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Abstract

In this paper, we consider the Bayesian Cramer-Rao bound (BCRB) for the dynamical estimation

of multi-path Rayleigh channel complex gains in data-aided(DA) and non-data-aided (NDA) OFDM

systems. This bound is derived in an on-line and off-line scenarios for time-invariant and time-varying

complex gains within one OFDM symbol, assuming the availability of prior information. In NDA context,

whereas this true BCRB is hard to evaluate, we present a closed-form expression of a BCRB,i.e., the

Asymptotic BCRB (ABCRB) or the Modified BCRB (MBCRB). We discuss, based on the theoretical

and simulation results, the interest of using some past and future observations in terms of Doppler spread

for the complex gains estimation.

Index Terms

Bayesian Cramer-Rao Bound, OFDM, Rayleigh complex gains.

I. I NTRODUCTION

In the case of wideband Orthogonal Frequency Division Multiplexing (OFDM) mobile communication

systems, dynamic channel estimation [10] [13] is a fundamental function, because the radio channel is
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frequency selective and time-varying [19]. Channel estimation can be summarized to estimate certain

physical propagation parameters, such as multi-path delays and multi-path complex gains. Working with

the time-domain model, Tsatsanis and Giannakis propose in [6] a linear algorithm for estimating time-

varying FIR systems where each time-varying tap coefficient can be described as a linear combination of

a finite number of basis functions. Moreover, Borah and Hart propose in [7] a method for estimating the

impulse response of a frequency-selective fading channel using a polynomial model of the time-varying

channel taps. Recently, the basis expansion model (BEM) was introduced to approximate OFDM channel

variations. Firstly, for slow fading assumptions, [8] used apolynomial basis function model for the channel

response in a time-frequency window, whereas [9] modeled the correlated discrete-time fading channel

using a Karhunen-Loeve(KL) orthogonal expansion. For fast time-varying channels, many existing works

resort to estimating the equivalent discrete-time channeltaps, which are modeled by the BEM [10] [11]. In

MC-CDMA system, Zemen and Mecklenbrauker propose in [12] a low-complexity channel estimator for

a time-variant frequency-selective channel using discrete prolate spheroidal (DPS) sequences. However,

in Radio-Frequencies transmission, the delays are quasi invariant over several OFDM symbols but the

complex gains may change significantly, even within one OFDM symbol. Exploiting the channel nature

and assuming the availability of delay information, a lot ofmethods estimate the time-variations of the

multi-path complex gains in OFDM [14] [2] [3] [4] [5] and CDMA [15] [16] systems.

In this context the question arises of the ultimate accuracythat can be achieved in channel estimation

operations. Establishing bounds to such an accuracy is an important goal since it provides benchmarks

for evaluating the performance of channel estimators. Tools to approach this problem are available from

the parameters estimation theory [20] [27] in the form of Cramer-Rao Bounds (CRBs), which give

fundamental lower limits to the variance of any parameter estimator. A Modified CRB (MCRB), easier

to evaluate than the Standard CRB (SCRB), has been introduced in [21] [22]. The MCRB proves useful

when, in addition to the parameter to be estimated, the observed data also depend on other unwanted

parameters. However, the problem of deriving CRBs suited totime-varying parameters has been addressed

throughout the Bayesian context [20] [23]. More recently, the authors propose in [24] a general framework

for deriving analytical expression of on-line Bayesian CRB(BCRB). In [25], the authors introduce a new

asymptotic bound for the mono-carrier phase estimation problem, namely the Asymptotic Bayesian CRB

(ABCRB), in NDA scenario. This bound is closer to the classical BCRB than the Modified BCRB

(MBCRB) and is easier to evaluate than BCRB.

In this contribution we investigate the BCRB related to the estimation of Rayleigh channel complex

gains with Jakes spectrum for OFDM systems. We distinguish two channel variation cases: ”time-varying”
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and ”time-invariant” complex gains within one OFDM symbol. Explicit expressions of the BCRB and

its variants, MBCRB and ABCRB, are provided in NDA and DA contexts and, in on-line and off-line

scenarios, assuming the availability of prior information.

This paper is organized as follows: Section II sets the system model, whereas Section III recalls the

general BCRB and the modified MBCRB. Section IV derives the BCRB, the MBCRB and the ABCRB

for ”time-varying” and ”time-invariant” multi-path complex gains estimation. Section V illustrates and

interpretes different results. Finally, our conclusions are presented in Section VI.

The notations adopted are as follows: Upper (lower) bold faceletters denote matrices (column vectors).

[x]k denotes thekth element of the vectorx, and [X]k,m denotes the[k, m]th element of the matrixX.

We will use the matlab notationX[k1:k2,m1:m2] to extract a submatrix withinX from row k1 to row k2

and from columnm1 to columnm2. IN is aN ×N identity matrix and0N is aN ×N matrix of zeros.

diag{x} is a diagonal matrix withx on its main diagonal, diag{X} is a vector whose elements are the

elements of the main diagonal ofX and blkdiag{X, Y} is a block diagonal matrix with the matricesX and

Y on its main diagonal. The superscripts(·)T and (·)H stand respectively for transpose and Hermitian

operators.| · |, and Tr(·) are respectively the determinant and trace operations. Re(·), Im(·) and (·)∗

are respectively the real part, imaginary part and conjugate of a complex number or matrix. Ex,y[·] is

the expectation overx andy, J0(·) is the zeroth-order Bessel function of the first kind andδk,m is the

Kronecker symbol.∇x and ∆x
y represent the first and the second-order partial derivativesoperatori.e.,

∇x = [ ∂
∂x1

, ..., ∂
∂xN

]T and∆x
y = ∇∗

y∇T
x .

