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Summary. Previous studies have shown that Unsteady Reynolds-Averaged
Navier-Stokes (URANS) computations are able to reproduce the vortex shed-
ding behind a backward-facing step. The aim of the present work is to in-
vestigate not only the quantitative predictions of the URANS methodology
concerning the characteristic frequencies, but also the amplitude of the en-
ergy of the resolved eddies, by using the Elliptic Blending Reynolds Stress
Model. This innovative low-Reynolds number second moment closure repro-
duces the non-viscous, non-local blocking effect of the wall on the Reynolds
stresses, and it is compared to the standard k–ε and LRR models using
wall-functions. Consistent with previous studies, in the 2D computations
shown in the present article, the vortex shedding is captured with the cor-
rect Strouhal number, when second moment closures are used. To complete
these previous analyses, we particularly focus here on the energy contained
in the unsteady, resolved part and its dependency on the numerical method.
This energy is less than 5% of the total energy and is strongly dependent on
the mesh. Using a refined mesh, surprisingly, a steady solution is obtained.
It is shown that this behaviour can be linked to the very small spatial os-
cillations at the step corner, produced by numerical dispersion, which act
as perturbations that are sufficient to excite the natural mode of the shear
layer, when the local Peclet number, comparing convection and diffusion ef-
fects, is high enough. This result suggests that URANS is not appropriate
to quantitatively predict the amplitude of the large-scale structures develop-
ing in separated shear-layers, and that URANS results must be interpreted
with care in terms of temporal variations of forces, temperatures, etc., in
industrial applications using marginally fine meshes.
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1 Introduction

Recently, a considerable interest has emerged in relatively low-cost (compared
to Large Eddy Simulation) time-dependent computations of complex flows,
in different fields of industrial activities, e.g., for thermal fatigue studies,
fluid/structure interaction, noise prediction, etc. In particular, the URANS
methodology has become quite popular, because of its successes in predicting
the most energetic modes and their Strouhal number, in particular for vortex
shedding behind bluff bodies [17, 4, 18, 13, 20]. The methodology is straight-
forward: it simply consists in solving standard RANS-model equations in a
time-accurate mode. However, fundamental questions remain about the gen-
eral definition of the URANS decomposition when the flow is stationary, since
the ensemble average is independent of time, while URANS computations
provide an unsteady solution. Moreover, even for non-stationary flows, like
pulsed flows or flows around moving obstacles, for which the ensemble average
is time-dependent, it is also worth pointing out that using standard RANS
models in an unsteady computation is questionable. Indeed, although they
sometimes provide satisfactory solutions, they are mainly formulated under
the assumption of equilibrium, which can lead to a significant misrepresen-
tations of the physical mechanisms present in unsteady flows: for instance,
Carpy and Manceau [5] have shown that linear eddy-viscosity models give a
completely wrong dynamics in a pulsed jet, due to the lack of representation
of the stress–strain misalignment. On the contrary, second-moment closures
(SMCs) are able to reproduce the global dynamics of this flow without any
case-specific modification.
In the case of separated shear layers, it was shown by Lasher & Taulbee [21]
that SMCs are able to reproduce the vortex shedding in a backward-facing
step flow, as soon as sufficiently accurate numerical methods are used. De-
spite the fact that separation is fixed by the geometry, which avoids the
appearance of an unsteady separation point, as can be observed on smooth
surfaces, the backward-facing step flow is a challenging test case for unsteady
computations, since it conjugates several fundamental mechanisms: vortex
shedding, convection and pairing of these structures downstream, interaction
between the vortices and the wall, flapping of the recirculation region at a
low frequency. Numerous RANS studies (steady computations) of backward-
facing step flows (e.g., [1, 7, 16, 28]) have shown the difficulty in reproducing
the main characteristics of the flow (recirculation length, backflow intensity,
boundary-layer recovery), especially for small expansion ratios, where turbu-
lence has a strong influence on the mean flow. On the other hand, only Lasher
& Taulbee [21] have investigated this flow using a time-dependent compu-
tation (URANS) with a second-moment closure. However, their model was
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based on wall functions, and the initial aim of the present work was to eval-
uate, by performing 2D computations, the performance of a recent near-wall
SMC, the Elliptic Blending Reynolds Stress Model (EB-RSM) [26, 25], for-
mulated in order to replicate the non-viscous, non-local blocking effect of the
wall. This evaluation does not only concern the mean quantities, but also the
quantitative prediction of the characteristic frequencies and the kinetic en-
ergy content of the resolved, unsteady large-scale structures. This study has
actually revealed that the most important aspect of such computations is the
influence of the numerics on the nature of the solution (steady/unsteady).
Therefore, the main part of the present work is devoted to the analysis and
understanding of this influence, and to the identification of the limitations
of URANS for this type of flows.

