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Analytical Analysis of Bayesian Cramer-Rao
Bound for Dynamical Rayleigh Channel

Complex Gains Estimation in OFDM System

Hussein Hijazi and Laurent Ros
GIPSA-lab, Department Image Signal, BP 46 - 38402 Saint MattHeres - FRANCE

Abstract

In this paper, we consider the Bayesian Cramer-Rao boundRBCor the dynamical estimation
of multi-path Rayleigh channel complex gains in data-ai@4) and non-data-aided (NDA) OFDM
systems. This bound is derived in an on-line and off-linenacie@s for time-invariant and time-varying
complex gains within one OFDM symbol, assuming the avditgtwf prior information. In NDA context,
whereas this true BCRB is hard to evaluate, we present ad:fosm expression of a BCRB,e., the
Asymptotic BCRB (ABCRB) or the Modified BCRB (MBCRB). We dises, based on the theoretical
and simulation results, the interest of using some past @inge observations in terms of Doppler spread

for the complex gains estimation.
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Index Terms
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. INTRODUCTION

In the case of wideband Orthogonal Frequency Division Mldkimg (OFDM) mobile communication

systems, dynamic channel estimation [10] [13] is a funddaidnnction, because the radio channel is
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frequency selective and time-varying [19]. Channel ediibmacan be summarized to estimate certain
physical propagation parameters, such as multi-path selag multi-path complex gains. Working with
the time-domain model, Tsatsanis and Giannakis propose]ia [Bear algorithm for estimating time-
varying FIR systems where each time-varying tap coefficienttmdescribed as a linear combination of
a finite number of basis functions. Moreover, Borah and Hasppse in [7] a method for estimating the
impulse response of a frequency-selective fading charsiefjua polynomial model of the time-varying
channel taps. Recently, the basis expansion model (BEM) ntesluced to approximate OFDM channel
variations. Firstly, for slow fading assumptions, [8] usgabéynomial basis function model for the channel
response in a time-frequency window, whereas [9] modeledctitrelated discrete-time fading channel
using a Karhunen-Loeve(KL) orthogonal expansion. For faseivarying channels, many existing works
resort to estimating the equivalent discrete-time chataps, which are modeled by the BEM [10] [11]. In
MC-CDMA system, Zemen and Mecklenbrauker propose in [12adomplexity channel estimator for
a time-variant frequency-selective channel using discpeblate spheroidal (DPS) sequences. However,
in Radio-Frequencies transmission, the delays are quaaiiami over several OFDM symbols but the
complex gains may change significantly, even within one OFDWitsyl. Exploiting the channel nature
and assuming the availability of delay information, a lotnoéthods estimate the time-variations of the
multi-path complex gains in OFDM [14] [2] [3] [4] [5] and CDMA1f] [16] systems.

In this context the question arises of the ultimate accuthay can be achieved in channel estimation
operations. Establishing bounds to such an accuracy is aariams goal since it provides benchmarks
for evaluating the performance of channel estimators. sSTamlapproach this problem are available from
the parameters estimation theory [20] [27] in the form of i@eaRao Bounds (CRBs), which give
fundamental lower limits to the variance of any parametémegor. A Modified CRB (MCRB), easier
to evaluate than the Standard CRB (SCRB), has been introdnd@d]i[22]. The MCRB proves useful
when, in addition to the parameter to be estimated, the vbdalata also depend on other unwanted
parameters. However, the problem of deriving CRBs suitdafrte-varying parameters has been addressed
throughout the Bayesian context [20] [23]. More recentig, authors propose in [24] a general framework
for deriving analytical expression of on-line Bayesian CE&ERB). In [25], the authors introduce a new
asymptotic bound for the mono-carrier phase estimatioblpm, namely the Asymptotic Bayesian CRB
(ABCRB), in NDA scenario. This bound is closer to the cladsB&RB than the Modified BCRB
(MBCRB) and is easier to evaluate than BCRB.