II. OFDM SYSTEM AND CHANNEL MODELS

A. OFDM System Model

Consider an OFDM system with N sub-carriers, and a cyclic prefixlength Ng. The duration of an

OFDM symbol isT = vTs, whereTs is the sampling time andv = N+Ng. Let x(n) =
[

x(n)[−N
2 ], x(n)[−N

2 +

1], ..., x(n)[
N
2 − 1]

]T be thenth transmitted OFDM symbol, where{x(n)[b]} are normalized symbols

(i.e., E
[

x(n)[b]x(n)[b]
∗] = 1). After transmission over a multi-path Rayleigh channel, the nth received

OFDM symboly(n) =
[

y(n)[−N
2 ], y(n)[−N

2 + 1], ..., y(n)[
N
2 − 1]

]T is given by [3] [5]:

y(n) = H(n) x(n) + w(n) (1)
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wherew(n) =
[

w(n)[−N
2 ], w(n)[−N

2 + 1], ..., w(n)[
N
2 − 1]

]T
is a white complex Gaussian noise vector

with covariance matrixσ2IN andH(n) is a N × N channel matrix with elements given by:

[H(n)]k,m =
1

N

L
∑

l=1

[

e−j2π( m−1

N
− 1

2
)τl

N−1
∑

q=0

α
(n)
l (qTs)e

j2π m−k

N
q
]

(2)

where L is the total number of propagation paths,αl is the lth complex gain of varianceσ2
αl

and

τl × Ts is the lth delay (τl is not necessarily an integer, butτL < Ng). The L individual elements of

{α(n)
l (qTs) = αl(qTs +nT )} are uncorrellated with respect to each other. They are wide-sense stationary

(WSS), narrow-band complex Gaussian processes, with the so-called Jakes’ power spectrum of maximum

Doppler frequencyfd, i.e., E[αl(q1Ts)α
∗
l (q2Ts)] = σ2

αl
J0

(

2πfdTs(q1 − q2)
)

[17]. The average energy of

the channel is normalized to one,i.e.,
∑L

l=1 σ2
αl

= 1.

B. Complex Gain Model

Since the number of samples to estimateLv is greater than the number of observation equationsN , it is

not efficient to estimate the multi-path complex gains time-variation, using directly the observation model

in (1). Therefore, we represent the time-variation of the complex gains by a more compact model. In the

literature, the basis expansion model (BEM) was introduced to approximate OFDM channel variations.

The BEM methods [10] are Karhunen-Loeve BEM (KL-BEM), prolate spheroidal BEM (PS-BEM),

complex-exponential BEM (CE-BEM) and polynomial BEM (P-BEM). In [13], a piece-wise linear method

is used to approximate the equivalent discrete-time channel taps. In [4] [3], the authors show that the

time-variation of Rayleigh channel complex gain, withinNc OFDM symbols, can be approximated by a

polynomial model ofNc coefficients, choosen according to the Doppler spreadfdT .

In this section, we show that, whateverfdT ≤ 0.5, each Rayleigh channel complex gainα(n)
l =

[

α
(n)
l (−NgTs), ..., α

(n)
l

(

(N − 1)Ts

)]T can be modeled as a polynomial time-variation ofNc ≤ 5 coeffi-

cients (i.e., a (Nc − 1) degree polynomial), within one OFDM symbol.

The optimal polynomialα(n)
poll

, which is least-squares fitted (linear and polynomial regression) [18] to

α
(n)
l , and itsNc coefficientsc(n)

l =
[

c
(n)
1,l , ..., c

(n)
Nc,l

]T
are given by:

α
(n)
poll

= QT c(n)
l = Sα

(n)
l

c(n)
l =

(

QQT
)−1

Qα
(n)
l (3)

whereQ is aNc×v matrix of elements[Q]k,m = (m−Ng −1)(k−1) andS = QT
(

QQT
)−1

Q is av×v

matrix. It provides the MMSE approximation for all polynomials containingNc coefficients, given by:

MMSE(0)
l =

1

v
Tr

(

MMSE (0)
l

)

(4)
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where

MMSE (p)
l = E

[

ξ
(n)
l ξ

(n−p)
l

H]

=
(

Iv − S
)

R(p)
αl

(

Iv − ST
)

(5)

with ξ
(n)
l = α

(n)
l −α

(n)
poll

is the model error andR(p)
αl

= E

[

α
(n)
l α

(n−p)
l

H
]

is thev× v correlation matrix

of α
(n)
l with elements given by:

[R(p)
αl

]k,m = σ2
αl

J0

(

2πfdTs(k − m + pv)

)

(6)

Fig. 1 gives the MMSE in terms offdT for different value ofNc. As can be seen, forfdT ≤ 0.5 and

Nc = 5, we have MMSE< 4 · 10−7. This proves that, for high values offdT , α
(n)
l can be represented

by a polynomial model ofNc ≤ 5 coefficients. Moreover, forfdT ≤ 0.001 and Nc = 1, we have

MMSE < 4 · 10−7. This means that, for low values offdT , the complex gains are time-invariant within

one OFDM symbol.

c(n)
l are correlated complex Gaussian variables with zero-meansand correlation matrix given by:

R(p)
cl

= E[c(n)
l c(n−p)

l

H
] =

(

QQT
)−1

QR(p)
αl

QT
(

QQT
)−1

(7)

Fig. 2 shows the average (overL = 6 paths) variance of the first three coefficients of theNc = 5

coefficients. We notice that the variance decreases very quickly in terms of number of coefficients. This

means that the last coefficients are very small. Hence, it is very difficult to find an estimator that can

give a good estimation of the small coefficients in presence ofnoise. In the sequel, we will study the

performance of the coefficients estimator in terms ofNc andfdT .

Under this polynomial modeling, the observation model in (1) for the nth OFDM symbol can be

rewritten as:

y(n) = K(n) c(n) + ǫ(n) + w(n) (8)

where c(n) = [c(n)
1

T
, ..., c(n)

L

T
]T is a LNc × 1 vector, K(n) = 1

N
[Z(n)

1 , ..., Z(n)
L ] is a N × LNc matrix

andZ(n)
l = [M1diag{x(n)}fl, ..., MNc

diag{x(n)}fl] is a N ×Nc matrix, wherefl is the lth column of the

N × L Fourier matrixF andMd is a N × N matrix given by:

[F]k,l = e−j2π( k−1

N
− 1

2
)τl , [Md]k,m =

N−1
∑

q=0

qd−1ej2π m−k

N
q (9)

The second component in (8),ǫ(n), represents the polynomial approximation error in the observation

model which is given by:

ǫ(n) = Hξ(n)
x(n) (10)
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whereHξ(n)
is a N × N matrix with elements given by:

[Hξ(n)
]k,m =

1

N

L
∑

l=1

[

e−j2π( m−1

N
− 1

2
)τl

N−1
∑

q=0

ξ
(n)
l (qTs)e

j2π m−k

N
q
]

(11)

It sould be noted that if the complex gains are time-invariant within one OFDM symbol (i.e., α(n)
l (−NgTs) =

... = α
(n)
l

(

(N − 1)Ts

)

= c
(n)
1,l ) then, H(n) is a diagonal matrix,Nc = 1, K(n) = diag{x(n)}F and

R(p)
cl

= σ2
αl

J0

(

2πfdTp
)

.