2 Governing equations

The instantaneous flow is driven by the Navier-Stokes and continuity equa-
tions. The instantaneous velocity U∗

i is decomposed into a resolved part Ũi,
including mean value and large-scale fluctuations, and a residual fluctuating
part u

′′

i such that
U∗
i = Ũi + u′′

i . (1)

The resolved velocity is obtained by the convolution product of a filter G
with the instantaneous velocity as [15]

Ũi(x, t) = 〈U∗
i 〉 =

∫

r∈V

∫

τ∈[−∞,t]

G(x− r, t− τ)U∗
i (r, τ) drdτ, (2)

where V is the fluid domain and the brackets denote the URANS filter, which
can be defined as a phase average in the present case, corresponding to a filter
function given by

G(x, t) = δ(x)

[

lim
N→∞

1

N + 1

N
∑

n=0

δ(t+ nT0)

]

, (3)

with T0 the shedding time scale. The long-time average of U∗
i is denoted

by Ui, so that the large-scale fluctuation is u′
i = Ũi − Ui, and the total

fluctuation is ui = U∗
i − Ui = u′

i + u′′
i . The URANS continuity and Navier-

Stokes equations are formally identical to the RANS equations: the unknown
correlation

〈

u′′
i u

′′
j

〉

, appearing in the momentum equation concerning Ũi, is
the residual stress tensor, and has to be modelled. Using a second moment
closure, the transport equations for

〈

u′′
i u

′′
j

〉

and the kinetic energy dissipation
rate ε can be written in a general form
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Figure 1: Wall-normal unit vector at the step corner, calculated from
Eq. (14).

Ũi = 0; < u′′
i u

′′
j >= 0; ε = 2ν lim

y→0

k′′

y2
; α = 0

Table 1: Boundary conditions.
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D̃

D̃t

〈

u′′
i u

′′
j

〉

= P̃ij + φij − εij + ∂l

(

νδlm +
CµT

σk

〈u′′
l u

′′
m〉
)

∂m
〈

u′′
i u

′′
j

〉

, (4)

D̃ε

D̃t
= C ′

ε1

P̃

T
− Cε2

ε

T
+ ∂l

(

νδlm +
CµT

σε

〈u′′
l u

′′
m〉
)

∂mε. (5)

where D̃/D̃t = ∂t + Ũk∂k. The stress production term P̃ij and P̃ = 1
2
P̃kk are

exact and do not need to be modelled; εij denotes the dissipation rate tensor,
with ε = 1

2
εkk; φij is the velocity-pressure-gradient correlation, known as the

pressure term. In standard models, this term is modelled using strong hy-
potheses like locality and local quasi-homogeneity, not valid in wall-bounded
flows [27]. In order to avoid the use of these hypotheses, Durbin [11, 12] pro-
posed the elliptic relaxation model, derived from the exact integral equation
for φij [11, 27], which implies the resolution of six differential equations for
φij

φij − L2∇2φij = φh
ij , (6)

where φh
ij is any ”homogeneous” (valid away from the wall) model. In or-

der to avoid the resolution of six additional equations with numerically stiff
boundary conditions, Manceau [25] suggests, following Manceau & Hanjalić
[26], to blend the homogeneous model and a near-wall model of φij as

