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Classification of Induction Machine Faults by
Optimal Time-Frequency Representations

Abdesselam Lebaroud and Guy Clerc, Member, IEEE

Abstract—This paper presents a new diagnosis method of in-
duction motor faults based on time—frequency classification of
the current waveforms. This method is based on a representation
space, a selection criterion, and a decision criterion. In order to
define the representation space, an optimized time—-frequency rep-
resentation (TFR) is designed from the time—frequency ambiguity
plane. The selection criterion is based on Fisher’s discriminant
ratio, which allows one to maximize the separability between
classes representing different faults. A distinct TFR is designed
for each class. The following two classifiers were used for decision
criteria: the Mahalanobis distance and the hidden Markov model.
The flexibility of this method allows an accurate classification
independent from the level of load. This method is validated on
a 5.5-kW induction motor test bench.

Index Terms—Diagnosis, hidden Markov model (HMM), induc-
tion motor, time—frequency classification.

I. INTRODUCTION

ANY CRITICAL industrial processes require reliability
M and safety operation of electric motors. However, un-
expected machinery failures provide loss of production, high
emergency maintenance costs, damages to other related ma-
chinery, and extended process downtime. Thus, very expensive
scheduled maintenance is performed in order to detect machine
problems before they can result in catastrophic failure [1].
Therefore, there is a considerable demand to reduce mainte-
nance costs and prevent unscheduled downtimes for electrical
drive systems. The major faults of electrical machines can
broadly be classified as the following [2]:

1) stator faults resulting in the opening or shorting of one or
more of stator phase windings;

2) abnormal connection of the stator windings;

3) broken rotor bar or cracked rotor end-rings;

4) static and/or dynamic air-gap irregularities;

5) bent shaft (dynamic eccentricity . ..) which can resultin a
rub between the rotor and stator, causing serious damage
to stator core and windings;

6) shorted rotor field winding;

7) bearing and gearbox failures.
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Of the aforementioned types of faults, bearing faults, sta-
tor faults, and broken bars are the most prevalent, although
almost 40%-50% of all failures are bearing related. Bearing
faults might manifest themselves as rotor asymmetry faults [3]
which are usually covered under the category of eccentricity-
related faults. Stator faults are usually related to insulation
failure; they manifest themselves through phase-to-ground con-
nections or phase-to-phase faults. Also, stator faults manifest
themselves by abnormal connection of the stator windings.
Almost 30%—-40% of all reported induction motor failures fall
in this category [4]. The rotor fault now accounts for around
5%—10% of the total induction rotor failures [4]. The principal
reasons for rotor bar and ring breakage are thermal stresses
due to thermal overload and unbalance. On the other side,
magnetic stresses are caused by electromagnetic forces, unbal-
anced magnetic pull, electromagnetic noise, and vibration. In
recent years, many research works have been carried out for the
study and development of fault detection and diagnosis methods
for electric machines. Recent advances of signal processing
techniques, such as artificial neural networks [5], wavelets [6],
etc., have provided more powerful tools for fault diagnosis.
Several diagnostic strategies such as model-based approaches
[7], pattern recognition [8] and artificial intelligence [9] have
been recently presented in technical literature. Recently pro-
posed approaches for automated detection and classification
of induction machine faults are based on wavelet analysis,
artificial neural networks, and hidden Markov models (HMMs)
[10], [11]. As input parameters of diagnosis system, signals
(current, voltage, torque, vibration, etc.) are most often used.
The problem of diagnosis systems is that they use signals either
in the time or frequency domain. In our approach, instead of
using a time or a frequency approach, it is potentially more
informative to use both time and frequency. Time—frequency
analysis of the motor current makes signal properties, re-
lated to fault detection, more evident in the transform
domain [12].