In this contribution we investigate the BCRB related to tlséineation of Rayleigh channel complex

gains with Jakes spectrum for OFDM systems. We distinguishctvannel variation cases: "time-varying”
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and "time-invariant” complex gains within one OFDM symbol. digit expressions of the BCRB and
its variants, MBCRB and ABCRB, are provided in NDA and DA oaxts and, in on-line and off-line
scenarios, assuming the availability of prior information

This paper is organized as follows: Section |l sets the systememwhereas Section Il recalls the
general BCRB and the modified MBCRB. Section IV derives the BCiRB MBCRB and the ABCRB
for "time-varying” and "time-invariant” multi-path compk gains estimation. Section V illustrates and
interpretes different results. Finally, our conclusions presented in Section VI.

The notations adopted are as follows: Upper (lower) bold fatters denote matrices (column vectors).
[X], denotes thé:ith element of the vectox, and [X]j ,,, denotes thgk, m|th element of the matrix.
We will use the matlab notatioX [k, :k.,m.:m.] t0 extract a submatrix withir from row k; to row ko
and from columnm, to columnms. | 5 is a N x N identity matrix andOy is a N x N matrix of zeros.
diag{x} is a diagonal matrix withx on its main diagonal, dig} is a vector whose elements are the
elements of the main diagonal ¥fand blkdiag X, Y} is a block diagonal matrix with the matricésand
Y on its main diagonal. The superscrits” and (-) stand respectively for transpose and Hermitian
operators.| - |, and TK-) are respectively the determinant and trace operation§&.),Ren(-) and (-)*
are respectively the real part, imaginary part and congugéta complex number or matrix.,E[-] is
the expectation ovet andy, Jy(-) is the zeroth-order Bessel function of the first kind apd, is the
Kronecker symbolVy and AJ represent the first and the second-order partial derivatpesatori.c.,

Vy = [a%, %}T and A} = V; Vi

II. OFDM SYsSTEM AND CHANNEL MODELS
A. OFDM System Model

Consider an OFDM system with N sub-carriers, and a cyclic priefirgth N,. The duration of an
OFDM symbol isT' = v}, whereT is the sampling time and = N+Ny. LetX(,) = [z(m)[— 5], 2 [~ 5+
1],...,95(”)[% — 1]]T be thenth transmitted OFDM symbol, whergr,,[b]} are normalized symbols
(z‘.e.,E[a:(n) (0] () [b]*] = 1). After transmission over a multi-path Rayleigh channkg tth received

OFDM SymbOIy(n) = [y(n) [_%]a y(n)[_% + ”v ) y(n)[% - 1]]T is given by [3] [5]:

Yoy = Hm) X@m) + W 1)
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wherew(,) = [wim = Y], wim [~ & + 1], ..., wi [¥ — 1]]7 is a white complex Gaussian noise vector

with covariance matrix 2| 5 and H(n) is @ N x N channel matrix with elements given by:

1 n [ ion(mt 1) N N
Mol = 3 3 [0 3 ol (aer®e ™ @
=1 q=0

where L is the total number of propagation paths, is the [th complex gain of variancegl and

71 x T is thelth delay ¢; is not necessarily an integer, but < INy). The L individual elements of
{al”) (¢Ts) = ay(qTs+nT)} are uncorrellated with respect to each other. They are wedeesstationary
(WSS), narrow-band complex Gaussian processes, with thelleatdakes’ power spectrum of maximum
Doppler frequencyfy, i.e., E[oy(q1Ts) o) (¢2T5)] = 02, Jo (27 faTs(q1 — g2)) [17]. The average energy of

the channel is normalized to oneg., 3, 02 = 1.