φij = (1− α2)φw
ij + α2φh

ij, (7)

where α is a blending coefficient which goes from zero at the wall to unity
far from the wall.
Contrary to Eq. (6), Eq. (7) is not a differential, elliptic equation, and conse-
quently, in order to preserve the non-local influence of the wall, which yields
the progressive transition from the homogeneous form to the near-wall form,
Manceau [25] proposes to use an elliptic equation for α, similar to the elliptic
relaxation equations

α− L2∇2α = 1. (8)

For the ”homogeneous” part of the pressure term φh
ij, any existing model can

be used. The SSG model [30] is used here

φh
ij = −

(

g1 + g∗1
P̃

ε

)

εb′′ij +
(

g3 − g∗3
√

b′′klb
′′
kl

)

k
′′

S̃ij

+ g4k
′′

(

b′′ikS̃jk + b′′jkS̃ik −
2

3
b′′lmS̃lmδij

)

+ g5k
′′
(

b′′ikΩ̃jk + b′′jkΩ̃ik

)

, (9)
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Cε1 = 1.44; Cε2 = 1.83; Cµ = 0.21;
σk = 1.0; σε = 1.15; A1 = 0.03;
CL = 0.161; Cη = 80.0; CT = 6.0;
g1 = 3.4 ; g∗1 = 1.8 ; g3 = 0.8 ;
g∗3 = 1.3; g4 = 1.25 ; g5 = 0.4

Table 2: Values of the EB-RSM constants.
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Figure 2: Geometry and computational domain of the backward-facing step
flow.
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with

k′′ =
1

2

〈

u′′
ju

′′
j

〉

, b′′ij =

〈

u′′
i u

′′
j

〉

2k′′
−

1

3
δij , (10)

S̃ij =
1

2

(

∂jŨi + ∂iŨj

)

, Ω̃ij =
1

2

(

∂jŨi − ∂iŨj

)

. (11)

For the near-wall part of the pressure term, φw
ij has to satisfy the balance

between the pressure term, the molecular diffusion and the dissipation term,
in the vicinity of the wall, which can be written as

φij + ν∇2
〈

u′′
i u

′′
j

〉

− εij = 0. (12)

Using the simple model of Rotta [29] for the near-wall part of the dissipation
term (Eq. 16), Manceau & Hanjalić [26] showed that φw

ij can be written in a
general frame as

φw
ij = −5

ε

k′′

(

〈u′′
i u

′′
k〉njnk +

〈

u′′
ju

′′
k

〉

nink −
1

2
〈u′′

ku
′′
l 〉nknl(δij + ninj)

)

. (13)

Since α is zero at the wall, the wall-normal unit vector n can be evaluated
from

n =
∇α

||∇α||
. (14)

This definition enables the use of the model in complex geometries because
the n vector continuously adapts itself to the shape of the wall, as shown in
Fig. 1, and there is no need to define the nearest wall, which can be ill-defined,
as in the step corner, for example.
Similarly to φij, the standard, homogeneous model for the dissipation rate
εij is not valid in the near-wall region. Manceau & Hanjalić [26], using a
DNS database, have shown that the dissipation tensor can be modelled in a
way similar to φij

εij = (1− α2)εwij + α22

3
εδij. (15)

Away from the wall, the dissipation rate is assumed isotropic. The simple
Rotta model [29] is used for the near-wall part, as previously mentioned

εwij =

〈

u′′
i u

′′
j

〉

k′′
ε. (16)
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To take into account the increase of the production of dissipation in the near-
wall zone, the coefficient of the generation term in the dissipation equation
is taken as

C ′
ε1
= Cε1

(

1 + A1(1− α2)

√

k′′

〈

u′′
i u

′′
j

〉

ninj

)

. (17)

This formulation gives the classical value Cε1 far from the walls, and a value
larger than Cε1 in the near-wall zone. The length and time scales appearing
in the model equations are the turbulent scales bounded by the Kolmogorov
scales, to avoid singularities at the walls and to replicate the physical be-
haviour observed in DNS analyses [27]

L = CLmax

(

k′′3/2

ε
;Cη

ν3/4

ε1/4

)

, (18)