In many classification applications [13]-[15], features are
traditionally extracted from standard time—frequency represen-
tations (TFRs). This assumes that the implicit smoothing is ap-
propriate for the classification task. Making such assumptions
can degrade classification performance. TFRs can be uniquely
characterized by an underlying function called a kernel. In
previous time—frequency research, kernels have been derived
in order to fulfill properties, such as minimizing quadratic
interference, although some of the resulting TFRs can offer
advantages for classification of certain types of signals. The
goal of sensitive detection or accurate classification is rarely an
explicit goal of kernel design. Those few methods that optimize
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the kernel for classification purposes constrain the form of the
kernel to predefined parametric functions with symmetries that
cannot be suitable to detection or classification [15]. Tradition-
ally, the objective of time—frequency research is to create a
function that will describe the energy density of a signal simul-
taneously in time and frequency. For explicit classification, it
is not necessarily desirable to accurately represent the energy
distribution of a signal in time and frequency. In fact, such
a representation may conflict with the goal of classification,
generating a TFR that maximizes the separability of TFRs
from different classes. It may be advantageous to design TFRs
that specifically highlight differences between classes [15]. The
use of TFR includes the following two sequential processes:
feature extraction and rule decision. This technique has been
successfully applied for classification of induction machine
faults [16], tool-wear monitoring, and radar transmitter iden-
tification [17]. For classification, the optimization procedure
of TFR (1) via parameter kernel is very computationally pro-
hibitive. It would be better to use the optimal TFR that can
be classified directly in the ambiguity plane. We propose to
design and use the classifier directly in the ambiguity Doppler-
delay plane. Since all TFRs can be derived from the ambiguity
plane, no a priori assumption is made about the smooth-
ing required for accurate classification. Thus, the smoothing
quadratic TFRs retain only the information that is essential for
classification.

In this paper, we propose a classification technique based
on the design of optimized TFR from a time—frequency am-
biguity plane in order to extract the feature vector. A deci-
sion criterion based on a “Mahalanobis distance” was used
to ensure assignment to the appropriate class, but given these
limitations, it has been replaced by a new criterion, namely,
the HMM. The goal is the realization of an accurate diagnosis
system of motor faults such as bearing faults, stator faults, and
broken bars.

II. CLASSIFICATION ALGORITHM

The classification algorithm is composed of the following
two parts: extraction features and decision making. In the train-
ing stage, in order to build the extraction features, three optimal
kernels are designed for separating four classes. The kernel
design process selects, for each class, three locations from
the time—frequency ambiguity plane. In the decision making
stage, the following two different classifiers are proposed: the
Mahalanobis distance and the HMM.

The classification algorithm is applied to detection of three
kinds of induction machine faults, which are bearing fault,
stator fault, and rotor fault. Thus, the following four classes are
considered:

1) class of healthy motor;

2) class of bearing fault;

3) class of stator fault;

4) class of broken bars.

The classification algorithm of these three classes of defects and
the healthy class is shown in the Fig. 1.

Two steps are necessary for optimal classification. The de-

tails of each step are described in the following paragraphs.
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Fig. 1. Classification procedure.

III. FEATURE EXTRACTION
A. Optimal TFR

The important connection between the ambiguity plane and
TFRs has been well established for a long time. Any bilinear
(Cohen class) TFR of signal z(t) can be expressed as the 2-D
Fourier transform of the product of the ambiguity plane A(7, 7)
of the signal and a kernel function ¢ (7, 7) [13]

TFRZ(t, f) = / A, m)(n, )2 e 2T dpdr (1)

8\8

where ¢ represents the time, f represents the frequency, 7
represents the continuous frequency shift, and 7 represents the
continuous time lag. The ambiguity plane A(n,7) for a given
signal z(t) is defined as

*(t+ T)ed 2™t )

Ag(n,7) = ]Caf(t)ﬂlj

x(t + 7) represents the signal at a future time (¢ + 7) and
2*(t + 7) is the complex conjugate of x(t + 7).
The discrete versions of ambiguity plane (2) is [17]

