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Abstract—In this paper, we present an application of the
Extended Kalman Filter for the on-line estimation of a dynamical
carrier phase offset. The novel approach implies deriving the
filter in an oversampled scenario in a digital receiver. We consider
a Brownian phase evolution in a Data Aided scenario. Our
numerical results using a BOC shaping pulse show that using
the oversampled signal for estimating the phase offset we can
obtain better performances than using a classical synchronizer.

Index Terms—Phase estimation, Extended Kalman Filter, over-
sampling, carrier synchronization, GALILEO, BOC.

I. INTRODUCTION

Synchronization is a fundamental part in modern digital

receivers. A synchronizer has to estimate some parameters,

such as carrier frequency, carrier phase and timing epoch.

This knowledge is required to recover the signal of interest

correctly. In this paper we focus our attention on the phase

estimation problem. Many methods for estimating the phase

introduced by an unknown channel have been proposed over

the past decades, from Phase Locked Loops (PLL) to the most

sophisticated signal processing techniques. The Kalman Filter

(KF) [3], [4], presented in early 1960s is one of the mostly

used techniques for parameter estimation in linear gaussian

problems. We can find extensive discussion on the KF in [5]

and [6]. When dealing with nonlinear filtering problems, the

Extended Kalman Filter (EKF) approximates the problem to

apply the KF solution. Some contributions show the use of

EKF for carrier phase recovery and frequency tracking [9]–

[12]. To our knowledge, the EKF has never been applied to

oversampled phase estimation for Binary Offset Carrier (BOC)

shaped signals.

In this contribution, we investigate the use of an Extended

Kalman Filter for carrier estimation in a Data Aided (DA)

scenario. We consider an oversampled signal model after re-

ceiver matched filter, this implies having a coloured reception

noise. This scenario is standard in radio-localization from a

satellite signal. In [7], we have shown the potential gain for

phase estimation provided by the use of the fractionaly-spaced

signal after matched filter, instead of the symbol time-spaced

signal. This was done by deriving a closed-form expression

of the on-line Bayesian Cramér-Rao Bound (BCRB) for the

oversampled dynamical phase estimation. Now, our goal is

to propose an EKF based algorithm which can approach this

bound. We have thus to jointly estimate the coloured noise

and the phase offset because the EKF doesn’t take it into

account. In Section II, we set the signal model. In Section III,

we derive the expressions of the filter in the oversampled phase

estimation scenario. In Section IV we recall the BCRB for this

estimation problem. Finally in Section V, the numerical results

for the EKF resulting from BPSK transmission are presented

and interpreted.

Notations: italic indicates a scalar quantity, as in a; bold-

face indicates a vector quantity, as in a and capital boldface

indicates a matrix quantity as in A. The (k, l)th entry of a

matrix A is denoted [A]k,l. The matrix transpose and self-

adjoint operators are denoted by the superscripts T and H

respectively as in AT and AH . ℜ(·), ℑ(·) and (·)∗ are the real

part, the imaginary part and conjugate of a complex number

or matrix, respectively. Ex denotes the expectation over x.

II. SIGNAL MODEL

We propose the signal model for the transmission of a

known sequence {am}m∈Z
over an Additive White Gaussian

Noise (AWGN) channel affected by a carrier phase offset θ(t).

A. Oversampled Signal Model

1) Discrete-time general formulation: the received complex

baseband signal after matched filtering is

y(t) =

[{
T

∑

m

amΠ(t − mT )

}
eiθ(t) + n(t)

]
∗ Π∗(−t)

(1)

where T, Π(t) and n(t) stands for the symbol period, shap-

ing pulse and circular gaussian noise with a known bilateral

power spectral density (psd) N0.

We define the filtered noise

b(t) = [n(t)] ∗ Π∗(−t) (2)

We also define g̃m(t) as

g̃m(t) = T

∫ +∞

−∞

Π∗(−α)eiθ(t−α+mT )Π(t − α)dα (3)

Then the received signal can be written as

y(t) =
∑

m

amg̃m (t − mT ) + b(t) (4)



Hereafter we suppose a shaping pulse with support in [0, T ]
and a slow varying phase evolution during a period T . In this

case we can approximate g̃m(t) by

g̃m(t) ≈ g(t)eiθ(t+(m+ 1

2
)T ) (5)

where

g(t) = T

∫ 0

−T

Π∗(−α)Π(t − α)dα (6)