T = max

(

k′′

ε
;CT

√

ν

ε

)

. (19)

The model constants are given in Tab. 2. Exact wall boundary conditions
used for all variables are given in Tab. 1. Comparing to the original model of
Manceau & Hanjalić [26], the version of Manceau [25] improves the robust-
ness by getting rid of nonlinearities. The two-component limit of turbulence
near the wall is well predicted in a channel flow [25], and the model has
been successfully applied to different configurations [31, 3, 6]. Another ad-
vantage of the model is that there is no explicit dependency on the distance
to the wall, and it can therefore be used in complex geometries. Moreover,
the derivation of the elliptic relaxation equations (6) from the Poisson equa-
tion for the fluctuating pressure [27] is independent of the steady/unsteady
character of the resolved field (velocity Ũi and pressure P̃), which indicates
that the procedure leading to the elliptic blending model can still be applied
in an unsteady context. The only possible influence of unsteadiness could
be a modification of the near-wall balance of the Reynolds stress equations,
from which the near-wall term φw

ij is derived. However, the analysis of the
near-wall asymptotic behaviours given by Manceau & Hanjalić [26] shows
that the time-derivative is negligible compared to the other terms, meaning
that the near-wall modelling is also valid in unsteady flows, contrary to usual
methods based on damping functions.
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3 Flow configuration and numerical methods

The 2D backward-facing step flow configuration is presented in Fig. 2. The
test case of Driver & Seegmiller [9] has been chosen for several reasons: the
expansion ratio is low enough to ensure that the pressure effects do not over-
whelm the turbulence effects [21], the experimental inlet conditions are well
defined, and the aspect ratio is sufficiently large to neglect the effects of the
lateral walls. The Reynolds number based on the inlet centerline velocity
U0 and the step height h is Reh = 37500, and the Reynolds number based
on the inlet momentum thickness θ and the velocity U0 is Reθ = 5000. The
experiment [10] underlines the existence of two dominant frequencies. A high
frequency is associated with the vortex shedding due to the Kelvin-Helmholtz
instability, with a Strouhal number of 0.20, based on the local vorticity thick-
ness and shear velocity (U0/2), and a low frequency (St ≈ 0.06), character-
istic of a flapping motion. In the present work, the EB-RSM is compared
to the standard k–ε [23] and LRR (Rotta+IP version) [22] models, using
wall functions. Computations are performed with Code Saturne, a parallel,
finite volume solver on unstructured grids, developed at EDF [2]. Space
discretization is based on a collocation of all the variables at the centre of
gravity of the cells. Velocity/pressure coupling is ensured by the SIMPLEC
algorithm, with a Rhie & Chow interpolation in the pressure-correction step
[14]. The Poisson equation is solved with a conjugate gradient method. Time
advancement is based on an implicit Euler scheme, and time-step conver-
gence has been checked carefully, by refining the time step up to a factor of
10. The convection terms of all the equations (for resolved momentum and
turbulent quantities) are approximated by a second-order central-difference
scheme (CDS). Some computations where also performed using a first-order
upwind-difference scheme (UDS) for comparison.
All the computations shown in the present article are 2D. This is justified
by the fact that the purpose is to reproduce the primary instability of the
shear layer which is 2D [32]. The reproduction by URANS of the secondary
instabilities leading to 3D structures is only possible if the primary instability
is found. Six meshes, numbered from 1 to 6, are used for the high-Reynolds
number models (k–ε and LRR, see Tab. 3). Six other meshes, numbered
from 7 to 12, are also used for the EB-RSM low-Reynolds number model
(see Tab. 4). The parameter fr, used in Tab. 3 and Tab. 4, is the factor
of refinement in each direction compared to the reference mesh (mesh 1 for
the high-Reynolds number models, and mesh 7 for the EB-RSM); Ncell is the
total number of cells and y+1 is the distance to the wall, in wall units, of the
centre of gravity of the first cell, evaluated at the inlet of the domain. As
shown by Manceau & Hanjalić [26], the EB-RSM does not require very fine
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Figure 3: Mean velocity profile at the inlet (x/h = −4). Comparison between
models and experiment [9].