N-1

S R, rle 7 F (3)

n=0

Aln, 7] = Foy { R0, 7]} =

where F' represents the Fourier transform, 7 represents the
discrete frequency shift, 7 represents the discrete time lag,
and n represents the sample. The instantaneous autocorrelation
function R[n, 7] is defined as

R[n, 7]

=z*n]-x[(n+7)n]. “4)

Thus, the class-dependent TFR [15] is defined by
TFR[n, k] = F, %, {Fr—y {eln, 7] Ay, 7]}} (5)

where k is the discrete frequency.
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The characteristic function for each TFR is A(n, 7)p(n, 7).
In other words, for a given signal, a TFR can be uniquely
mapped from a kernel. The classification-optimal representa-
tion TFR; can be obtained by smoothing the ambiguity plane
with an appropriate kernel ¢,pt, Which is a classification-
optimal kernel. The problem of designing the TFR; be-
comes equivalent to designing the classification-optimal kernel
Popt (17, T)-

This method, used to design kernels (and thus TFRs), op-
timizes the discrimination between predefined sets of classes.
The resulting kernels are not restricted to any predefined func-
tion but are rather arbitrary in shape. This approach ascertains
the necessary smoothing to achieve the best extraction features.

The kernel determines the representations and its properties.
A kernel function is a generating function that operates upon
the signal to produce the TFR. Gillespie and Atlas [17] have
proposed feature extraction methods based on designing class-
dependent TFRs from the time—frequency ambiguity plane.
Features can be extracted directly from A(7, 7)popt (1, 7) in-
stead of the classification-optimal TFR;. This shortcut sim-
plifies the computation complexity of feature extraction by
reducing the calculations described in (1).

B. Design of Classification Kernels

The kernel @op4 (17, 7) is designed for each specific classifica-
tion task. We determine N locations from the ambiguity plane,
in such a way that the values in these locations are very similar
for signals from the same class, while they vary significantly for
signals from different classes. The notation A;;[, 7] represents
the ambiguity plane of the jth training example in the ¢th class.
We design and use Fisher’s discriminant ratio (FDR) to get
those N locations.

In our classification procedure, C' — 1 kernels must be de-
signed for a C-class classification system. As we have four
classes (three fault cases and one healthy case of the machine),
we must design the following three kernels: bearing fault
kernel, stator fault kernel, and rotor fault kernel. Each kernel
separates the healthy case from the fault case.

The discrimination between different classes [10] is made by
separating the class ¢ from all remaining classes {i + 1,..., N}
(Fig. 2). In this case, the stator fault kernel is designed to
discriminate the stator fault class from the other classes (rotor
fault, bearing fault, and healthy motor). The rotor fault kernel is
designed to discriminate the rotor fault class from the remaining
classes (bearing fault and healthy motor). The bearing fault
kernel is designed to discriminate the bearing fault class from
the healthy motor class. The advantage of the method lies in the
optimum separation between the different classes.

Regarding the degree of severity from machine faults by
TFR, a method of calculation is presented in the paper pub-
lished in the IECON 06 conference [16].

The kernels are designed by I training example signals from
each class with the equation as follows:

(mi [777 7—] — Mj—remain [777 T])Z

‘/12 [n’ T] + ViQ—remain [n7 T]

FDR;(n,7) = (6)
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where m;[n, 7] and Mm;_remain[7, 7] represent two means of
location (1, 7)

N,
1 7
mi[n»'r] = ﬁ ZAij[n’T]' @)
3 j:1
In order to avoid unnecessary computation to separate
classes, we proposed the principle of the remaining class-
es (Fig. 2)

53 Agln.]

_ k=itlj=1

M —remain [na T] — 4 (8)
> N
k=i+1
1
V2] == (Agjln, 7] — miln, 7)) )
Lt
4 N 5
k—z+1 21 (Ak] [777 T] — MMj—remain [777 T])
‘/iz—remain [77, T] =— = 4
>, Nk
k=i+1
(10)

V2[n, ) and V2 .:.[n, 7] Two variances of location (1, 7).