III. C RAMER-RAO BOUNDS (CRBS)

In this section, we present the family of Cramer-Rao Bounds (CRBs). The CRBs provide a lower bound

on the Mean Square Error (MSE) achievable by any unbiased estimator. We give the general expression of

the Bayesian Cramer-Rao Bound (BCRB) and its Modified Version(MBCRB). The BCRB is particularly

suited for problems where the parameter to be estimated is assumed to be random with availablity of

the a priori information. Let̂c(y) denotes an unbiased estimator ofc using the set of measurementsy.

The estimation ofc can be considered following two main scenarios off-line andon-line. In the off-line

scenario, the receiver waits until the whole observation frame, i.e., y = [y(1)
T , ..., y(K)

T ]T , has been

received in order to estimatec = [c(1)
T , ..., c(K)

T ]T . In the on-line scenario, the receiver estimatesc(n)

based on the current and previous observations only,i.e., y = [y(1)
T , ..., y(n)

T ]T . In the sequel, the BCRB

will be considered within the context of both the off-line and the on-line scenarios. The BCRB has been

proposed in [20] such that:

Ey,c

[

(

ĉ(y) − c
)(

ĉ(y) − c
)H

]

≥ BCRB(c) (12)

The BCRB1 is the inverse of the Bayesian Information Matrix (BIM), which can be written as:

B = Ec
[

Fi(c)
]

+ Ec
[

− ∆c
c ln

(

p(c)
)]

(13)

wherep(c) is the prior distribution andFi(c) is the Fisher Information Matrix (FIM) defined as:

Fi(c) = Ey|c
[

− ∆c
c ln

(

p(y|c)
)]

(14)

wherep(y|c) is the conditional probability density function ofy given c. Unfortunately, in most cases of

NDA context, the computation ofFi(c) is generally quite tedious because thep(y|c) cannot be carried

out analytically due to the nuisance parametersx = [x(1)
T , ..., x(K)

T ]T , which are OFDM symbols in our

1We recall that, for a deterministic parameter, Standard Cramer-Rao Bound (SCRB) would be directly the inverse of the Fisher

Information Matrix (FIM).
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case. In order to circumvent this problem, a Modified BCRB (MBCRB) has been proposed in [23]. This

MBCRB is the inverse of the following information matrix:

C = Ec
[

G(c)
]

+ Ec
[

− ∆c
c ln

(

p(c)
)]

(15)

whereG(c) is the modified FIM defined as:

G(c) = ExEy|x,c
[

− ∆c
c ln

(

p(y|x, c)
)]

(16)

In our objective, we are interested in the estimation of the random complex gainsα = [α(1)
T , ...,α(K)

T ]T ,

whereα(n) =
[

α
(n)
1

T
, ...,α

(n)
L

T ]T

. α is related toc as:

α = Qc + ξ (17)

where Q = blkdiag
{

QT , ..., QT
}

is a KLv × KLNc matrix andξ = [ξT
(1), ..., ξ

T
(K)]

T with ξ(n) =
[

ξ
(n)
1

T
, ..., ξ

(n)
L

T ]T

. Hence the estimation ofα is given by:α̂ = Qĉ. By neglecting the cross-covariance

terms between the errorsαpol − α̂ andξ, we can write:

E

[

(

α̂ − α
)(

α̂ − α
)H

]

=

E

[

(

α̂ − αpol
)(

α̂ − αpol
)H

]

+ E
[

ξξH
]

(18)

whereαpol = Qc. So, using the transformation of parameters properties defined in [27], we obtain the

BCRB for the estimation ofα from the BCRB forc as:

BCRB(α) =
(

∇cαpol
)

BCRB(c)
(

∇cα
T
pol

)

+ E
[

ξξH
]

= Q BCRB(c) QT + MMSE (19)

where theKLv × KLv matrix MMSE is given by:

MMSE [i(l,p),i(l,p′)] = MMSE (p−p′)
l for l∈[1,L] p,p′∈[0,K−1] (20)

with i(l, p) = 1 + (l − 1)v + pLv : lv + pLv andMMSE (p)
l is the correlation matrix of the model error

ξl
(n) defined in (5). Notice that there are zero matrices between theblock matricesMMSE (p)

l since the

L complex gains are uncorrellated. ForK = L = 2, MMSE is given by:

MMSE =

















MMSE (0)
1 0v MMSE (−1)

1 0v

0v MMSE (0)
2 0v MMSE (−1)

2

MMSE (1)
1 0v MMSE (0)

1 0v

0v MMSE (1)
2 0v MMSE (0)

2
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IEEE TRANSACTIONS ON SIGNAL PROCESSING 8

The computation of the off-line BCRB [25] associated to the estimation of α(n) is given by:

BCRB(α(n))offline = Tr
(

BCRB(α)[i(n),i(n)]

)

(21)

where the sequence of indicesi(n) = 1 + (n − 1)Lv : nLv with n ∈ [1, K]. The on-line BCRB [25]

associated to the observation vectory = [y(1)
T , ..., y(K)

T ]T is given by:

BCRB(α(K))online = Tr
(

BCRB(α)[i(K),i(K)]

)

(22)

The definitions in (19), (21) and (22) will stand for the closed form of BCRB,i.e., MBCRB and ABCRB.

IV. BCRB FOR POLYNOMIAL COEFFICIENTSESTIMATION

In this section, we present a closed-form expression for a BCRB related to the estimation of the

polynomial coefficientsc(n) of the multi-path complex gains in NDA OFDM systems. This boundis

derived for time-varying and time-invariant complex gainswithin one OFDM symbol. In DA context, we

deduce the computation of the true BCRB from the computationof the MBCRB in NDA.

