
HAL Id: hal-00368710
https://hal.science/hal-00368710

Submitted on 17 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multilingual alignments by monolingual string
differences

Adrien Lardilleux, Yves Lepage

To cite this version:
Adrien Lardilleux, Yves Lepage. Multilingual alignments by monolingual string differences. The 22nd
International Conference on Computational Linguistics (Coling 2008), Aug 2008, Manchester, United
Kingdom. pp.55-58. �hal-00368710�

https://hal.science/hal-00368710
https://hal.archives-ouvertes.fr


Coling 2008: Companion volume – Posters and Demonstrations, pages 55–58

Manchester, August 2008

Multilingual alignments by monolingual string differences

Adrien Lardilleux and Yves Lepage

GREYC, University of Caen Basse-Normandie,

BP 5186, Caen Cedex, France

Firstname.Lastname@info.unicaen.fr

Abstract

We propose a method to obtain subsenten-

tial alignments from several languages si-

multaneously. The method handles sev-

eral languages at once, and avoids the com-

plexity explosion due to the usual pair-by-

pair processing. It can be used for differ-

ent units (characters, morphemes, words,

chunks). An evaluation of word align-

ments with a trilingual machine translation

corpus has been conducted. A comparison

of the results with those obtained by state

of the art alignment software is reported.

1 Introduction

Several tools are available nowadays for alignment

of pairs of languages. Among them, the bilingual

word aligner GIZA++ (Och and Ney, 2003) can

perform high quality alignments based on words

statistics and is considered the most efficient tool.

Three main criticisms may be addressed to this

kind of tool.

Firstly, as denoted by Moore (2005), one needs

to tune numerous parameters in order to opti-

mize the results for a particular alignment task,

which can be very time consuming. This is all

the more important when multilingual alignment is

concerned, since every language pair will require

its own set of parameter values.

Secondly, the best methods available nowadays

can only work on language pairs, which results in

a complexity explosion when multilingual align-

ments are needed. Simard (1999) showed how to

adapt a bilingual method to align more than two

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

versions of a text at the sentence level, but lan-

guages have to be processed by pairs to identify

which ones are the most similar.

Thirdly, these approaches are also designed to

align specific units of texts (almost always words).

The same method cannot be applied indifferently

on different units. Languages which do not sep-

arate words by spaces require to be first seg-

mented into words, while a character-based ap-

proach could be a worthy alternative.

To deal with all these issues, we propose a

method which is primarily intended to align many

languages simultaneously from sentence-aligned

parallel corpora, whatever the segmentation unit.

2 Alignment by string differences

2.1 String differences

In order to introduce the operation we use,

let us start with a well-known similar tech-

nique, the Longest Common Subsequence (LCS)

(Hirschberg, 1975). Given two strings A and B,

it is always possible to find their longest subse-

quence. Such a subsequence is a sequence of non

necessarily contiguous characters.

For instance, assume we have the follow-

ing short English sentences (space characters are

marked by an underscore and have the same status

as any other character):

A = I would like a donut, please.

B = Regular size, please.

In this case, the LCS for A and B would be:1

LCS(A,B) = ul ie, please.

which is 14 characters long. It is then possible to

form their string difference:

1For purpose of simplicity, we do not mention that the
LCS operation, as well as the difference operation, may de-
liver a plurality of strings.

55



A ⊖ B = I wodlk a donut

B ⊖ A = Regarsz

where we define A ⊖ B = A − LCS(A,B).

Because several isolated characters are dis-

carded, this results in a malformed string that is

of limited interest. To avoid misinformed strings,

we rather resort to Longest Common Substrings

(LCSubstr), that are contiguous.

On the previous example, the LCSubstr is:

LCSubstr(A,B) = , please.

which is 9 characters long and by far more mean-

ingful. By removing this substring from A and B,

we obtain:2

A ⊖ B = I would like a donut

B ⊖ A = Regular size

2.2 A monolingual operation for multilingual

alignment

String differences are monolingual. They serve as

a starting point to compute alignments. It suffices

to apply them in parallel on the source text and all

aligned target texts.

Let us consider anew the previous English

sentences and their translations into Japanese

(“A stands for “A’s translation”):

“A = ドーナツを下さい。
/dônatu wo kudasai./

“B = 普通サイズを下さい。
/hutuu saizu wo kudasai./

LCSubstr(“A, “B) = を下さい。
“A ⊖ “B = ドーナツ
“B ⊖ “A = 普通サイズ

By performing simultaneously the difference be-

tween A and B and between “A and “B, their aligned

translations, we obtain:

, please. ↔ を下さい。

I would like a donut ↔ ドーナツ

Regular size ↔ 普通サイズ

The method assumes that the three strings com-

puted in the source language are translations of

their corresponding strings in the target language

That is:

¤�LCSubstr(A,B) = LCSubstr(“A, “B)
◊�A ⊖ B = “A ⊖ “B

◊�B ⊖ A = “B ⊖ “A

2Idem. Experiments show that they are not as numerous
as for LCS. For the sake of simplicity, we shall assume that
LCSubstr’s are unique.