B. Complex Gain Model

Since the number of samples to estimateis greater than the number of observation equatigng is
not efficient to estimate the multi-path complex gains tiraeiation, using directly the observation model
in (1). Therefore, we represent the time-variation of the jglem gains by a more compact model. In the
literature, the basis expansion model (BEM) was introducedpproximate OFDM channel variations.
The BEM methods [10] are Karhunen-Loeve BEM (KL-BEM), prolate splial BEM (PS-BEM),
complex-exponential BEM (CE-BEM) and polynomial BEM (P-BEM). i8], a piece-wise linear method
is used to approximate the equivalent discrete-time cHasaps. In [4] [3], the authors show that the
time-variation of Rayleigh channel complex gain, withdia OFDM symbols, can be approximated by a
polynomial model ofN, coefficients, choosen according to the Doppler sprgdd

In this section, we show that, whatevgyT < 0.5, each Rayleigh channel complex gaixf”) =
[l (=N, Ty), ... al™ (N = 1)T;)]" can be modeled as a polynomial time-variation\of < 5 coeffi-
cients §.e., a (N, — 1) degree polynomial), within one OFDM symbol.

The optimal polynomiah(”) which is least-squares fitted (linear and polynomial regjogg [18] to

pol,’
o™, and its N, coefficientsc!” = [cg’fl), ...,cg\’;c)J]T are given by:

aly = Q¢ = sa”
(n) _ ™1 5g™ 3
¢ (QQ") Qg 3)

whereQ is a N, x v matrix of element$Qls ,, = (m — N, —1)*~1 andS = QT (QQT)_1 Qisavxv

matrix. It provides the MMSE approximation for all polynorsiacontaining N, coefficients, given by:

MMSE!" = %W(MMSEP> (4)
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where

MMSE 7) = E[gl”)gl(”"’)H} — (1, —S)RE (1, — 8" (5)

1

H
with £ = o™ — aé’éi is the model error an®") — E [al(")afn_p) } is thew x v correlation matrix

of al(") with elements given by:
RDm = 020 (27r faTs(k—m + pv)) 6)

Fig. 1 gives the MMSE in terms of;T for different value ofN.. As can be seen, fof,7 < 0.5 and
N, = 5, we have MMSE< 4 - 10~7. This proves that, for high values g§T, al(") can be represented
by a polynomial model ofN. < 5 coefficients. Moreover, forf,77 < 0.001 and N. = 1, we have
MMSE < 4 -10~". This means that, for low values g¢f7, the complex gains are time-invariant within
one OFDM symbol.

cl(”) are correlated complex Gaussian variables with zero-maadscorrelation matrix given by:

R = E™ ¢ = (QQ7) ' QRYQT (QQ") (7)

Fig. 2 shows the average (ovér= 6 paths) variance of the first three coefficients of tNg = 5
coefficients. We notice that the variance decreases verklguit terms of number of coefficients. This
means that the last coefficients are very small. Hence, it g @#ficult to find an estimator that can
give a good estimation of the small coefficients in presencacide. In the sequel, we will study the
performance of the coefficients estimator in terms\gfand f,; 7.

Under this polynomial modeling, the observation model ip fdr the nth OFDM symbol can be

rewritten as:

Yoy = Kw) Cn) + €m) + W) (8)

T T
wherec(,) = SR

and Zl(”) = [Mydiag{X(,) }i, ..., My, diag{X,) }fi] is a N x N. matrix, wheref; is theith column of the

|"is a LN, x 1 vector, IC(,) = %[Zﬁ”),...,Z(L”)] is a N x LN, matrix

N x L Fourier matrixF andM, is a N x N matrix given by:

m—Fk

N—-1
[Flig = e 2705707 0 M)y, = 3 ¢ 12T (9)
q=0

The second component in (8,), represents the polynomial approximation error in the plzg®n

model which is given by:

€n) = HeoXm) (10)
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whereHg . is a N x N matrix with elements given by:

N-1

L
1 _ m— lii
[Hﬁ(n)]k,m e N Z |:€ ]27T 3 TL gl(’n
=1 q=0

(11)

It sould be noted that if the complex gains are time-invangithin one OFDM symbol{e., al(”)(—NgTs) =
.= al(”)((N - 1Ty) = ¢ z)) then, H, is a diagonal matrixN. = 1, K(,) = diag{x(,)}F and
RY) = o2, Jo(2r f4Tp).