If the received signal is fractionally-spaced at tk = k T
S

+ τ ,

where S is an integer oversampling factor and τ a known offset

from the optimum sampling instants (we suppose 0 ≤ τ ≤ T
S

),

we have that

y

„

k
T

S
+ τ

«

=
X

m

amg̃m

„

k
T

S
+ τ − mT

«

+b

„

k
T

S
+ τ

«

(7)

and from (eq. 5) we have that

y

(
k

T

S
+ τ

)
= eiθ(k T

S
+τ+ T

2
)Ak + b

(
k

T

S
+ τ

)
(8)

where

Ak =
∑

m

amg

(
k

T

S
+ τ − mT

)
. (9)

We can finally write the received oversampled signal as

yk = Akeiθk + b′k (10)

where k refers to tk instants.

We can define the symbol index p = ⌊ k
S
⌋, or equivalently,

k = pS + s with s the sample inside the symbol period. We

note that s = 0, · · · , S − 1.

Note that the noise b′k is coloured with variance σ2
n, where

σ2
n = N0 × g(0)

T
is the variance of the AWGN noise n(t)

measured in the noise equivalent bandwidth of the receiver

filter Π∗(−t).
2) Discrete-time re-formulation for the noise: the T

S
-spaced

sequence of noise, {b′k}k∈Z
, is defined in the previous section

from an analog noise n(t). Our motivation now is to replace

this time serie by another {bk}k∈Z
with the same statistical

properties, but which can be obtained entirely by a discrete-

time formulation. This will be useful for the final state-space

model formulation. We can write that

b′k =

∫ T

0

n

(
α + k

T

S
+ τ

)
Π∗ (α) dα

=

S−1∑

j=0

∫ (j+1) T

S

j T

S

n

(
α + k

T

S
+ τ

)
Π∗ (α) dα

We define Γ as the covariance matrix of the observation

noise. If we have N measurements the matrix is N × N and

depends on the oversampling factor S.

The random variables

Zk,j =

∫ (j+1) T

S

j T

S

n

(
α + k

T

S
+ τ

)
Π∗ (α) dα

are zero-mean gaussian distributed. For a fixed k, Zk,j are

independent in j. Their variance is equal to

E
(
|Zk,j |

2
)

= N0

∫ (j+1) T

S

j T

S

|Π (α)|
2

dα

We define a zero-mean, unit variance, gaussian i.i.d se-

quence nk and

Πj =

{
N0

∫ (j+1) T

S

j T

S

|Π (α)|
2

dα

} 1

2

Hence, the noise samples b′k have the same statistical

properties than samples bk obtained by a T
S

-spaced filtering

of the time serie nk:

bk =

S−1∑

j=0

Πjnk−j−1 (11)

B. Phase-offset Evolution Model

In practice we must consider jitters introduced by clocks

imperfections. To take it into account we consider a Brownian

phase-offset evolution [13]

θk = θk−1 + wk k ≥ 2 (12)

where wk is an i.i.d. zero-mean Gaussian noise with known

variance
σ2

w

S
. Here σ2

w stands for the variance growth of the

phase noise in one symbol period. The N × N covariance

matrix of the phase-offset evolution is Σ.

C. State-Space Model

When using an optimal filtering approach a state-space

model formulation is needed. Moreover, as we want to take

into account that the observation noise is not white, we must

include it into the state evolution.

We consider a sliding vector[
νk νk−1 · · · νk−S+1

]T
over an i.i.d. noise nk,

the evolution of this vector can be written as

2

6

6

4

νk

νk−1

...
νk−S+1

3

7

7

5

=

2

6

6

4

0 · · · · · · 0
1 0 · · · 0

0
. . .

...
1 0

3

7

7

5

2

6

6

4

νk−1

νk−2

...
νk−S

3

7

7

5

+

2

6

6

4

nk

0
...
0

3

7

7

5

(13)

The coloured noise bk is

bk = [Π0 · · ·ΠS−1]




νk−1

νk−2

...

νk−S


 (14)



The state to be considered includes the phase-offset and the

coloured noise: xk =
ˆ

θk bk νk · · · νk−S+1

˜T
. The

state evolution is

xk = Mxk−1 + wk (15)

where

M =

2

6

6

6

6

6

6

6

6

4

1 0 0 · · · 0
0 0 Π0 ΠS−1

0 0 0 0 · · · 0
...

... 1
. . .