2.3 Iterative application

Assume we want to extract the translation equiva-

lent of “Chicago” in Japanese from the following

pairs of sentences:

A0 = Is this a train for Chicago?

“A0 = この列車はシカゴ行きですか。
/kono ressya ha sikago yuki desu ka./

B = Is this price correct?

“B = この値段で正しいですか。
/kono nedan de tadasii desu ka./

C = What track does the train for Boston start from?

“C = ボストン行きの列車は何番から出ますか。
/bosuton yuki no ressya ha nani ban kara syutu masu ka./

A direct application of the method described

above does not ensure that “Chicago” will corre-

spond to a string difference. A way to solve the

problem is to apply the method iteratively. String

differences are applied on the sentence where

“Chicago” appears (i.e., A), in order to gradually

cut it down to “Chicago” only. By applying the

same process in parallel on all target sentences,

strings are expected to reduce to the translation of

“Chicago” as well. Also, we add the constraint that

the string to be aligned must not be altered during

the iterative process, i.e., it should not be included

in any LCSubstr.

Thus, starting with A0 containing “Chicago”,

we perform at each step:

An+1 = An ⊖ Sn

“An+1 = “An ⊖”Sn

where Sn is the first sentence S in the list

of all source sentences sorted by the length of

LCSubstr(An, S). In other words, amongst the

available English sentences S, select the one that

shares the longest substring with An, and remove

this substring from An. The corresponding differ-

ences are applied in the target languages simulta-

neously.

Table 1 gives the details of an execution of the

iterative process. On a large amount of data, the

method may yield a plurality results; each of them

may be obtained a certain number of times. We

shall judge the quality of alignments based on

these frequencies.

2.4 Best alignments selection

In practice, it is not possible to perform all the dif-

ferences between sentences that would lead to the

alignment of a particular string. This complexity

explosion, where most of the LCSubstr’s would be

very short, would result in non reliable alignments.

56



n An Sn LCSubstr(An, Sn) Ân LCSubstr(Ân, Ŝn)

0 Is this a train for Chicago? C train for この列車はシカゴ行きですか。 の列車は

1 Is this aChicago? B Is this こシカゴ行きですか。 ですか。

2 aChicago? B ? こシカゴ行き こ

3 aChicago C a シカゴ行き 行き

4 Chicago シシシカカカゴゴゴ

Table 1: Details of the steps necessary to extract one alignment for “Chicago” in Japanese. “Chicago”

may not be modified during the iterative process and is not used to compute the LCSubstr’s. The resulting

alignment is “A4 =シカゴ /sikago/, which is correct.

We cut down the complexity by examining only

the c first longest LCSubstr’s longer than a prede-

fined threshold. The threshold was set to half of the

longest LCSubstr. Different values of c were tested

for in the experiments reported in Section 3.3. This

parameter is used in the source language only.

Well-formedness of strings is also tested by

checking the presence of all their n-sequences of

characters in the initial data. This is performed in

the target languages.

Eventually, each alignment is scored by its fre-

quency divided by the number of sentences that

were required to obtain it. The reason for doing

so is that, in practice, the less sentences required,

the longer and the safer the LCSubstr’s used.

3 Evaluation

3.1 Data used

We used the English, Japanese and Arabic train-

ing parts of the IWSLT 2007 machine transla-

tion campaign corpus (Fordyce, 2007) to conduct

our experiments. It is made of nearly 20,000

triples of aligned sentences from the BTEC corpus

(Takezawa et al., 2002).

3.2 Result samples

As mentioned earlier, one advantage of our method

is that it can align any string of text, providing the

data is sufficient. Table 2 shows a sample of align-

ments obtained using English as the source lan-

guage. The strings requested to be aligned can be

anything, from one character (see the first lines of

the table) to entire sentences (see last line). Most

alignments, if not perfect, differ from the expected

meaning by slight differences only, even in Arabic.

3.3 Comparison against GIZA++

We compared our system to the state of the art

device, GIZA++, in the particular case of bilin-

gual word alignments on two pairs of languages:

English to Arabic and English to Japanese. Our

system aligned the three languages simultaneously,

using English words as input. For each target lan-

guage, the target unit with the best score (see Sec-

tion 2.4) was kept. Different values of c were

tested.

GIZA++ was used to compute IBM model 4.

The default set of parameter values, which typi-

cally produces good results, was used. For each

source word, the most probable pair of words

(source, target) was kept. Note that the output of

IBM model 4 produces word to word alignments,

while there is no guaranty that our system would

output a single target word as the unit of process-

ing is the character.