A. BCRB for Time-varying Complex Gains

1) Non-Data-Aided (NDA) Context:

Computation of Ec
[

Fi(c)
]

: The observation model is presented in (8). Using the whiteness of the noise

w = [w(1)
T , ..., w(K)

T ]T and the independence of the transmitted OFDM symbolsx, we then obtain that:

∆c
c ln

(

p(y|c)
)

=
K

∑

n=1

∆c
c ln

(

p(y(n)|c(n))
)

(23)

It is important to note that each term of the summation (23) isa KLNc ×KLNc block diagonal matrix

with only one nonzeroLNc × LNc block matrix, namely:

∆c
c ln

(

p(y(n)|c(n))
)

[i′(n),i′(n)]
= ∆

c(n)

c(n)
ln

(

p(y(n)|c(n))
)

(24)

where i′(n) = 1 + (n − 1)LNc : nLNc with n ∈ [1, K]. As a direct consequence,∆c
c ln

(

p(y|c)
)

is a

block diagonal matrix with thenth diagonal block given by (24). Moreover, because of the circularity

of the observation noise, the expectation of (24) with respect to y(n) andc(n) does not depend onc(n).

We then obtain:

Ec
[

Fi(c)
]

= blkdiag{J, J, ..., J} (25)

whereJ is a LNc × LNc matrix defined as:

J = Ey,c
[

− ∆
c(n)

c(n)
ln

(

p(y(n)|c(n))
)]

(26)
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The log-likelihood function in (26) can be expanded as:

ln
(

p(y(n)|c(n))
)

= ln
(

∑

x(n)

p(y(n)|x(n), c(n))p(x(n))
)

(27)

In order to simplify the computation ofp(y(n)|x(n), c(n)), we assume that the vectorξ(n) for given c(n)

remains complex Gaussian vector with zero mean. Hence, the vector y(n) for given x(n) and c(n) is a

complex Gaussian vector with mean vectorm(n) = K(n)c(n) and covariance matrixΩ = R + σ2IN ,

whereR is theN × N correlation matrix ofǫ(n) given by (see Appendix A):

R = Eξ(n),x(n)

[

ǫ(n)ǫ
H
(n)

]

=
β

N
Λ diag

{

diag{Γ}
}

Λ
H (28)

whereβ =
∑L

l=1 σ2
αl

is the total channel energy,Λ andΓ are twoN × N matrices defined by:

[Λ]k,m = e−j2π k

N
(m−1) (29)

Γ =
1

σ2
αl

MMSE (0)
l [Ng+1:v,Ng+1:v]

(30)

Thus,p(y(n)|x(n), c(n)) is defined as:

p(y(n)|x(n), c(n)) =
1

|πΩ|e
−(y(n)−m(n))

H
Ω

−1(y(n)−m(n)) (31)

Since each element of the vectorm(n) depends on all components ofx(n) then, the computation ofJ is

a demanding task. Hence, we resort to compute the MBCRB. Following the same reasoning as before,

we have:

Ec
[

G(c)
]

= blkdiag{Jm, Jm, ..., Jm} (32)

whereJm is a LNc × LNc matrix defined as:

Jm = Ey,x,c
[

− ∆
c(n)

c(n)
ln

(

p(y(n)|x(n), c(n))
)]

(33)

By taking the second derivative of the natural logarithm (ln) of (31) with respect toc(n), we simply

obtain that:

∆
c(n)

c(n)
ln

(

p(y(n)|x(n), c(n))
)

= −KH
(n)Ω

−1K(n) (34)

Consequently, we obtain that (see Appendix B):

Jm = Ex

[

KH
(n)Ω

−1K(n)

]

=
1

N2
FHMF (35)
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IEEE TRANSACTIONS ON SIGNAL PROCESSING 10

whereM andF are aNNc × NNc and aNNc × LNc matrices, respectively, defined as:

M =











M1,1 · · · M1,Nc

...
...

...

MNc,1 · · · MNc,Nc











(36)

F =
[

F1 · · · FL

]

(37)

whereMd,d′ andF l are aN × N and aNNc × Nc matrices, respectively, defined as:

Md,d′ = diag
{

diag
{

MH
d Ω

−1Md′

} }

(38)

F l = blkdiag{fl, fl, ..., fl} (39)

Computation of Ec
[

− ∆c
c ln

(

p(c)
)]

: c is a complex Gaussian vector with zero mean and covariance

matrix Rc of sizeKLNc × KLNc defined as:

Rc[i′(l,p),i′(l,p′)] = R(p−p′)
cl

for l∈[1,L] p,p′∈[0,K−1] (40)

wherei′(l, p) = 1 + (l − 1)Nc + pLNc : lNc + pLNc andR(p)
cl

is the correlation matrix ofcl
(n) defined

in (7). Thus, the probability density functionp(c) is defined as:

p(c) =
1

|πRc|
e−cHR−1

c c (41)

Taking the second derivative of the natural logarithm (ln) of (41) with respect toc and making the

expectation overc, we simply obtain that:

Ec
[

− ∆c
c ln

(

p(c)
)]

= R−1
c (42)

The MBCRB for the estimation ofc in NDA context is given by:

MBCRB(c) =
(

blkdiag{Jm, Jm, ..., Jm} + R−1
c

)−1
(43)

Notice that the MBCRB is usually looser than the BCRB. As in (19), the MBCRB for the estimation of

α is given by:

MBCRB(α) = Q MBCRB(c) QT + MMSE (44)
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IEEE TRANSACTIONS ON SIGNAL PROCESSING 11

2) Data-Aided (DA) Context:

In data-aided (DA) context, the transmitted data symbolsx(n) are known at the receiver and then no

averaging over the data is required. Hence, the matrixJ is computed likeJm, but without averaging over

the data symbolsx(n), and consequently it depends on thenth transmitted OFDM symbol. Thus,J(n) is

given by:

J(n) = KH
(n)Ω

−1
(n)K(n) =

1

N2
FH

(n)M(n)F (n) (45)

whereΩ(n) = R(n) + σ2IN with R(n) is given by (see Appendix A):

R(n) = Eξ(n)

[

ǫ(n)ǫ
H
(n)

]

=
1

N2
Λ

(

Γ • Z(n)

)

Λ
H (46)

where• is the element-by-element product operator andZ(n) is a N × N matrix given by:

Z(n) = Λ
Hdiag{x(n)}F D FHdiag{xH

(n)}Λ (47)

with D = diag
{

σ2
α1

, ..., σ2
αL

}

. The matrixM(n) is computed likeM but by replacingΩ in equation (38)

by Ω(n) and, the matrixF (n) is computed likeF but by replacingfl in equation (39) by diag{x(n)}fl.

