < 7.
4. If Mad(G) < I3, thencol, (G) < 8.

Section 2 is dedicated to the proof of Theorem 2. Section Batamsome final remarks.



2 Proof of Theorem 2

Let G be a simple graph. Let(x) denote the degree afin G. A vertex of degreé (resp.
at leastk, at mostk) is called ak-vertex(resp. = k-vertex <k-vertey. An (a, b)-alternating
cycleis an even cycleryzoxs . .. wop2zy such thatd(x;) = a if 7 is even andd(z;) = b
otherwise. Ank;-vertex is a vertex of degréeadjacent to exactly2-vertices.

Let G be a counterexample of Theorem 2, i.e. a graph that does not ad edge-
partition into a forest and a subgraph with maximum dedrée = 1,2, 3, 4), minimizing
o(G) = [V(G)| + |E(G)].

2.1 Structural propertiesof G

Claim 1 The counterexampl@ does not contain:
1. 1-vertices,
2. two adjacentk + 1-vertices,
3. (k + 2,2)-alternating cycles.

Proof

1. By contradiction, assume th&tcontains an 1-vertex adjacent tou. By minimality,
of G, the graphH = G \ v admits an edge-patrtition into a fordstand a subgraph
with maximum degreé. We can extend this edge-partition@®by adding the edge
uw into F', a contradiction.

2. Assume thafi contains two adjacentk + 1-vertices, say: anv. By minimality, of G,
the graphd = G \ uv admits an edge-partition into a fordstand a subgrap® with
maximum degreé. If at least one of, andw is incident tok edges inD, then adduv
in I'; otherwise, addw into D. This extends the edge-partitiond a contradiction.

3. Assume that? contains a(k + 2, 2)-alternating cycleC' = zjxoxs ... xoxy With
d(z;) = k+ 2if i is even andi(z;) = 2 otherwise. By minimality of&, the graph
H = G\ {z122,x223, ..., 2911721, 2721 } @dMits an edge-partition into a forefst
and a subgraply with maximum degreé. We may assume thab; is incident to at
least one edge af’, for otherwise we can add an arbitrary edge incident4pinto
F. Now by adding the edges,;z2;,1 into D, addingzy;x2;—1 into F', we obtain a
required edge-partition @, a contradiction.

2.2 Discharging procedures

In what follows, we will define an additional structure, ealbank which is a subgraph af
composed of maximal connected components, caligshciesIn fact, we will show that each
bank is a forest and each agency a tree. These structurdsewiied, during the discharging
procedure, to transfer charges. Usually, the dischargitegoperate locally ; agencies will
allow us to transfer charges non locally. In our dischargiracedures, the vertices adjacent
to an agency” will give their excess charge @ which will redistribute this excess charge
to the vertices of” which does not have enough charges.

First we assign to each vertea chargev(v) equal to its degree, i.&v € V(G),w(v) =
d(v). Moreover we assign to each ager@ythat will be defined later) a charggC') = 0.
We define then discharging rules and redistribute chargawdiogly. Once the discharging
is finished, a new charge functiar is produced. However, the total sum of charges is kept



fixed when the discharging is in process. Nevertheless, welgcaw thatv*(v) > % (resp.

3032 1) for all v € V(G) andw*(C) > 0 for all agencyC of G. Hence the following

equation follows:

32 * *
1—3\V(G)|§ > wt(w)+ > W)= > w)+ > wc)y= > = 2|E(G)|
vEV(G) c agency of G veEV(G) c agency of G veEV(G)d(v)

This leads to the following obvious contradiction:

2 2V(©e) _ 2EQ) 32
B V@ S o) <MY <13

and hence demonstrates that no such counterexample can@axigell forMad(G) <
30 32 70

110 110 237/°

221 Graphswith Mad < 22

Here, thebankof G is the subgraph off defined as follows: its set of vertices contains all
the 35-vertices,33-vertices and the 2-vertices adjacenBtevertices, or3s-vertices ; its set
of edges is the set of edges between the 2-vertices aryd thertices 33-vertices. By Claim
1.3, anagencyis a tree whose each leaf is a 2-vertex.

We say that a vertex, which does not belong to an agenagjécent to an agendyit is
adjacent to a 2-vertex belonging to an agency.

The discharging rules are defined as follows:
R1. Every=3-vertex gives% to each adjacent 2-vertex.
R2. EveryZ3-vertex not belonging to an agency givésto each adjacent agency.
R3. Each agency give% to each of its owrss-vertices.

Let us check first that for each vertex.*(v) > 22. Letwv be ak-vertex : > 2 by Claim
1.1).