Mesh 1 2 3 4 5 6
fr 1 1.5 2 2.5 3 4

Ncell 1396 3396 5970 9842 14234 25154
y+1 150 100 75 60 50 37

Table 3: Mesh characteristics for the high-Reynolds number models (k–ε and
LRR).

Mesh 7 8 9 10 11 12
fr 1 1.2 1.4 1.6 1.8 2

Ncell 3954 5936 7920 10816 13838 17256
y+1 3 2.5 2.1 1.9 1.6 1.5

Table 4: Mesh characteristics for the low-Reynolds number model (EB-RSM).
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meshes close to the wall, contrary to most of the other near-wall resolving
second-moment closures. Mesh 7 corresponds to the most refined mesh used
by Lasher & Taulbee [21].

A particular attention was paid to the inlet conditions to which the backward-
facing step flow is very sensitive. Since they do not correspond to a fully
developed channel flow, separate computations of a developing channel flow
were performed with each turbulence model to extract the boundary layer
profiles, which are applied at the inlet of the domain in order to match
the boundary layer thickness 4h upstream of the step corner observed in
the experiments. Fig. 3 shows the mean velocity profile obtained with each
turbulence model compared to the experimental data. Fig. 4 and Fig. 5
show respectively the Reynolds stresses and the total fluctuating kinetic en-
ergy profile, in comparison with the experiment, where it is assumed that
w2 ≃ 1/2(u2 + v2), the overbar denoting the long-time average.

4 Results

4.1 Mean flow

In comparison to the standard k–ε and LRR models with wall functions
(denoted by WF), Figs. 6 and 7 show that the EB-RSM significantly improves
the skin friction coefficient Cf in a region covering the whole recirculation
bubble (0 < x/h < 8). The skin friction coefficients obtained with the EB-
RSM, using the different meshes, are superimposed, showing that the results
are not sensitive to a reasonable coarsening of the near-wall mesh. This point
was also noticed by Manceau & Hanjalić [26] in a channel flow and is very
interesting for industrial applications where the meshes are marginally fine.
Tab. 5 shows that the mean reattachment length lr is underestimated by 20%
by the high-Reynolds models, as expected, and estimated within 5% error
by the EB-RSM. However, Fig. 8 shows that the recirculation region is too
thick: the shear strain is thus too weak, which implies an underestimation of
the shear stress in the recirculation region, as can be seen in the figure. This
is a shortcoming common to most of the RANS models (see, for instance,
[24]). The EB-RSM friction coefficient in Fig. 6 and mean velocity profiles in
Fig. 8 moreover reveal that the recovery of the boundary layer downstream of
reattachment is not satisfactory. This feature is common to all the turbulence
models, SMCs as well as eddy-viscosity models [1, 7, 13, 16]. The prediction
of the mean flow with the EB-RSM is very similar to previous results obtained
with the same class of models (near-wall second-moment closures [7, 16]).
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Figure 4: Reynolds stress profiles at the inlet (x/h = −4). Comparison
between models and experiment [9]. ◦ u2, 2 v2 , ⋄ uv.

Experiment k–ε LRR EB-RSM
lr/h 6.26 5.14 4.72 6.51

Table 5: Mean reattachment length. Mesh 6 for the high-Reynolds models
and mesh 12 for the EB-RSM.
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4.2 Instantaneous flow

All the k–ε computations give steady solutions, whatever the mesh or the
spatial discretization used. This model is based on the Boussinesq approxi-
mation which assumes alignment of the Reynolds stress anisotropy and the
strain. As a consequence, the turbulent production is overestimated. For in-
stance, in a 2D flow, as shown by Carpy & Manceau [5], the exact production
can be written as