The BCRB for the estimation ofc in DA context is given by:

BCRB(c) =
(

blkdiag
{

J(1), J(2), ..., J(K)

}

+ R−1
c

)−1
(48)

and consequently the BCRB for the estimation ofα as (19). It should be noted that BCRB for the

estimation ofα in DA context depends on the transmitted data sequencex.

B. BCRB for Time-invariant Complex Gains

In this paragraph, we derive an analytical expression of theBCRB and MBCRB associated to the

estimation of time-invariant Rayleigh complex gains within one OFDM symbol in NDA context. In such

case, we have:K(n) = diag{x(n)}F, Nc = 1, R(p)
cl

= σ2
αl

J0

(

2πfdTp
)

, BCRB(α) = BCRB(c) and

Ω = σ2IN . Hence, substituting this result in (35), we obtainJm = 1
σ2 FHF, and consequently MBCRB

as (45).

In this case, each element of the vectorm(n) = diag{x(n)}Fc(n) depends on only one element ofx(n)

then, the computation ofJ is possible. It should be noted that, in NDA context , the BCRBdepends on

the modulation scheme of the OFDM symbols. Therefore, in the sequel, we evaluateJ for 4QAM OFDM

symbols. Hence, using the Gaussian nature of the noise and the equiprobability of the normalized QAM
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IEEE TRANSACTIONS ON SIGNAL PROCESSING 12

symbols, we find that (see Appendix C):

ln
(

p(y(n)|c(n))
)

= ln

[

1
|πσ2IN |e

− 1

σ2 (yH
(n)y(n)+cH

(n)F
HFc(n))

N
∏

k=1

cosh
(

√
2

σ2
Re

(

an(k)
)

)

cosh
(

√
2

σ2
Im

(

an(k)
)

)

]

(49)

wherean(k) = [y(n)]
∗

kgT
k c(n) andgT

k is thekth row of the matrixF. The result of the second derivative

of (49) with respect toc(n) is given by (see Appendix C):

∆
c(n)

c(n)
ln

(

p(y(n)|c(n))
)

= − 1
σ2 FHF

+
N

∑

k=1

[

1

2σ4
[y(n)]k[y(n)]

∗

kg∗kgT
k

(

2 − tanh2
(

√
2

σ2
Re

(

an(k)
)

)

− tanh2
(

√
2

σ2
Im

(

an(k)
)

)

)] (50)

In the general case, the expectation of (50) with respect toy(n)|c(n) does not have any simple analytical

solution. Hence, in practice, we have to resort to either numerical integration methods or some approxi-

mations. In the following, we present both the high-SNR and the low-SNR approximations of the BCRB,

as defined in [25].

High-SNR BCRB Asymptote:Now, we investigate the BCRB behavior at high SNR. From the definition

of the BIM (13), only the first term (i.e., Ec
[

Fi(c)
]

) depends on the SNR, which is fully characterized

by J. Hence, we focus on the behavior ofJ. At high SNR (i.e., σ2 → 0), the tanh-function in (50) can

be approximated as:tanh
(√

2
σ2 x

)

≈ sgn(x). Hence, we obtain the high-SNR asymptote ofJ, which is:

Jh =
1

σ2
FHF (51)

This implies thatJh = Jm, hence the high-SNR asymptote of the BCRB is equal to the MBCRB. This

corroborates the result derived by Moeneclaey [26] in the non-Bayesian case for a scalar parameter.

Low-SNR BCRB Asymptote: Now, we consider, the low-SNR asymptote of the BCRB in the NDA

QAM context. Following the same reasoning as before, at low SNR (i.e., σ2 → +∞), we havetanh(x) ≈
x arroundx = 0. Hence, we obtain:

∆
c(n)

c(n)
ln

(

p(y(n)|c(n))
)

≈ − 1
σ2 FHF +

N
∑

k=1

[

1

σ8
[y(n)]k[y(n)]

∗

kg∗kgT
k

(

σ4 − an(k)a∗n(k)
)

]

(52)

Substituting (52) in (26), we obtain the low-SNR asymptote ofJ, which is (see Appendix D):

Jl =
( β

σ4
+

8β2

σ6
+

6β3

σ8

)

FHF (53)

The Asymptotic BCRB (ABCRB) defined in [25] leads to a lower bound on the MSE. This ABCRB

is given by:

ABCRB(c) =
(

blkdiag{Jmin, ..., Jmin} + R−1
c

)−1
(54)
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IEEE TRANSACTIONS ON SIGNAL PROCESSING 13

whereJmin = min(vl, vh)FHF, vl = β
σ4 + 8β2

σ6 + 6β3

σ8 andvh = 1
σ2 . In Appendix E, we show that:

MBCRB(c) ≤ ABCRB(c) ≤ BCRB(c) (55)

This corroborates the result derived in [25] for a mono-carrier phase estimation problem.

Notice that the termKH
(n)Ω

−1K(n) = 1
σ2 FHF does not depend on the transmitted data sequencex.

Hence, the FIM defined in (14) and the modified FIM defined in (16) are equals. So, in the case of

”time-invariant”, the true BCRB in data-aided (DA) contextis equal to the MBCRB in non-data-aided

(NDA) context.

V. D ISCUSSION

In this section, we bring to the fore the behavior of the previous bounds, namely the off-line and the

on-line BCRBs (DA context), MBCRBs and ABCRBs (NDA context)for the complex gains estimation.

A normalized 4QAM OFDM system,N = 128 subcarriers,Ng = N
8 subcarriers is used (note that

SNR = 1
σ2 and (SNR)dB = (Eb

N0
)dB + 3dB). The normalized channel model is Rayleigh withL = 6

paths of parameters given in [2] [3] [5]. We consider two scenarios: ”time-invariant” withNc = 1 and

fdT = 10−3, and ”time-varying” with2 ≤ Nc ≤ 5 and 0.05 ≤ fdT ≤ 0.5. we remind that, in time-

invariant scenario, the BCRB in DA context and the MBCRB in NDA context are equals . It sould be

noted that, in case of time-varying scenario and DA context,the BCRBs are computed with a transmitted

data sequence generated by a Maximal-Length Sequences (MLS) generator [28] of 13 shift registers with

a feedback polynomial[20033]8 (octal representation).