We transform the FDR to ¢y, kernel in a binary matrix by
replacing the maximum N points with one and the other points
with zero (Fig. 3). Features can be extracted directly from
©Yopt |1, TI0A[n, T], where o is an element-by-element matrix
product. The kernel has the same dimensions as the ambiguity
plane. By multiplying the ¢,¢ kernel with a given signal
ambiguity plane, we will find & feature points for this signal.
We put them into a vector in order to create the training feature

vector FV'*) (k) of class C

train

—(©) .
A7), i QT =1

0, if go(()gt n,7]=0

oL [0, 710A [, 7] = { (11)
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Fig. 3. Kernel design.
where
gp(();)t [n,7] training optimal kernel;
A [n,7] mean class of the ambiguity plane.

According to the symmetries of the ambiguity plane, only
points on a quarter planes are considered.

The goal of feature extraction is to generate N-point feature
vector from the original 10 000-point current signal.

IV. DECISION CRITERIA
A. Mahalanobis Distance

Introduced in 1936 by Mahalanobis [18], the Mahalanobis
distance is a distance measure. It is based on correlations
between variables by which different patterns can be identified
and analyzed. It is a useful way of determining similarity of an
unknown sample set to a known one.

In order to reduce the size of the signal, while preserving the
relevant information, the original signal is resampled. Only the
range of the required frequencies is preserved. By resampling,
the signal dimension has been reduced greatly. This leads to a
great reduction of the computation complexity.

TFR Mahalanobis-distance-based fault diagnosis procedure
(Fig. 4) permits one to overcome the problem of load level
to take only two levels, namely, without load (condition 1,
represented by A1 (7, 7)op:) and rated load (condition 2, rep-
resented by the characteristic function As (7, 7)ows). The char-
acteristic function of the fault class is the average of the two
previous function characteristics. Extraction of relevant points
of the characteristic function provides an average feature vector
FVavy. A test signal (unclassified, condition 3) is represented
after feature extraction by FVrggt. The Mahalanobis distance
is computed between FV oy and FVrggT.

After designing the kernels on the basis of a set of samples
of the C classes, actual classification is performed.

Given a particular unknown test signal vector (the classifier
is not trained on this example), the classifier estimates the class
membership of this example. The classification of x in one of
the C classes can be realized via a Mahalanobis distance

du(z,y) = \/(:v —y)" i(fﬂ )

12)
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Fig. 4. Scheme of the TFR Mahalanobis-distance-based fault diagnosis.
where 1« is affected to the «class ¢ &1i=

argmin;—1 . {dpm(z,y)}. In TFR, planes = and y become

T = wg;)t 0A,

Y = Popt OA(C)

where
A, ambiguity plane computed with the signal x;
A(©) " ambiguity plane computed with the training set.
The Mahalanobis distance of (12) becomes

o ((Popi0AL), (PopioA))

= ((SDOPtOAw - SOOPtOA(C))T

-1

1/2
. Z((poptOA:v - (poptOA(c))> (13)

C

where (.)T denotes the matrix transpose. The covariance matrix
> . is estimated from the training data.

A rejection decision is taken when the signal x to be classi-
fied is far from any class

ifdpy (FVy) < B

otherwise (14)

x is affected,
x is rejected,

where (3 is a given rejection threshold.
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The rejection threshold is obtained from half of the smallest
distance between two classes

The value § = 0.4 is calculated from three classes constituting
the whole learning of the used machine.