P̃ = k′′β(λ1 − λ2) cos(2ϕ), (20)

where ϕ is the angle between the eigenvectors of the strain rate tensor and
the eigenvectors of the anisotropy tensor in the x–y-plane, β is the positive
eigenvalue of the strain rate tensor and λ1 and λ2 are the two eigenvalues
of the anisotropy tensor in the x–y-plane (λ1 > λ2). The Boussinesq ap-
proximation implies that ϕ = 0, leading to a systematic overestimation of
production when turbulence and strain are not aligned, which is the case
if the strain is unsteady. This leads to an overestimated rate of transfer
from resolved to modelled energy, leading to a rapid decrease of the former
[5]. Therefore, linear eddy-viscosity models should be avoided in unsteady
computations.
On the contrary, the steady/unsteady character of the solution using the
SMCs is strongly dependent on the numerics. Using an UDS, whatever the
meshes and the model, the solution is steady due to the diffusive character
of this scheme. Using a CDS and meshes similar to those used by Lasher &
Taulbee [21] (mesh 7 for the EB-RSM), the solution is unsteady, exhibiting
a single frequency, consistent with the results found by these authors. The
correct order of magnitude of the Strouhal number is found with EB-RSM
(St = 0.21) whereas St = 0.16 with LRR. This frequency is associated with
the vortex shedding which can be visualized in Fig. 9, by isocontours of
vertical resolved velocity fluctuations. Seven probes are positioned in the
shear layer (y/h = 1) going from x/h = 1 to x/h = 7. The resolved velocity
signal as a function of time, not shown here, is purely sinusoidal. Therefore,
the measure of the convection velocity Uc of the large-scale structures is
easy and is given by the time delay between these probes. The measure
gives a constant value Uc ≃ 0.5U0 independent of the streamwise location, as
reported in the experiment [19]. However, in the experiments, it is observed
that some of the vortices created in the shear layer are incorporated into the
recirculation zone rather than convected downstream, which is not observed
in our computations: consequently, the flapping motion, which is linked to
the incorporation and release of this vortices, is missed.
However, the resolved, large-scale structures contain a very limited part of
the total fluctuating energy: indeed, the ratio kres/ktot is less than 5% on
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the coarse mesh (mesh 7), where kres is the kinetic energy of the resolved
structures and ktot = kres + kmod is the sum of the resolved and the modelled
kinetic energies. These quantities are given by

kres =
1

2
u′
iu

′
i =

1

2

(

ŨiŨi − UiUi

)

, (21)

kmod = k′′ =
1

2
〈u′′

i u
′′
i 〉. (22)

One could expect that refining the mesh would intensify the resolved energy,
by reducing the numerical errors. Let us define the parameter M(x) by

M(x) = max
y

(

kres(x, y)/ktot(x, y)
)

, (23)

which is the maximum value of the ratio resolved energy/total energy on
a vertical line at a given streamwise location. This ratio characterizes the
energy contained in the resolved, large-scale eddies of the shear layer, coming
from the vortex shedding. Fig. 10 shows the streamwise evolution of M(x)
for each mesh used in the EB-RSM computation: a drastic reduction of the
resolved energy and a steady solution for the finest mesh (mesh 12), meaning
that M(x) = 0, are obtained.
It is worth pointing out that this behaviour is not linked to the fact that
the computations are 2D. Indeed, the primary instability of this flow be-
ing 2D [32], 3D structures generated by secondary instabilities cannot be
reproduces if the primary instability is missed. Therefore, 3D computations
give exactly the same steady solution as 2D computations, which has been
checked by using the same mesh (12) extended in the z-direction by adding
40 cell layers covering a width of 4h.
The results with the LRR model are qualitatively similar, and are therefore
not shown here. The next section proposes an explanation for this surprising
behaviour.

