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Edge-partitions of sparse graphs and their applications to game coloring

In this note, we prove that every graph with maximum average degree less than 32 13 (resp. 30 11 , 32 11 , 70 23 ) admits an edge-partition into a forest and a subgraph of maximum degree 1 (resp. 2, 3, 4). This implies that these graphs have game coloring number at most 5, 6, 7, 8, respectively.

Introduction

Let G be a simple graph. The game coloring number of G is defined through a two-person graph ordering game. Alice and Bob take turns choosing vertices from the set of unchosen vertices of G. This defines a linear order L of the vertices of G with x < y, if and only if, x is chosen before y. The back degree of a vertex x with respect to L is the number of its neighbors y in G such that y < x. The back degree of L is the maximum back degree of a vertex of G with respect to L. Alice's goal is to minimize the back degree of L and Bob's goal is to maximize it. The game coloring number col g (G) of G is defined to be k + 1, where k is the minimum integer such that Alice has a strategy for the graph ordering game to ensure that the back degree of L is at most k. Equivalently, k is the maximum integer such that Bob has a strategy for the graph ordering game to ensure that the back degree of L is at least k. This notion was first formally defined in [5] as a tool to find bounds to the game chromatic number [START_REF] Bodlaender | On the complexity of some coloring games[END_REF].

Recently, Zhu [6] proved that the game coloring number of every planar graph is at most 17. This result was improved in the case of planar graphs with large girth, by Borodin et al. [START_REF] Borodin | Decomposing a planar graph with girth 9 into a forest and a matching[END_REF] and He et al. [4]. These results are based on some structural properties of planar graphs with large girth:

Theorem 1 (Borodin et. al. [2] + He et. al. [4])

Let G be a planar graph with girth at least g. 1 1. If g ≥ 9, then G admits an edge-partition into a forest and a matching [START_REF] Borodin | Decomposing a planar graph with girth 9 into a forest and a matching[END_REF].

2. If g ≥ 7, then G admits an edge-partition into a forest and a graph with maximum degree 2 [4].

3. If g ≥ 5, then G admits an edge-partition into a forest and a graph with maximum degree 4 [4]. In this note, we study edge-partitions of sparse graphs, in the meaning of small maximum average degree, and derive bounds on the game coloring number.

The maximum average degree of G, denoted by Mad(G) is:

Mad(G) = max{2|E(H)|/|V (H)|, H G}

Our main result is:

Theorem 2 Let G be a simple graph.

If Mad(G) < 32

13 , then G admits an edge-partition into a forest and a matching. 2. If Mad(G) < 30 11 , then G admits an edge-partition into a forest and graph with maximum degree at most 2.

If Mad(G) < 32

11 , then G admits an edge-partition into a forest and graph with maximum degree at most 3.

If Mad(G) < 70

23 , then G admits an edge-partition into a forest and graph with maximum degree at most 4.

In contrary to Theorem 1, Theorem 2 is not restricted to planar graphs. We note however that we can not infer Theorem 1 from Theorem 2, by using the usual inequality Mad(G) ≤ 2g/(g -2) for every planar graph G of girth at least g.

Combining with Lemmas 1 and 2, we get:

Corollary 2 Let G be a simple graph. 1. If Mad(G) < 32 13 , then col g (G) ≤ 5.

If Mad(G) < 30

11 , then col g (G) ≤ 6.

If Mad

(G) < 32 11 , then col g (G) ≤ 7. 4. If Mad(G) < 70 23 , then col g (G) ≤ 8.
Section 2 is dedicated to the proof of Theorem 2. Section 3 contains some final remarks.

Proof of Theorem 2

Let G be a simple graph. Let d(x) denote the degree of

x in G. A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. ≥ k-vertex, ≤ k-vertex). An (a, b)-alternating cycle is an even cycle x 1 x 2 x 3 . . . x 2k x 1 such that d(x i ) = a if i is even and d(x i ) = b
otherwise. An k l -vertex is a vertex of degree k adjacent to exactly l 2-vertices.

Let G be a counterexample of Theorem 2, i.e. a graph that does not admit an edgepartition into a forest and a subgraph with maximum degree k 

(k = 1, 2, 3, 4), minimizing σ(G) = |V (G)| + |E(G)|.