Fig. 3 superimposes versus time index, the on-line and the off-line ABCRBs (NDA and time-invariant,

fdT = 0.001) or BCRBs (DA and time-varying,fdT = 0.1 andNc = 2) for different block-observation

lengthsK at SNR= 10dB. In the off-line context, we can see that the best complex gains estimation is

achieved at the midblock, whereas the estimates are likely to be poorer at the block border. This stems

from the fact that in the center position of the polynomial coefficients vectorc we have more adjacent

(past or future) and strongly correlated variables than at the border of the vectorc. Concerning the online

bound, at the beginning when the number of observations increases, the estimator takes into account

more and more information and the estimation is improved; the bound thus decreases and converges to

an asymptote. The estimation performance is then limited by the observation noise independently of the

number of observations taken into account. However, in order to reach the asymptote, it is sufficient to

use 10 past OFDM symbols for the slow channel (fdT = 0.001) whereas 3 past OFDM symbols for the

rapid channel (fdT = 0.1).
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IEEE TRANSACTIONS ON SIGNAL PROCESSING 14

We now analyse the bound behavior versus the SNR over a block ofK = 20 and K = 1. Fig. 4

superimposes the BCRBs evaluated over104 OFDM symbols Monte Carlo trials and the ABCRBs for

NDA context and time-invariant scenario (fdT = 0.001) in (a) and, the BCRBs for DA context and time-

varying scenario (fdT = 0.1) in (b). We can verify thatMBCRB ≤ ABCRB ≤ BCRB as proved in

Appendix E. At low SNR, the on-line bound (n = K = 20) and the off-line bound (n = 10) coincide

because the observation noise masks the a priori dynamic polynomial coefficients evolution. However,

as SNR increases, the off-line bound decreases more than the on-line bound because the information

provided by each observationy(n) is preponderant over the a priori knowledge ofc. At high SNR, the

MBCRB and the ABCRB are very close, as predicted by our theoretical analysis.

We now want to emphasize the benefit of using past symbols in time-invariant scenario. For this, we

make a zoom on Fig. 4 (a) as shown in Fig. 5 (a) and we add as benchmark the BCRBs for a block-

observation lengthK = 1 (as in Fig. 4 (b)). This benchmark corresponds to the case wherethe estimator

uses only the current symbol instead of the current and past symbols. We can obviously measure the great

potential gain obtained by taking into account the past information (K = 20 versusK = 1). However,

we can also measure, from Fig. 5 (a), the potential performance improvement for Data Aided (MBCRB

= BCRB) versus Non Data Aided (BRCB) contexts in time-invariant scenario. In time-varying scenario

and NDA context, we can not evaluate the true BCRB even with Monte Carlo trials. So, we can only

compare a lower closed-form of the BCRB in NDA context, the MBCRB, to the true BCRB in DA

context as shown in Fig. 5 (b). We can even so notice a potentialperformance improvement for DA with

respect to NDA in time-varying scenario.

We now study the bound behavior versusNc and SNR over a block ofK = 10, in case of time-varying.

Fig. 6 gives the BCRBs forfdT = 0.5 in terms of SNR in (a) andNc in (b). We observe in (a) that,

whatever SNR, the bound is not always decreasing in terms ofNc and at high SNR, the bound converges

to the MMSE (the model error). As we see in (b), for SNR= 15dB, 25dB and 35dB, the minimum of

the bound is obtained atNc = 3, 4 and 5 polynomial coefficients, respectively. This is due to the last

coefficients which will be poorly estimated in presence of noise. Indeed, they are negligible compared to

the noise level as we have seen in Fig. 2. Hence, in order to havea good estimation of the complex gains

time-variation, we have to chooseNc according to SNR andfdT . The Table I shows how to selecteNc,

for realistic values of SNR and different values offdT , such that the bound is minimal. For example

if fdT = 0.3, we chooseNc = 3 and 4 for SNR∈ [0; 29] and SNR∈ [29; 40], respectively. We can
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IEEE TRANSACTIONS ON SIGNAL PROCESSING 15

introduce a New BCRB (NBCRB) which is independant ofNc, defined as:

NBCRB(α) = min
Nc

(

BCRB(α)
)

(56)

wheremin
Nc

(·) is the minimum overNc. This definition in (56) will stand for the ABCRB and the MBCRB

in case of NDA.

We now analyse the bound behavior versusfdT . Fig. 7 gives the NBCRB in DA context (time-invariant

and time-varying) versusfdT for SNR = 20dB and K = 10. We notice that the NBCRB increases in

terms offdT . This is because the correlation between variables becomes stronger whenfdT decreases.

So, the estimation gain for slow channel variations is more significant.

VI. CONCLUSION

In this contibution, we have derived an analytical expression of a BCRB for the estimation of time-

varying and time-invariant Rayleigh channel complex gainswithin one OFDM symbol. In case of time-

varying, we have introduced a New BCRB (NBCRB) and we have shown that a good estimation of the

complex gains time variation can be obtained by choosing thenumber of polynomial coefficients according

to the noise level and the Doppler spread. These bounds are useful when analyzing the performance of

complex gains estimators in DA and NDA contexts and in on-line and off-line scenarios. Moreover, we

have shown the benefit of using the past OFDM symbols in channel estimation process, whereas most

methods use only the current symbol.

APPENDIX A

EVALUATION OF THE CORRELATION MATRIX R

In this Appendix, we detail the calculus to obtain the expression of the correlation matrixR of the

polynomial approximation error in the observation model,ǫ(n) = Hξ(n)
x(n), in both context data-aided

(DA) and non-data-aided (NDA). TheN × N correlation matrixR is defined by:

R = E
[

ǫ(n)ǫ
H
(n)

]

= E
[

Hξ(n)
x(n)x

H
(n) HH

ξ(n)

]

(61)

Hence, the elements ofR are given by (57), shown at the top of the next page. since the elements

[Hξ(n)
]k,m and[x(n)]k are uncorrelated. Using (11), the first expectation in (57) can be calculated as (58),

since the L different model errors{ξ[qTs]} are uncorrelated whereΓ is defined by (30).