For an objective assessment, we resort to

two bilingual dictionaries: English-Japanese, and

English-Arabic.3 As for English-Japanese, the best

results were obtained for c = 40, and are as good

as those of GIZA++ (628 alignments found in the

reference dictionary vs. 629, see Table 3). As for

English-Arabic, the best results were obtained for

c = 20, but only 37% of GIZA++’s results could

be achieved (63 alignments found in the reference

dictionary vs. 170).

Those alignments output by the two systems

that do not belong to the reference dictionaries are

not necessarily erroneous, since we relied on exact

matching. Specifically, for our method, one extra

character only may be responsible for an alignment

to be considered wrong.

3We used an English-Arabic dictionary from sdict
(87,000 entries): http://sdict.com and the
EDICT English-Japanese dictionary (115,000 entries):
http://www.csse.monash.edu.au/∼jwb/j e-

dict.html. The Arabic part of the English-Arabic
dictionary being lemmatized, we had to preprocess the
Arabic part of our corpus so that it be lemmatized too (Debili
and Achour, 1998).

57



English Arabic Japanese

. . /./ ‘.’ 。 /./ ‘.’

? ? /?/ ‘?’ か。 /ka ./ ‘?’

Wh 	áK



@ / a֓yn/ ‘where’ 何 /nani/, /nan/ ‘what’, ‘wh. . . ’

here A 	Jë /hnā/ ‘here’ ここ /koko/ ‘here’

I ’d like YK
P


@ / a֓ryd/ ‘I’d like’ 下さい /kudasai/ ‘please’

Thank you @Qº �� /škrā/ ‘thank you’ ありがとう /arigatou/ ‘thank you’

Ice Õç'
Q» ��

�
@ /֓̄ays krym/ ‘ice cream’ 氷を /koori wo/ ‘ice’

I have to get

�é«A� È@ ÉJ.
�®Ê�J
Ê«

/ l֒ys. lqbl āl sā h֒/

* malformed string *

入手しなければなりません
/nyuusyu si nakerebanarimasen/

‘I have to get’

At seven o’clock

�éªK. A� È@ �é«A� È@ ú

	̄

/fy āl sā h֒ āl sāb h֒/

‘at seven o’clock’

七時に
/sitizi ni/

‘at seven o’clock’

Table 2: A sample of alignments obtained using English as the source language. The Arabic and Japanese

strings were generated in parallel by aligning the three languages at once. Parameter c was set to 20 in

this experiment.

Our system
GIZA++ c = 1 c = 10 c = 20 c = 30 c = 40 c = 50

English-Japanese 629 / 4,268 369 / 1,569 573 / 2,629 603 / 3,038 598 / 3,165 628 / 3,219 615 / 3,248

English-Arabic 170 / 1,569 36 / 540 57 / 863 63 / 982 57 / 1,017 51 / 1,025 51 / 1,029

Table 3: Comparison of our system against GIZA++. Each cell gives the number of alignments found in

the reference dictionary over the number of alignments obtained.

4 Conclusion

We introduced a simple method to obtain subsen-

tential alignments from several languages simul-

taneously. Its focus is on contexts rather than on

units to be aligned. It avoids the complexity ex-

plosion due to the usual pair-by-pair processing

by relying on the simultaneous application of a

monolingual operation. The method comes close

to GIZA++’s results in some word alignment task,

while being by far much simpler.

References

Debili, Fathi and Hadhemi Achour. 1998. Voyellation
automatique de l’arabe. In Proceedings of the Work-
shop on Computational Approaches to Semitic Lan-
guages (COLING-ACL’98), pages 42–49, Montreal,
Quebec, Canada, August.

Fordyce, Cameron Shaw. 2007. Overview of the
IWSLT 2007 evaluation campaign. In Proceed-
ings of the 4th International Workshop on Spoken
Language Translation (IWSLT 2007), pages 1–12,
Trento, Italy, October.

Hirschberg, Dan. 1975. A linear space algorithm for
computing maximal common subsequences. Com-
munications of the ACM, 18:341–353, June.

Moore, Robert. 2005. A discriminative framework for
bilingual word alignment. In Proceedings of Human
Language Technology Conference and Conference
on Empirical Methods in Natural Language Process-
ing, pages 81–88, Vancouver, British Columbia, Oc-
tober.

Och, Franz Josef and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29:19–51, March.

Simard, Michel. 1999. Text-translation alignment:
Three languages are better than two. In Proceed-
ings of the Joint SIGDAT Conference of Empirical
Methods in Natural Language Processing and Very
Large Corpora (EMNLP/VLC), College Park, Mary-
land, USA.

Takezawa, Toshiyuki, Eiichiro Sumita, Fumiaki Sug-
aya, Hirofumi Yamamoto, and Seiichi Yamamoto.
2002. Toward a broad-coverage bilingual corpus
for speech translation of travel conversation in the
real world. In Proceedings of the third International
Conference on Language Resources and Evaluation
(LREC 2002), pages 147–152, Las Palmas de Gran
Canaria, Spain.

58