0 0 · · · 0 1 0

3

7

7

7

7

7

7

7

7

5

(16)

and

wk =
[

wk 0 nk 0 · · · 0
]T

(17)

The observation equation can be written as

yk = Ak exp
(
i
[

1 0 · · · 0
]T

xk

)

+
[

0 1 0 · · · 0
]T

xk

(18)

We note that the state equation is linear and the observation

equation depends non-linearly on the state. With this formula-

tion we have no observation noise because we have included

it in the state.

III. EXTENDED KALMAN FILTER

In the sequel we introduce the well known EKF. We can

find the general EKF expressions in [5]. Then we derive

the expressions on the oversampled carrier phase estimation

scenario.

We have a system described by the following state-space

equations pair

xk+1 = fk (xk) + wk

yk = gk (xk) + vk
(19)

where xk is the state vector, wk is a zero-mean white noise

with covariance matrix Qk, yk is the observation vector at time

k which is a partial and noisy observation of the state xk and

vk is the observation noise with covariance matrix Rk

Both noises wk and vk are supposed to be uncorrelated. The

functions fk (·) and gk (·) can be non-linear in a general case.

For Gaussian, linear state models, the KF gives the best

Mean Square Error (MSE) estimation of the state xk from

observations up to time k.

We note x̂k|m, the estimation of xk from the observations up

to time m, x̃k|m = xk− x̂k|m, the estimation error and Pk|m =

E
(

x̃k|mx̃
T
k|m

)
, the covariance matrix of the estimation error.

The EKF gives us the estimator x̂k|k in a recursive way. The

main idea in the EKF is to linearize the state-space equations

at each iteration in order to transform the filtering problem

into a usual Kalman one.

So we need to compute

∂fk (xk)

∂xk

;
∂gk (xk)

∂xk

A. EKF for Dynamical Phase-Offset Estimation

Here we consider the oversampled phase estimation sce-

nario. So our state-space model is the one presented in Section

II (eqs. 15,18).

As the state equation is linear we have directly that

∂fk−1 (xk)

∂xk

= M

The phase noise covariance Q is independent from k and

has only two non-zero elements, namely

[Q]1,1 =
σ2

w

S
; [Q]3,3 = σ2

n

As we introduced the coloured noise bk into the state, there

is no observation noise and the covariance matrix R is null.

The observation equation is non-linear with the state, so we

have to apply a linearization. We define

g =
∂gk

`

bxk|k−1

´

∂xk

=
h

iAkeibθk|k−1 1 0 · · · 0
iT

(20)

Replacing these expressions into the general EKF expres-

sions ( [5]) leads to the oversampled algorithm:

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

Pk|k−1 = MPk−1|k−1MH + Qk−1

bxk|k−1 = Mbxk−1|k−1

Kk = Pk|k−1gH
˘

gPk|k−1gH
¯−1

Pk|k = [I − Kkg] Pk|k−1

bxk|k = bxk|k−1 + Kk

h

y
k
− Akeibθk|k−1

−
bbk|k−1

i

(21)

IV. BAYESIAN CRAMÉR-RAO BOUND

In this section we recall the expression of the on-line

Bayesian Cramér-Rao Bound (BCRB) for an oversampled

phase estimation problem [7]. This bound is particularly suited

for problems where an a priori information is available [8].

The BCRB matrix can be written as

BCRB = {B}
−1

=
{

BD + BP
}−1

(22)

We have to compute two terms. The first one, BD, represents

the average information about θ brought by the observations

y,

[
BD

]
k,l

= 2ℜ
{

A∗
l Ak

[
Γ
−1

]
k,l

eΨ
}

(23)

where

Ψ =

{
−

1

2

([
Σ

−1
]
k,k

+
[
Σ

−1
]
l,l

− 2
[
Σ

−1
]
k,l

)}
(24)
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Fig. 1. BOC shaping function Π(t) and its autocorrelation g(t)

The second term, BP , represents the information available

from the prior knowledge on θ,

B
P =

1

σ2
w/S

0

B

B

B

B

B

B

B

@

1 −1 0 · · · 0

−1 2 −1
. . .

...

0
. . .

. . .
. . . 0

... −1 2 −1
0 · · · 0 −1 1

1

C

C

C

C

C

C

C

A

(25)

In the general case, the on-line BCRB associated to obser-

vation vector y = [y1 · · · yN ] is equal to entry (N, N) of the

BCRB matrix, [BCRB]N,N .

As we analyse the estimation problem in a DA scenario the

bound depends on the transmitted sequence a. In this paper

we suppose the transmission of a known sequence to analyse

the performance of the proposed algorithm and the bound. We

note that, contrary to [7] where the proposed bound was the

minimum over a set of sequences, the BCRB is computed in

this paper over the transmitted known sequence.