Casek = 2 Initially, w(v) = 2. The vertexw receives% from of each of its neighbors (which are
Z3-vertices by Claim 1.2). Hence;(v) =2 +2- 2 = 32,

Casek = 3 Initially, w(v) = 3. If v is adjacent to at most one 2-vertex, ther{v) > 3— 2 — 2 >

%. If v is an3,-vertex, thenv belongs to an agency and gives two timgsby R1
and nothing by R2. Hence*(v) = 3 —2- 2 = 22, Finally assume that is a
33-vertex. The vertex gives three timesf—3 by R1 and receives% by R3. Hence

* _ 3 2 __ 32
W(U)—S—g‘ﬁ‘f'ﬁ—l—g.

Casek > 4 Initially, w(v) = k. The vertexv is adjacent to at most 2-vertices and to at most
agencies. Hence by Rland R2(v) > k — k- % — k- & = 3£ > 2if | > 4.

It remains to prove that the charge remaining on each agemuyri-negative. Let’ be
an agency. Lets, (C), andn;(C) be the number d¥s-vertices, and leaves 6f respectively.
Observe that:
n1(C) = s, (C) (1)

By R2, the agency’ receives% from its adjacent vertices (i.e. it receiveg C) - %),

and givesZ to each of its owr3;-vertices by R3 (i.e. it givess, (C) - &). Hencew* (C) =
ni(C) - & —ns3,(C) - & > ns,(C) - & — n3,(C) - & > 0 by Equation (1). This completes
the proof of Theorem 2.1.



2.22 Graphswith Mad < 39

Here, thebankof G is the subgraph of; defined as follows: its set of vertices contains all
the 43-vertices 4,-vertices and the 2-vertices adjacentitevertices, ord,-vertices ; its set
of edges is the set of edges between the 2-vertices and-thertices44-vertices. By Claim
1.3, anagencyis a tree whose each leaf is a 2-vertex.

The discharging rules are defined as follows:
R1. EveryZ4-vertex givesf‘—1 to each adjacent 2-vertex.
R2. EveryZ4-vertex not belonging to an agency givﬁsto each adjacent agency.
R3. Each agency give% to each of its ownl,-vertices.

Let us check first that for each vertexw* (v) > 32, Letv be ak-vertex.

Casek = 2 Initially, w(v) = 2. The vertex receives:t from of each of its neighbors (which are
30

Z4-vertices by Claim 1.2). Hence; (v) =2 +2- 4 = 3.
Casek = 3 Initially, w(v) = 3. The vertexv is not affected by the discharging procedure ; hence
w*(v) = w(v) =3 >3,

Casek = 4 Initially, w(v) = 4. Suppose that is a 4-vertex adjacent to at most two 2-vertices.
Thenwv gives at most two time% to its adjacent 2-vertices and two tim(§§ to its
adjacent agencies. Hengg(v) > 4 —2- & — 2. L = 32 > 30 Assume that is
a4s-vertex. Therv belongs to an agency ; hencegives three time% to its adjacent
2-vertices by R1 and nothing by R2. 86(v) = 4 —3- &+ = 32 > 39 Finally,
assume that is a4,-vertex. The vertex gives four times% to its incident 2—ve§(t)ices

by R1 and receive% from its agency by R3. Hence*(v) =4 — 4 - % + % = .
Casek > 5 Initially, w(v) = k. The vertexv is adjacent to at mogt 2-vertices and to at most
agencies. Hence by Rland R2(v) > k — k- 4 — k- & =& > 3 jf k> 5

It remains to prove that the charge remaining on each agemmni-negative. Let' be an
agency. Lety, (C), n4, (C), andn;(C) be the number of4-vertices 4s-vertices, and leaves
of C respectively.

Observe that:

n1(C) > 14, (C) +2 -1, (C) (2)

By R2, the agency’ receivesﬁ from its adjacent vertices (i.e. it receivegC) - ﬁ),
and givesZ to each of its ownl,-vertices by R3 (i.e. it gives, (C) - &). Hencew* (C) =
n(C)- 75 —na, (C)- & = 2-14,(C) - 75 —n4, (C)- & > 0 by Equation (2). This completes
the proof of Theorem 2.2.

2.23 Graphswith Mad < 32

Here, thebankof G is the subgraph of; defined as follows: its set of vertices contains all
the 54-vertices,55-vertices and the 2-vertices adjacenbigvertices, or5;-vertices ; its set
of edges is the set of edges between the 2-vertices arid thertices 55-vertices. By Claim
1.3, anagencyis a tree whose each leaf is a 2-vertex.

The discharging rules are defined as follows:
R1. EveryZ5-vertex givesf—1 to each adjacent 2-vertex.
R2. EveryZ=5-vertex not belonging to an agency givésto each adjacent agency.

R3. Each agency give% to each of its owrys-vertices.



Let us check first that for each vertexw* (v) > 22. Letv be ak-vertex.

Casek = 2 Initially, w(v) = 2. The vertex receives from of each of its neighbors (which are
Z5-vertices by Claim 1.2). Hence;(v) =2 +2- 2 = 32,

Casek = 3,4 The vertex is not affected by the discharging procedure ; hentie) = w(v) > 22.