Structural properties of G

Discharging procedures

In what follows, we will define an additional structure, called bank, which is a subgraph of G composed of maximal connected components, called agencies. In fact, we will show that each bank is a forest and each agency a tree. These structures will be used, during the discharging procedure, to transfer charges. Usually, the discharging rules operate locally ; agencies will allow us to transfer charges non locally. In our discharging procedures, the vertices adjacent to an agency C will give their excess charge to C which will redistribute this excess charge to the vertices of C which does not have enough charges.

First we assign to each vertex v a charge ω(v) equal to its degree, i.e. ∀v ∈ V (G), ω(v) = d(v). Moreover we assign to each agency C (that will be defined later) a charge ω(C) = 0. We define then discharging rules and redistribute charges accordingly. Once the discharging is finished, a new charge function ω * is produced. However, the total sum of charges is kept fixed when the discharging is in process. Nevertheless, we can show that ω * (v) ≥ 32 13 (resp. 

32 13 |V (G)| ≤ X v∈V (G) ω * (v) + X C agency of G ω * (C) = X v∈V (G) ω(v) + X C agency of G ω(C) = X v∈V (G)d(v) = 2|E(G)|
This leads to the following obvious contradiction:

32 13 = 32 13 |V (G)| |V (G)| ≤ 2|E(G)| |V (G)| ≤ Mad(G) < 32 13
and hence demonstrates that no such counterexample can exist (as well for Mad(G) < 30 11 , 32 11 , 70 23 ).

Graphs with Mad < 32 13

Here, the bank of G is the subgraph of G defined as follows: its set of vertices contains all the 3 2 -vertices, 3 3 -vertices and the 2-vertices adjacent to 3 2 -vertices, or 3 3 -vertices ; its set of edges is the set of edges between the 2-vertices and the 3 2 -vertices, 3 3 -vertices. By Claim 1.3, an agency is a tree whose each leaf is a 2-vertex.

We say that a vertex, which does not belong to an agency, is adjacent to an agency if it is adjacent to a 2-vertex belonging to an agency.

The discharging rules are defined as follows:

R1. Every ≥ 3-vertex gives 3 13 to each adjacent 2-vertex.

R2. Every ≥ 3-vertex not belonging to an agency gives 2 13 to each adjacent agency.

R3.

Each agency gives 2 13 to each of its own 3 3 -vertices.

Let us check first that for each vertex v, ω * (v) ≥ 32 13 . Let v be a k-vertex (k ≥ 2 by Claim 1.1).

Case k = 2 Initially, ω(v) = 2. The vertex v receives 3 13 from of each of its neighbors (which are ≥ 3-vertices by Claim 1.2). Hence, ω * (v) = 2 + 2 • 3 13 = 32 13 .

Case k = 3 Initially, ω(v) = 3. If v is adjacent to at most one 2-vertex, then ω * (v) ≥ 3-3 13 -2 13 ≥ 34 13 . If v is an 3 2 -vertex, then v belongs to an agency and gives two times 3 13 by R1 and nothing by R2. Hence ω * (v) = 3 -2 • 3 13 = 33 13 . Finally assume that v is a 3 3 -vertex. The vertex v gives three times 3 13 by R1 and receives 2 13 by R3. Hence ω * (v) = 3 -3 • 3 13 + 2 13 = 32 13 . Case k ≥ 4 Initially, ω(v) = k. The vertex v is adjacent to at most k 2-vertices and to at most k agencies. Hence by R1 and R2, ω

* (v) ≥ k -k • 3 13 -k • 2 13 = 8k 13 ≥ 32 13 if k ≥ 4.
It remains to prove that the charge remaining on each agency is non-negative. Let C be an agency. Let n 33 (C), and n l (C) be the number of 3 3 -vertices, and leaves of C respectively.

Observe that:

n l (C) ≥ n 33 (C) (1) 
By R2, the agency C receives 2 13 from its adjacent vertices (i.e. it receives n l (C) • 2 13 ), and gives 2 13 to each of its own 3 3 -vertices by R3 (i.e. it gives n 33 (C)

• 2 13 ). Hence, ω * (C) = n l (C) • 2 13 -n 33 (C) • 2 13 ≥ n 33 (C) • 2 13 -n 33 (C) • 2
13 ≥ 0 by Equation ( 1). This completes the proof of Theorem 2.1.