5 Investigation of the steady/unsteady be-

haviour

First, it is worth emphasizing that, contrary to LES, the URANS model is in-
dependent of the grid. Refining the grid enables the solution of the discretized
equations to approach the solution of the continuous equations (the model),
while in LES, where the filter is usually dependent on the local characteristics
of the mesh, grid convergence cannot be obtained (except in the DNS limit).
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Therefore, in URANS, a modification of the solution when refining the grid
can only be due to discretization errors. Actually, the nature of the solution
(steady/unsteady) can be traced to the excitation of the most unstable mode
of the shear layer by weak spatial oscillations at the step corner, due to the
CDS. Indeed, it is well known, at least for a 1D convection/diffusion equa-
tion, that central differencing can generate spatial numerical oscillations in
a region of strong gradients in the streamwise direction, if the Peclet num-
ber exceeds 2 [14]. These oscillations do not appear when using a diffusive
scheme, such as the UDS, which explains why the solution always remains
steady with this scheme. In a one-dimensional situation, the Peclet number
compares the time scales of diffusion τD and convection τC over the length
of the cell. In the two-dimensional boundary layer just upstream the step
corner, the convection and diffusion process can be considered as essentially
in the streamwise and wall-normal directions, respectively, and associated
time scales can be locally approximated by τC = ∆x/U and τD = ∆y2/νeff.
Thus, a local Peclet number can be defined as

Pe(x, y) =
τD
τC

=
U∆y2

νeff∆x
. (24)

In a turbulent boundary layer, νeff accounts for the effective (molecular +
turbulent) viscosity and is given by the Daly-Harlow model [8], used in both
SMCs:

νeff = ν +
Cµ

σk

T
〈

v′′2
〉

. (25)

The wall-normal distance δ influenced by the total diffusion during the trans-
port time τC is equal to δ =

√

νeff∆x/U , meaning that δ/∆y = Pe−1/2. As
in a one-dimensional situation, we conjecture that for large values of the local
Peclet number, δ is much smaller than the wall-normal cell size ∆y, which
leads to spatial oscillations. Fig. 11 shows the streamwise evolution of the
local Peclet number at y+ = 15, which is the location of the streamline pass-
ing through the inflexion point of the shear layer just after the step, where
the velocity profile is the most sensitive to perturbations, according to linear
stability [32]. It can be seen, comparing Fig. 10 and Fig. 11, that there is at
least a qualitative link between the orders of magnitude of the local Peclet
number and the energy contained in the resolved eddies. This comparison
suggests that, for coarse meshes, the spatial numerical oscillations due to the
high local Peclet number in a region of strong mean velocity gradient ∂xU
(very close to the step, say −0.1 < x/h < 0) act as perturbations that are
sufficient to excite the natural mode of the shear layer. Fig. 12 attempts
to highlight the existence of these very small numerical oscillations on the
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mean velocity. Since they are not directly visible on the mean velocity itself,
the streamwise evolution of the long-time averaged velocity derivative ∂xU is
plotted instead, at the height y+ = 15. It is seen that numerical oscillations
exist and their amplitude decreases when the mesh is refined. These oscilla-
tions are not the footprint of the unsteadiness due to the vortex shedding,
since what is plotted is the long-time averaged velocity.
The steady solution was not observed by Lasher & Taulbee [21] because
their most refined mesh corresponds to the coarsest mesh used in the present
work (mesh 7). It is also important to note the existence of an unsteady
solution, even on the most refined mesh (mesh 12), during a transient phase
which can last for a long time, about twenty shedding time scales. Thus,
computations must be performed on a sufficiently large duration to reach
the steady solution.
When the solution is unsteady on the coarse meshes, the Strouhal number
of the large-scale structures is reliable because it does not depend much on
the mesh, since it corresponds to the most amplified mode of the shear layer,
as predicted by linear stability [32]. On the contrary, the amplitude of these
structures is strongly dependent on the amplitude of the perturbations, which
is driven by the numerical oscillations. Thus, obtaining an unsteady solu-
tion is a numerical artefact, which makes the use of URANS uncertain in
such flows, in particular as concerns the prediction of the amplitude of the
large-scale oscillations, which are of major interest for industrial applications.