When S > 1 we have more than one sample/symbol. In

this case we have different bounds depending on the position

inside the symbol so the BCRB depends on the couple (S, s).
If we are interested in the optimal estimation values we set

s = 0. So the bound is obtained as

BCRB(S, s) = [BCRB(a)]N,N (26)

with N = (M−1)∗S+s+1. M corresponds to the number

of transmitted symbols, so the length of the known sequence

in our case.

V. DISCUSSION

In this section we show the behaviour of the EKF by

considering different scenarios. We assume the transmission

over an AWGN channel of a M-sequences of length 511 bits,

generated using a Linear Feedback Shift Register (LFSR) with

characterisic polynomial [1021]8 (octal representation). We

consider three oversampling factors (S = 1,2 and 4) and a

BOC shaping pulse (see figure 1). BOC shaping pulse is used

in Galileo positioning system.

In the figures presented we plot the Mean Square Error

(MSE) obtained by simulation versus the Signal to Noise Ratio
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Fig. 2. EKF and BCRB versus the SNR for three different oversampling
factors S = 1, 2 and 4, with a phase-noise variance σ2

w = 0.001 rad2.

(SNR). The SNR corresponds to the Carrier to Noise Ratio

( C
N

) at the input of the receiver. In our case, as shaping pulse

and symbols ak are normalised (i.e σ2
a = 1; g(0) = 1) this

ratio is simply C
N

= 1
σ2

n

. We compute the MSE for the T -

spaced optimal estimation values corresponding to the s = 0
case for all oversampling factors S. We also give the on-line

BCRB for each case as a reference.

Figure 2 and 3 superimpose versus the SNR, the on-line

BCRB (see eq.(26)) and the EKF. For figure 2, we have a slow

varying phase with variance σ2
w = 0.001 rad2 and for figure

3, we have a phase with a fast evolution, σ2
w = 0.01 rad2.

In both scenarios there’s no offset from the optimal sampling

instants, τ = 0.

One can see that for S = 1 the performance of the EKF

is the same as the theoretical result of the BCRB. For S =
2 the performance of the algorithm are slightly looser when

comparing to the bound. For S = 4 we obtain the same or

slightly better performance as in the S = 2 case. In this case if

we compare the algorithm with the bound we can see that the

performance poorer. The gain increases with the oversampling

factor S and the interest of oversampling becomes clear at low

SNR. The gain due to oversampling decreases as the SNR

increases.

In figure 4 we analyse the EKF behaviour for a fixed SNR

versus phase-noise variance. We present a scenario with a low

SNR value, SNR = 0dB. Here we can still measure the gain

given by the oversampling and the good performance of the

algorithm. The gain obtained with the oversampling is greater

at weak σ2
w. We also note that the performance of the algorithm

at weak phase noise variance is really close from the bound.

At very high σ2
w the performances become poorer compared

to the bound. This is probably because for high SNR, the

modeling error in the EKF linear approximation (see eq. 20)

is not neglictible with respect to the noise level.

Figure 5 superimposes versus the SNR, the on-line BCRB

and the EKF for a slow varying phase evolution scenario,

σ2
w = 0.001, and a non-null offset τ = T

8 for S = 1 and

S = 2. We show in the same figure the performance of the

EKF for a null offset τ = 0 as a reference.
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Fig. 4. EKF and BCRB versus the phase noise variance for three different
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Fig. 5. EKF and BCRB in presence of a non nul offset for the sampling
instants for two different oversampling factors S = 1 and 2, SNR = 0dB.

We can see that the performances for both the bound

and the algorithm are looser when having a non-null offset

τ . In general the performances decrease when increasing τ

(0 ≤ τ ≤ T
S

). We also note that the gain between different

oversampling factors is greater at high SNR when having a

non-null offset.

VI. CONCLUSION

In this contribution, we have presented the Extended

Kalman Filter for a realistic dynamical carrier phase estimation

in an oversampled scenario. We have presented numerical

results using a time limited pulse as done in satellite position-

ing systems. In such scenario, where the Shannon sampling

theorem is not respected, we have shown the interest of using

a fractionally-spaced method for phase estimation. The interest

of using this algorithm with the oversampled signal becomes

clear at low SNR. The results obtained with the EKF are close

to the theoretical bound for slow and moderate varying phase

evolutions.
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