Here, the bank of G is the subgraph of G defined as follows: its set of vertices contains all the 5 4 -vertices, 5 5 -vertices and the 2-vertices adjacent to 5 4 -vertices, or 5 5 -vertices ; its set of edges is the set of edges between the 2-vertices and the 5 4 -vertices, 5 5 -vertices. By Claim 1.3, an agency is a tree whose each leaf is a 2-vertex.

The discharging rules are defined as follows:

R1. Every ≥ 5-vertex gives 5 11 to each adjacent 2-vertex.

R2. Every ≥ 5-vertex not belonging to an agency gives 2 33 to each adjacent agency. R3. Each agency gives 2 11 to each of its own 5 5 -vertices.

Conclusion

In this note, we established that for every simple graph G, if Mad(G) ≤ 32 13 (resp. 30 11 , 32 11 , 70 23 ) then G admits an edge-partition into a forest and a graph with maximum degree at most 1 (resp. 2, 3, 4), hence the game chromatic of G is at most 5 (resp. 6, 7, 8). In order to study the tightness of Theorem 2, we introduce a function f : N → R defined by f (k) = inf{Mad(H) | H does not admit an edge-partition into a forest and a subgraph with maximum degree k }. It is easy to observe that the complete bipartite graph K 2,2k+2 has Mad(K 2,2k+2 ) = 4(k+1) k+2 and does not admit an edge-partition into a forest and a subgraph with maximum degree at most k. Hence, 

Claim 1 3 .

 13 The counterexample G does not contain: 1. 1-vertices, 2. two adjacent ≤ k + 1-vertices, 3. (k + 2, 2)-alternating cycles. Proof 1. By contradiction, assume that G contains an 1-vertex v adjacent to u. By minimality, of G, the graph H = G \ u admits an edge-partition into a forest F and a subgraph D with maximum degree k. We can extend this edge-partition to G by adding the edge uv into F , a contradiction. 2. Assume that G contains two adjacent ≤ k + 1-vertices, say u an v. By minimality, of G, the graph H = G \ uv admits an edge-partition into a forest F and a subgraph D with maximum degree k. If at least one of u and v is incident to k edges in D, then add uv in F ; otherwise, add uv into D. This extends the edge-partition to G, a contradiction. Assume that G contains a (k + 2, 2)-alternating cycle C = x 1 x 2 x 3 . . . x 2l x 1 with d(x i ) = k + 2 if i is even and d(x i ) = 2 otherwise. By minimality of G, the graphH = G \ {x 1 x 2 ,x 2 x 3 , . . . , x 2l-1 x 2l , x 2l x 1 } admits an edge-partition into a forest F and a subgraph D with maximum degree k. We may assume that x 2j is incident to at least one edge of F , for otherwise we can add an arbitrary edge incident to x 2j into F . Now by adding the edges x 2j x 2j+1 into D, adding x 2j x 2j-1 into F , we obtain a required edge-partition of G, a contradiction.
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  all v ∈ V (G) and ω * (C) ≥ 0 for all agency C of G. Hence the following equation follows:

Lemma 2 (Faigle et al. [3]) Let

  Zhu established this upper bound of the game coloring number: Suppose that the graph G has an edge-partition into two subgraphs G 1 and G 2 , then col g (G) ≤ col g (G 1 ) + ∆(G 2 ). T be a forest. Then col g (T ) ≤ 4.

	Lemma 1 (Zhu [5]) Faigle et al. studied the game coloring number of a forest:
	Hence combining these two lemmas with Theorem 1, we have
	Corollary 1 ([2] + [4]) Every planar graph with girth at least 9 (resp. 7, 5) has game color-
	ing number at most 5 (resp. 6, 8).

  For every k, what are (if any) the graphs which do not admit an edge-partition into a forest and a subgraph with maximum degree at most k, but such that every graph with smaller maximal average degree does?

	2, 461... =	32 13	≤ f (1) ≤	8 3	= 2, 666...
	2, 727... =	30 11	≤ f (2) ≤ 3	
	2, 909... =	32 11	≤ f (3) ≤	16 5	= 3, 2
	3, 043... =	70 23	≤ f (4) ≤	10 3	= 3, 333...
	We conclude with the following problem:		
	Problem 1