Casek = 5 Initially, w(v) = 5. Assume thab is a 5-vertex ajacent to at most three 2-vertices.
Thenby R1and R2*(v) > 5—3- 3 —3- & = 3%, Assume now that is a54-vertex.
Thenwv belongs to an agency and gives nothing by R2.S@) = 5 — 4 - %3 =35
Assume finally that is 55-vertex. By RLand R3*(v) =5 — 5+ 2 + & = 32,

Casek > 6 Initially, w(v) = k. The vertexv is adjacent to at most 2-vertices and to at mosgt
agencies. Hence by Rl and R2(v) > k — k- & — k- & = 186 > 32 jf > §.

It remains to prove that the charge remaining on each agsnuyri-negative. Lef’ be

an agency. Lets, (C') andn;(C) be the number df;-vertices and leaves df respectively.
Observe that:

ni(C) = 3 - ns,(C) ©)

By R2, the agency’ receives% from its adjacent vertices (i.e. it receivegC) - 32—3),
and givesZ to each of its owrds-vertices by R3 (i.e. it givess, (C) - &). Hencew* (C) =
ni(C)- & —n5, (C)- & > 3-n5,(C)- & —ns,(C)- & > 0by Equation (3). This completes
the proof of Theorem 2.3.

2.24 Graphswith Mad < 23

Here, thebankof G is the subgraph off defined as follows: its set of vertices contains all
the 65-vertices and the 2-vertices adjacenttovertices ; its set of edges is the set of edges
between the 2-vertices and tegvertices. By Claim 1.3, aagencyis a tree whose each leaf
is a 2-vertex.

The discharging rules are defined as follows:
R1. Every=6-vertex givess to each adjacent 2-vertex, aggl to each adjacent 3-vertex.
R2. EveryZ6-vertex not belonging to an agency givgsto each adjacent agency.
R3. Each agency give% to each of its owrts-vertices.

Let us check first that for each vertexw* (v) > 13. Letv be ak-vertex.

Casek = 2 Initially, w(v) = 2. The vertexw receives% from of each of its neighbors (which are
Z6-vertices by Claim 1.2). Hence;"(v) =2+ 2 12 = 0.

Casek = 3 The vertexv is adjacent te”6-vertices by Claim 1.2. Then receive% from each of

its neighbors ; hence*(v) =3+ 3 &5 = 20.

Casek = 4,5 The vertex is not affected by the discharging procedure ; hentie) = w(v) > 3.

Casek = 6 Initially, w(v) = 6. Assume that is adjacent to at most five 2-vertices. Then by R1 an
R2w*(v) >6—5- 32 — 5. & = I Assume finally that is a6¢-vertex. The vertex
v belongs to an agency. By R1 and R3(v) =6 — 6 - % + % = %.
Casek > 7 Initially, w(v) = k. The vertexv is adjacent to at mogt <3-vertices and to at most
agencies. Hence by Rl and R2(v) > k — k- 2 — k- & = 106 > T0jf k> 7.



It remains to prove that the charge remaining on each agemuyri-negative. Let’ be

an agency. Letg, (C') andn;(C') be the number ofs-vertices and leaves df respectively.
Observe that:

ni(C) > 41, (C) (4)

By R2, the agency’ receive% from its adjacent vertices (i.e. it receivegC) - %),
and givesy; to each of its owrtis-vertices by R3 (i.e. it gives, (C) - 55). Hencew* (C) =
n(C) - 55 — 66 (C) - 55 = 4-16,(C) - 35 — e (C) - 55 = 0 by Equation (4). This completes
the proof of Theorem 2.4.

3 Conclusion

In this note, we established that for every simple graghif Mad(G) < f—g (resp. 22,
%, ;—g) then G admits an edge-partition into a forest and a graph with maxindegree
at most 1 (resp. 2, 3, 4), hence the game chromatiG & at most 5 (resp. 6, 7, 8). In
order to study the tightness of Theorem 2, we introduce atiomg : N — R defined by
f(k) =inf{Mad(H) | H does not admit an edge-partition into a forest and a subgrithh

maximum degreé }. It is easy to observe that the complete bipartite graphy,2 has

Mad(Ks op42) = 4(,5;;*21) and does not admit an edge-partition into a forest and a aphgr

with maximum degree at most Hence,

32 8
2,461...= — < f(1) < = =2,666...
7 = <im< -2
2,727... = % <f2)< 3

32 16
2 e=— < < —=3,2
,909 7 = f3) < 5 3,

70 10
3,043...= — < f(4) < — =3,333...
7 5 /W< Z=3

We conclude with the following problem:

Problem 1 For everyk, what are (if any) the graphs which do not admit an edge-gfiarti
into a forest and a subgraph with maximum degree at rhpbtt such that every graph with
smaller maximal average degree does?
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