The error of the badly classified points of feature vectors FV,,
is calculated by

Ny

FVtra,m i Vm J
V% = - =2 . 100 16
Z j ’ I Z FVtraln i ( )
=1 j=1 J
where
I = N; - N number of examples per class;
Ny number of current examples of the same load
level;
Ny number of load levels.
B. HMM

A finite-state HMM consists of a finite number of states
where transitions among the states are governed by a Markov
chain with a set of transition probabilities [19]. HMMs are an
extension of Markov models that include the case where the
observations are probabilistic functions of the states rather than
the states themselves. The underlying stochastic process, the
state sequence, is not observable and can only be estimated
through another set of stochastic processes that produce obser-
vation sequences (Fig. 5).

1) Elements of an HMM: The following parameters are
needed to define a HMM [19].

Notation:

HMM = (N, M, A, B, 7); (17)

with N states, S = {S1,...,Sn}, with ¢ at time ¢; M ob-
servations, vy to vys, with Oy at time t; and A = {a;;} is the
transition probabilities.

Then

Silae = S;)

with ¢, denoting the current state, i.e., the probability of being
in state S; at time ¢ + 1, provided that the state at time ¢ is
S; and

B = {b;(k)} is the observation probabilities

aij = P(q41 = (18)
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with

bj(k) = P(vy = Oklq: = S;) (19)

where Oy, and M denote the kth observation and the number of
distinct observations, respectively

m = {m; } is the initial state probabilities

where

m = P(q1 = ;) (20)
i.e., the probability of the [th state being the initial state.

The compact notation A = (4, B, m) is generally used to
represent an HMM.

The following are the three basic problems to solve for

an HMM.

Problem 1) Given the observation sequence 0 = 0:0o, ...,
Or and a model A = (A, B,w), how do we
efficiently compute P (0 ), the probability of the
observation sequence, given the model?

Given the observation sequence 0 = 0102, ...,
Or and a model A\ = (A, B,7), how do we
choose a corresponding state sequence @ =
q192, - - - ,qr, Which is optimal to generate the
observation sequence? The optimal measure can
be maximum likelihood (ML).

How do we adjust the parameters A = (4, B, )
to maximize the likelihood of all observation
sequences?

Problem 2)

Problem 3)

In this paper, we mainly discuss Problem 3) in order to learn
the parameters of the model and Problem 1) in order to provide
fault detection. For Problem 1), the ML algorithm is generally
used for labeled training data, and the Baum—Welch algorithm
is used for partially labeled or unlabeled training data.

2) Training Faults by HMM: The feature is used to train
an HMM that represents the specific fault conditions. HMMs
can be trained using multiple-feature vectors. Thus, multiple
features can be used in constructing an HMM for a specific
fault type. For instance, if we have several load conditions for
the operation of the stator fault, we can train a single HMM
using data for various load conditions (Fig. 6). Given the feature
matrix, the probability of the HMM for the faulty condition
is calculated. The HMMs are trained in order to represent the
following faults: stator fault, rotor fault, and bearing fault.

3) Fault Detection and Diagnosis Using the HMM: We
need to train HMMs to identify the motor faults that are of
interest, e.g., stator fault, rotor fault, and bearing fault. Once
the models are trained, a motor fault can be diagnosed by
following the steps shown in Fig. 7. The first step is extracting
the feature vector from the preprocessed signal (Fig. 6). Next,
the probability of the feature vector is calculated, given all the
HMMs in the previously constructed database. The HMM, for
which the probability is maximum, determines the type of
the fault.
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V. EXPERIMENT RESULTS

The experimental bench consists of a three-phase
asynchronous-motor squirrel cage Leroy Somer LS 1328,
IP 55, Class F, T' °C standard = 40 °C. The motor is loaded by
a powder brake. Its maximum torque (100 Nm) is reached at
rated speed. This brake is sized to dissipate a maximum power
of 5 kW. Fig. 8 shows the motor bench.

The wear obtained on the bearings is a real one [the bearings
have been provided by SECCO (Fig. 9)]. For the rotor fault,
the bar has been broken by drilling the bar of the cage squirrel
(Fig. 10). The 5% of power imbalance for simulating the fault
of imbalance stator is obtained with a variable autotransformer
placed on a phase of the network (Fig. 8).