In NDA context, we have E
[

[x(n)]u1
[x(n)]

∗
u2

]

= δu1,u2
since the unknown data symbols are uncorrelated

and normalized, whereδk,m is the Kronecker symbol. Hence, by using (58), the equation (57) becomes
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[R]k,m = E

[

N
∑

u1=1

N
∑

u2=1

[Hξ(n)
]k,u1

[Hξ(n)
]∗m,u2

[x(n)]u1
[x(n)]

∗

u2

]

=

N
∑

u1=1

N
∑

u2=1

E
[

[Hξ(n)
]k,u1

[Hξ(n)
]∗m,u2

]

E
[

[x(n)]u1
[x(n)]

∗

u2

]

(57)

E
[

[Hξ(n)
]k,u1

[Hξ(n)
]∗m,u2

]

=
1

N2

L
∑

l=1

ej2π
u2−u1

N
τl

[

N−1
∑

q1=0

N−1
∑

q2=0

E
[

ξ
(n)
l (q1Ts)ξ

(n)
l

∗

(q2Ts)
]

ej2π
u1−k

N
q1e−j2π

u2−m

N
q2

]

=
1

N2

L
∑

l=1

σ2
αl

ej2π
u2−u1

N
τl

[

N−1
∑

q1=0

N−1
∑

q2=0

[Γ]q1+1,q2+1e
j2π

u1−k

N
q1e−j2π

u2−m

N
q2

]

(58)

[R]k,m (NDA) =
β

N2

N−1
∑

q1=0

N−1
∑

q2=0

[Γ]q1+1,q2+1e
j2π

mq2−kq1
N

N
∑

u=1

e−j2π
q1−q2

N
u =

β

N

N−1
∑

q=0

[Γ]q+1,q+1e
j2π m−k

N
q (59)

[R(n)]k,m (DA) =
1

N2

N−1
∑

q1=0

N−1
∑

q2=0

[Γ]q1+1,q2+1e
j2π

mq2−kq1
N

L
∑

l=1

N
∑

u1=1

N
∑

u2=1

σ2
αl

[x(n)]u1
[x(n)]

∗

u2
ej2π

q1−τl
N

u1e−j2π
q2−τl

N
u2

=
1

N2

N−1
∑

q1=0

N−1
∑

q2=0

[Γ]q1+1,q2+1[Z(n)]q1+1,q2+1e
j2π

mq2−kq1
N (60)

as (59) whereβ =
∑L

l=1 σ2
αl

, and consequently we obtain the correlation matrixR in NDA context as

defined by (28).

In DA context, the data symbols are known at the receiver thenno averaging over the data is required.

Hence, by using (58), the equation (57) becomes as (60) wherethe matrixZ(n) is defined by (47), and

consequently we obtain the correlation matrixR(n) in DA context as defined by (46).

APPENDIX B

EVALUATION OF Jm

In this Appendix, we detail the calculus to obtain the expression of Jm defined in (35). Using the

definition of K(n) in section II, we have:

A = KH
(n)Ω

−1K(n) =
1

N2











A1,1 · · · A1,L

...
.. .

...

AL,1 · · · AL,L











(62)

whereAl,l′ = Z(n)
l

H
Ω

−1Z(n)
l′ is a Nc × Nc matrix with elements given by:

[

Al,l′
]

d,d′
= fHl diag{xH

(n)}MH
d Ω

−1Md′diag{x(n)}fl′ (63)

December 12, 2008 DRAFT

ha
l-0

03
68

68
7,

 v
er

si
on

 1
 - 

17
 M

ar
 2

00
9



IEEE TRANSACTIONS ON SIGNAL PROCESSING 17

Taking the expectation of (63) overx, we obtain:

Ex

[

[

Al,l′
]

d,d′

]

= fHl Md,d′ fl′ (64)

since the symbols are normalized an uncorrelated with respect to each other. Consequently, we obtain

that:

Ex

[

Al,l′

]

= FH
l Md,d′F l′ (65)

and finally we obtain the expression ofJm defined in (35).

APPENDIX C

DERIVATION OF EXPRESSION(49) AND (50)

Substituting (31) in (27), we obtain:

ln
(

p(y(n)|c(n))
)

= − 1

σ2

(

yH
(n)y(n) + mH

(n)m(n)

)

+ ln

(

p(x(n))

|πσ2IN |
∑

x(n)

e
2

σ2 Re(yH
(n)m(n))

)

(66)

since the normalized 4QAM-symbols are equiprobable (i.e., p(x(n)) = 1
4N ). However, in this casem(n) =

diag{x(n)}Fc(n) then,yH
(n)m(n) =

N
∑

k=1

an(k)[x(n)]k wherean(k) is defined in section IV part B. Hence,

we obtain:
∑

x(n)

e
2

σ2 Re(yH
(n)m(n)) =

N
∏

k=1





∑

[x(n)]k

e
2

σ2 Re
(

an(k)[x(n)]k
)



 (67)

Since[x(n)]k = 1√
2
(±1 ± j) (i.e., 4QAM-symbol) then, we obtain:

∑

[x(n)]k

e
2

σ2 Re
(

an(k)[x(n)]k
)

= 4cosh
(

√
2

σ2
Re

(

an(k)
)

)

cosh
(

√
2

σ2
Im

(

an(k)
)

)

(68)

Inserting this result into (66), we obtain the expression in(49). Taking the second derivative of (49) with

respect toc(n) and using these results below:

∇c(n)
Re

(

an(k)
)

=
1

2
[y(n)]

∗

kgk

∇c(n)
Im

(

an(k)
)

=
1

2j
[y(n)]

∗

kgk (69)

we obtain finally the expression in (50).
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APPENDIX D

EVALUATION OF Jl

In this Appendix, we detail the calculus to obtain the expression of Jl defined in (53). Inserting the

definition of an(k) into (52) and substituting the result in (26), we obtain:

Jl = 1
σ2 FHF − 1

σ4

N
∑

k=1

g∗kEcEy|c
[

[y(n)]k[y(n)]
∗

k

]

gT
k +

1

σ8

N
∑

k=1

g∗kgT
k Ec

[

c(n)c
H
(n)g

∗
kEy|c

[

(

[y(n)]k[y(n)]
∗

k

)2
]

]

gT
k

(70)

Using that[y(n)]k = [x(n)]kgT
k c(n) + [w(n)]k, the normalized symbols and the noise are independant and,

these results below:

E[x(n)]k

[

[x(n)]
2
k

]