Another important remark can be made by considering two meshes, denoted
by the subscripts a and b. It is assumed that mesh b is finer than mesh a,
with a factor of refinement in streamwise and wall normal directions denoted
by fab ≥ 1 and gab ≥ 1 respectively. If the mean velocity and the turbulent
viscosity are converged numerically, using definition (24), it is easy to show
that the ratio of the Peclet numbers associated with each mesh is

Peb
Pea

=

(

∆yb
∆ya

)2
∆xa

∆xb

=

(

1

gab

)2

fab. (26)

Considering, for example, that meshes a and b are mesh 7 and 12 (EB-RSM
computation), we have in this case fab = gab = fr = 2 (see Tab. 4) and then
Pe12/Pe7 = 1/2, which is approximately verified in Fig. 11. Expression (26)
suggests that it is more favourable to numerical stability to refine only in the
wall normal direction than in both directions, leading to elongated cells.
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6 Conclusions

The 2D computations of the backward-facing-step flow have shown that ob-
taining an unsteady solution, whatever the model used (high or low-Reynolds
number model), is due to the amplification of numerical oscillations in a re-
gion very close to the step, where the velocity gradients and local Peclet
number are high. These numerical oscillations act as perturbations that are
sufficient to excite the natural mode of the shear layer. A diffusive scheme,
such as the UDS, do not exhibit such oscillations and, therefore, gives a
steady solution whatever the mesh.
The present work thus shows that the grid-converged solution of 2D URANS
computations of the backward-facing step flow is a steady (RANS) solution.
This indicates that the primary instability of this flow is not reproduced by
URANS. Consequently, more complex structures, like those due to secondary
instabilities cannot be obtained either, and 3D URANS computations also
give a steady solution. The observations made using CDS and UDS schemes
can be extended to more sophisticated schemes (upwind-biased second-order
schemes, TVD schemes, etc.): the appearance of unsteady solutions can only
be a numerical artefact due to the combination of a too coarse mesh and an
oscillation-generating scheme.
As shown by previous studies [21], URANS is able to reproduce the correct
Strouhal number of the vortex shedding, since it is imposed by the mean
velocity profile, according to the linear stability [32]. However, the ampli-
tude of the vortices is strongly dependent on the numerics, and therefore,
its prediction with the URANS methodology does not seem to be reliable.
This result suggests that, whatever the convection scheme, in industrial ap-
plications using URANS, the reproduction of vortex shedding in separated
shear layers will be driven by the competition between numerical diffusion
and dispersion. This issue can be problematic in complex 3D applications
for which the mesh is often only marginally fine. The interpretation of the
results in terms of, e.g., temporal variations of forces or wall temperatures,
is to be considered with care. This remark suggests that future work should
be devoted to the development of hybrid RANS-LES methods, which enable
to control the parameter resolved energy/total energy.
The present work also showed that the Elliptic Blending Reynolds Stress
Model [26, 25], a recent near-wall second-moment closure, is sufficiently ro-
bust to be used in unsteady computations, although the grid-converged so-
lution is steady in the present case. The steady results are very similar to
previous results obtained with near-wall second-moment closures [7, 16], both
in the recirculation and recovery regions. The mean skin friction in the re-
circulation region and the mean reattachment length are improved compared
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to the standard k–ε [23] or LRR [22] models with wall-functions, and are not
sensitive to a reasonable coarsening of the near-wall mesh. On the contrary,
the reproduction of the recovery region after the reattachment point is not
satisfactory. The EB-RSM is much more robust than previous models based
on Elliptic Relaxation [12, 26] and can be easily implemented in RANS codes
using second-moment closures.
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Figure 5: Fluctuating kinetic energy profile at the inlet (x/h = −4). Com-
parison between models and experiment [9].
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Figure 6: Mean skin friction coefficient. All the computations with the EB-
RSM are superimposed.
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Figure 7: Mean skin friction coefficient. Close up of the recirculation region.
Same legend as Fig. 6.
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Figure 9: Isocontours of vertical, resolved velocity fluctuations (mesh 10,
EB-RSM computation). Dashed lines are negative values.
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Figure 10: Maximum value M(x) of the ratio resolved energy/total energy
as a function of the streamwise location (EB-RSM computation). Mesh 12
gives a steady solution such that M(x) = 0.
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Figure 11: Streamwise evolution of the local Peclet number at y+ = 15 (EB-
RSM computation).
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Figure 12: Streamwise evolution of ∂xU at y+ = 15 (EB-RSM computation).
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