An acquisition of current signals was carried out on a test
bench. The sampling rate is 10 kHz. The number of samples
per signal rises to N = 10000 samples. The data acquisition

4295

Fig. 8. Test bench of the induction motor.

Fig. 9. Bearing faults.

Fig. 10. Rotor with one broken bar.

set on the machine consists of 15 examples of stator current
recorded on different levels of load (0%, 25%, 50%, 75%, and
100%). Different operating conditions from the machine were
considered, namely, healthy, bearing fault, stator fault, and rotor
fault. The training set is carried out on ten current examples.
The last five current examples are used to test the classification.

The system is trained by using ten current signals at 0% and
100% load levels. We take N7 = 25 (number of classes) in
order to solve the problem of the load levels. The test is then
performed on current signals collected at 25% and 70% load
levels.
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Fig. 12.  Ambiguity plane smoothed by three kernels.

A. Training Set

Each class of the training set for the three faults and for the
healthy machine is made of ten examples of no-load current
and ten other examples for the full load. Consequently, we
have 20 examples of training for each of the three faults and
20 examples of training also for the healthy machine. The
dimension of ambiguity plane contains initially 200 x 200 =
40000 points; considering symmetry compared to the origin,
we take the quarter of ambiguity plane, which corresponds to
N = 10000.

Fig. 11 shows an example of ambiguity plane, which was
not smoothed by the kernel, of the 5% imbalance voltage class.
The plane represents all Doppler-delay positions to ensure the
separation of class. However, this graphical representation, as
we had previously assumed, does not provide useful informa-
tion for diagnosis. However, it is difficult to provide more in-
terpretation because the aim of the TFR design process is good
separation between classes instead of accurate representation of
a signal.

We designed the following three kernels: kernel stator fault,
kernel rotor fault, and kernel bearing fault. Fisher’s point loca-
tions are represented in the Doppler-delay plane (Fig. 12). We
retained three-point location per kernel {(n,7)1,...,(n,7)3}
of stronger contrast. These locations are ranged in the feature
vector for training {FVy, ... ,FV3}. This selection is made on
the basis of contrast value.

Example of not-smoothed ambiguity plane of the fault of the stator

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 12, DECEMBER 2008
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Fig. 14. Classification error for a stator fault.

B. Decision by Mahalanobis Distance

The feature vector of the signal to be classified, FV,, was
compared with the feature vectors of the training by using the
Mahalanobis distance from (13). The decision rule of signal
assignment is made by (14). The threshold § = 0.4 was tested
successfully on several signals in order to obtain a correct clas-
sification. We tested the signals which have not been classified
in the training set of the following three faults: bearing fault,
stator fault, and rotor fault with various levels of load (25%,
50%, and 75%). Five signal examples are taken for each fault
and for each load level. Thus, we will have 5 x 3 = 15-signal
test for each fault. After extraction of feature vector of signal
test, we took 50 points of each feature vector. The computation
of the Mahalanobis distance dp;(FV,) is done along these
feature vectors. Fig. 13 shows that the error is null for the first
eight points of the vector tests concerning the bearing fault. This
is for the 25%, 50%, and 75% load levels. Finally, the bearing
fault is only characterized by three points that are belonging
to the first eight points. Consequently, the signals tested are
identified with precision.

For the stator fault, Fig. 14 shows that the classification error
is null for the first 12 points of the vector tests. Different load
levels, i.e., 25%, 50%, and 75%, are considered, knowing that



LEBAROUD AND CLERC: CLASSIFICATION OF INDUCTION MACHINE FAULTS BY OPTIMAI TFRs

60

— 25
-~ 50%

Ol o= 75%

(=]

40
N
5 30
g
25)
20
10
0 $ . N . "
0 10 20 30 40 50
Fisher’s Point
Fig. 15. Classification error for a rotor fault.

-200

-400

-600

-800

Log probabilities

—O— P(stator fault)

—+ P(rotor fault)

o —»— P(bearing fault)

0 2 4 6 8 10 12 14 16 18 20
Feature vector

-1000

-1200

Fig. 16. HMM probabilities for a stator fault.

the stator fault is characterized by three points among the first
twelve-points. Consequently, the signals tested are identified
with precision.