= E[w(n)]k

[

[w(n)]
2
k

]

= 0

E[w(n)]k

[

[w(n)]
2
k[w(n)]

∗
k
2
]

= 2σ4 (71)

we obtain:

Ey|c
[

[y(n)]k[y(n)]
∗

k

]

= gT
k c(n)c

H
(n)g

∗
k + σ2

Ey|c
[

(

[y(n)]k[y(n)]
∗

k

)2
]

= 2σ4 + 4σ2gT
k c(n)c

H
(n)g

∗
k + gT

k c(n)c
H
(n)g

∗
kgT

k c(n)c
H
(n)g

∗
k (72)

Hence,Jl becomes:

Jl = 1
σ4

N
∑

k=1

VkEc

[

c(n)c
H
(n)

]

Vk

+ 4
σ6

N
∑

k=1

VkEc

[

c(n)c
H
(n)Vkc(n)c

H
(n)

]

Vk

+ 1
σ8

N
∑

k=1

VkEc

[

c(n)c
H
(n)Vkc(n)c

H
(n)Vkc(n)c

H
(n)

]

Vk

(73)

whereVk = g∗kgT
k is aL×L matrix. LetT1 = c(n)cH

(n)Vkc(n)cH
(n) andT2 = c(n)cH

(n)Vkc(n)cH
(n)Vkc(n)cH

(n)

then, the elements of these matrices are given by:

[

T1

]

l,l′
=

L
∑

l1=1

L
∑

l2=1

[

Vk

]

l1,l2

[

c(n)

]

l

[

c(n)

]

l2

[

c(n)

]∗
l′

[

c(n)

]∗
l1

(74)

[

T2

]

l,l′
=

L
∑

l1=1

L
∑

l2=1

L
∑

l3=1

L
∑

l4=1

[

Vk

]

l1,l2

[

Vk

]

l3,l4

[

c(n)

]

l

[

c(n)

]

l2

[

c(n)

]

l4

[

c(n)

]∗
l′

[

c(n)

]∗
l1

[

c(n)

]∗
l3

Using thatD = Ec

[

c(n)cH
(n)

]

= diag
{

σ2
α1

, ..., σ2
αL

}

, E[c(n)]l

[

[

c(n)

]2

l

]

= 0 and the definitions of fourth

and sixth order moments for complex Gaussian variables, we obtain:

Ec
[

T1

]

= DVkD + Tr
(

VkD
)

D

Ec
[

T2

]

= 2DVkDVkD + 2Tr
(

VkD
)

DVkD + Tr
(

VkDVkD
)

D +
(

Tr
(

VkD
)

)2
D (75)
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Using thatgT
k Dg∗k = Tr

(

VkD
)

=
∑L

l=1 σ2
αl

= β, Tr
(

VkDVkD
)

= β2 and DVkDVkD = βDVkD and,

inserting these results into (73), we obtain finally the expression ofJl defined in (53).

APPENDIX E

PROOF OF THE INEQUALITY (55)

From the definition ofJmin, we haveJmin ≤ Jm = Jh and then we have the first inequality in (55),

i.e., MBCRB(c) ≤ ABCRB(c). To prove the second inequality in (55), we have to show thatJ ≤ Jmin.

From Fig. 8, we see that thetanh2(x) function is tangent to the curvey = x2 at x = 0 and hasy = 1

as horizontal asymptote. Hence, we can write, for everyx ≥ 0, these two properties below:

tanh2(x) ≤ 1 and tanh2(x) ≤ x2 (76)

Using these two properties, we obtain from (50) that:

∆
c(n)

c(n)
ln

(

p(y(n)|c(n))
)

≥ − 1

σ2
FHF (77)

∆
c(n)

c(n)
ln

(

p(y(n)|c(n))
)

≥ − 1

σ2
FHF +

N
∑

k=1

[

1

σ8
[y(n)]k[y(n)]

∗

kg∗kgT
k

(

σ4 − an(k)a∗n(k)
)

]

(78)

Substituting (77) and (78) in (26), we obtain:

J ≤ Jh and J ≤ Jl (79)

Hence, we haveJ ≤ Jmin, and consequently the second inequality in (55),i.e., ABCRB(c) ≤ BCRB(c).
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TABLE I

THE M INIMUM OF THE BCRB(α) FOR GSM CHANNEL [3]

P
P

P
P

P
P

P
P

PP

fdT

SNR(dB)
0 22 29 38 40

0.05 Nc = 2 Nc = 2 Nc = 2 Nc = 2

0.1 Nc = 3 Nc = 3 Nc = 3 Nc = 3

0.2 Nc = 3 Nc = 3 Nc = 3 Nc = 4

0.3 Nc = 3 Nc = 3 Nc = 4 Nc = 4

0.4 Nc = 3 Nc = 4 Nc = 4 Nc = 4
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Fig. 1. MMSE for a normalized channel withL = 6 paths andv = 144

0.001 0.05 0.1 0.2 0.3 0.4 0.5 
10

−20

10
−15

10
−10

10
−5

10
0

f
d
T

Av
er

ag
e 

Va
ria

nc
e 

of
 C

oe
ffi

ci
en

ts

 

 

1st  coeffcient

2nd  coeffcient

3rd coeffcient

Fig. 2. Average variances of the first three coefficients for a normalized channel withL = 6 paths andv = 144
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Fig. 3. BCRBs vs number of observations, for SNR= 10dB: (a) time-invariant withfdT = 0.001; (b) time-varying with

fdT = 0.1 andNc = 2
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Fig. 4. BCRBs vs SNR: (a) time-invariant withfdT = 0.001 (J is evaluated over104 OFDM symbols Monte Carlo trials);

(b) DA time-varying withfdT = 0.1 andNc = 2
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Fig. 5. BCRBs vs SNR in DA and NDA contexts: (a) time-invariant withfdT = 10−3 and two different observation lengths

K = 1 andK = 20; (b) time-varying withfdT = 0.4, Nc = 3 andK = 10
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Fig. 6. (a) BCRBs vs SNR forfdT = 0.5 andNc = 2 to 5 ; (b) BCRBs vsNc for fdT = 0.5 and SNR= 15dB, 25dB and

35dB
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Fig. 7. NBCRBs vsfdT for SNR= 20dB
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Fig. 8. thetanh2(·) function
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