Fig. 15 shows that for the rotor fault, the classification mean
error is null for the first 13 points of the vector tests for different
load levels (25%, 50%, and 75%), knowing that the rotor fault
of the bars is characterized by three points among the first
thirteen-points. Consequently, the signals tested are also identi-
fied with precision.

C. Decision by HUM

Three state left-to-right HMMs were used to model the fault
features. Three Gaussian distributions were used in the output
map for each state. We have tested the signals which do not
belong to the training set of the following three faults: bearing
fault, stator fault, and rotor fault with various levels of load
(25%, 50%, and 75%). Five signal examples are taken for
each fault and for each load level. Thus, we will have 5 x 3 =
15-signal test for each fault. After extracting the feature vectors
of the signal to be classified, we took 20 points at each feature
vector with various levels of load. The calculation of the HMM
probabilities for the tested signals which do not belong to
the training set of the three faults is done along these feature
vectors.

Fig. 16 shows the logarithm of the probabilities for the
first 20 points of the test feature vectors concerning the stator
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fault. The probabilities of the training feature vector are clearly
separable from the probabilities of the test feature vectors for
only the first 11 points. Consequently, the signals tested are
identified with precision.

For the rotor fault, different load levels (25%, 50%, and 75%)
are considered. Fig. 17 shows that the probabilities of the train-
ing feature vector are clearly separable from the probabilities of
the test feature vectors for the first seven points. Consequently,
the rotor fault is identified with precision.

Concerning bearing fault, Fig. 18 shows that the logarithm
of probabilities for the first five points from both training
feature vector and test feature vectors is clearly separable.
Consequently, the signals tested are identified with precision.

These results verify that the new scheme is able to detect and
diagnose faults with very high accuracy, independent of the load
condition and the type of the fault.

VI. CONCLUSION

In this paper, we proposed a new fault classification scheme
of induction machine based on TFR and criterion decision
[Mahalanobis distance and HMM]. We have shown that the
classical TFRs which have a parametric kernel and a priori pre-
set are not relevant for classification. Thus, we have based our
classification on the ambiguity Doppler-delay plane where all
the TFRs can be derived by a suitable choice of a kernel. In this
application, the choice of the optimal kernel is crucial because it
makes it possible to have an optimized TFR and, consequently,
a precise classification of the signals. In this new scheme,
the TFR is used to build the feature vectors for each type of
fault. These faults were characterized by specific kernels. The
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classification scheme was tested with experimental data col-
lected from the stator current measurement from the induction
machine drive. For the first criterion, the assignment of a not-
classified signal was made by the Mahalanobis distance. The
rejection threshold has been determined by tests. All faults were
characterized by three points in the Doppler-delay plane. The
mean error, of points badly classified, is null for the first eight
points for the fault bearing, the first 13 points for the rotor fault,
and the first 12 points for the stator fault. However, applying the
criterion based on the “Mahalanobis distance” requires prior
valuation of Doppler-delay positions, in the ambiguity plane,
which makes the diagnostic process semiautomatic. In order to
remedy this problem and make the process of diagnosis fully
automatic, we have replaced the decision criterion based on
the “Mahalanobis distance” by HHM. For the second criterion,
the assignment of an unclassified signal was made with HMM
models which have been trained to represent the feature vectors
for different load conditions. These models were then used to
classify the following three faults: stator, rotor, and bearing
faults. It was shown that this method is very accurate in the
classification of faults under different operating conditions.
The classification by TFR provides results independent from
the load level of stator current and very precise classification.
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