1. CRAMER-RAO BOUNDS (CRBS)

In this section, we present the family of Cramer-Rao Boul@REs). The CRBs provide a lower bound
on the Mean Square Error (MSE) achievable by any unbiased estiriiég give the general expression of
the Bayesian Cramer-Rao Bound (BCRB) and its Modified Ver@WBCRB). The BCRB is particularly
suited for problems where the parameter to be estimatedsisnaexl to be random with availablity of
the a priori information. Le€(y) denotes an unbiased estimatoroofising the set of measurements
The estimation ot can be considered following two main scenarios off-line andine. In the off-line
scenario, the receiver waits until the whole observati@mg,i.e.,y = [y(l)T,...,y(K)T}T, has been
received in order to estimate= [C(I)T7 ...,c(K)T]T. In the on-line scenario, the receiver estimatgs
based on the current and previous observations orlyy = [y(1,”, ..., ¥(,)"]". In the sequel, the BCRB
will be considered within the context of both the off-linedathe on-line scenarios. The BCRB has been

proposed in [20] such that:
Eyc| (&y) — ) (&(y) —¢)”| > BCRB(c) (12)
The BCRE is the inverse of the Bayesian Information Matrix (BIM), whican be written as:
B = E[Fi(c)] +E[— Af In(p(c))] (13)
wherep(c) is the prior distribution andri(c) is the Fisher Information Matrix (FIM) defined as:
Fi(e) = Eye[ - ACIn(p(ylo))] (14)

wherep(y|c) is the conditional probability density function gfgiven c. Unfortunately, in most cases of
NDA context, the computation dfi(c) is generally quite tedious because fi{g|c) cannot be carried

out analytically due to the nuisance parametets [x(l)T, ...,X(K)T]T, which are OFDM symbols in our

1We recall that, for a deterministic parameter, Standard Cramer-RaodB@CRB) would be directly the inverse of the Fisher

Information Matrix (FIM).
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case. In order to circumvent this problem, a Modified BCRB (MRE)} has been proposed in [23]. This

MBCRB is the inverse of the following information matrix:
C = E[G(c)] +Ec[— AL in(p(c))] (15)

whereG(c) is the modified FIM defined as:

G(C) = EXEy\x,c[ - Ag ln(p(y\x7 C))} (16)
In our objective, we are interested in the estimation of #relom complex gains = [a1)7, ..., o) ']7,
T T
wherea,,) = {aY‘) ,...,a(L”) ] . « is related toc as:

a = 9c+¢ 17)
where @ = blkdiag{Q”,...,Q"} is a KLv x KLN. matrix and¢ = | a),...,ng)]T with &,y =

T T
[51”) s ees (L”) } . Hence the estimation af is given by:& = QC. By neglecting the cross-covariance

terms between the errorsy, — & and§, we can write:

E[(d — apol) (@& — apol) | + E[e€!] (18)

where apo = QC. So, using the transformation of parameters properties aefmé27], we obtain the

BCRB for the estimation o& from the BCRB forc as:
BCRB(a) = (Vcopol)BCRB(C)(Veaysy) + E[€£"]
= Q BCRB(c) 97 + MMSE (19)
where theK Lv x K Lv matrix MMSE is given by:
MMSE ;1) iy = MMSE ) for ie1,1) pprefo,r—1) (20)

with i(l,p) =1+ (I — 1)v+pLv : lv + pLv and MMSEl(p) is the correlation matrix of the model error
&™) defined in (5). Notice that there are zero matrices betweetblthek matriceslVIMSEl(p) since the

L complex gains are uncorrellated. Far = L = 2, MMSE is given by:

MMSE {*) 0, MMSE (™Y 0,
0, MMSE 0, MMSE { "
MMSE = ) .
MMSE ! 0, MMSE {* 0,
0, MMSE ! 0, MMSE
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The computation of the off-line BCRB [25] associated to thénestion of (., is given by:
BCRB(c(n))of ftine = Tr(BCRB(a)[i(nM(n)]) 1)
where the sequence of indicé8:) = 1+ (n — 1)Lv : nLv with n € [1, K]. The on-line BCRB [25]
associated to the observation vecyor [y )7, ...,y "]" is given by:
BCRB((x))ontine = TF(BCRB(G)[i(K)7¢(K)]) (22)

The definitions in (19), (21) and (22) will stand for the closedti of BCRB,i.c., MBCRB and ABCRB.

IV. BCRB FORPOLYNOMIAL COEFFICIENTSESTIMATION

In this section, we present a closed-form expression for &BQCelated to the estimation of the
polynomial coefficientsc,,) of the multi-path complex gains in NDA OFDM systems. This bousid
derived for time-varying and time-invariant complex gaimshin one OFDM symbol. In DA context, we

deduce the computation of the true BCRB from the computatiothe MBCRB in NDA.

A. BCRB for Time-varying Complex Gains

1) Non-Data-Aided (NDA) Context:

Computation of E [Fi(c)]: The observation model is presented in (8). Using the whitenéshe noise

w = [wy”, ..., w1 and the independence of the transmitted OFDM symkolge then obtain that:

K
AL In(p(ylo)) = D AL In(p(Yelcm)) (23)
n=1

It is important to note that each term of the summation (23 ISLN. x K LN, block diagonal matrix
with only one nonzerd N, x LN, block matrix, namely:

C(n)

Ag ln(p(y(n)|C(n)))[l/(n)7ll(n)} = AC(n) ln(p(y(n)‘C(n))) (24)

wherei’(n) = 1+ (n — 1)LN, : nLN, with n € [1, K]. As a direct consequenca\¢ in(p(y|c)) is a
block diagonal matrix with theith diagonal block given by (24). Moreover, because of theutarity
of the observation noise, the expectation of (24) with respey,,, andc,, does not depend og,).

We then obtain:
Ec[Fi(c)] = blkdiag{J,J,...,J} (25)
wherelJ is a LN, x LN, matrix defined as:
J = Ey[-Ad n(p(YmylCmny))] (26)
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The log-likelihood function in (26) can be expanded as:

n(p(YmylCmy)) = ln(ZP(Y(n)\X(n),C(n))p(x(n))) (27)

X(n)
In order to simplify the computation gf(y,, [X(.), C(n)), we assume that the vectgy, for givenc,,
remains complex Gaussian vector with zero mean. Hence, eb®ny,,, for given x,) andc, is a
complex Gaussian vector with mean vectoy,) = KC,,)C(,,y and covariance matrif2 = R + a2y,

whereR is the N x N correlation matrix ofe(,,) given by (see Appendix A):

B
R = Eeon [e(n)eg)} = & A diag{diag{T'} } A" (28)

where = Zlel ail is the total channel energ\ andT" are two N x N matrices defined by:
Al = e/l (29)

1 (0)
r = TMMSEl [Ng+1:v,Ny+1:0] (30)

Thus, p(Y(,)|X(n): C(n)) is defined as:

1 o o Heo 1 7
PY ()X (n)> Cm)) = T (e =men )70 (¥ =men) (31)

Since each element of the vectwr,,) depends on all components xf,) then, the computation of is

a demanding task. Hence, we resort to compute the MBCRBowilf the same reasoning as before,

we have:
E.[G(c)] = blkdiag{Jy,Im, ... In} (32)
whereld,, is a LN, x LN, matrix defined as:
Im = Eyxe[ — AL (Y X(n): Cn))] (33)

By taking the second derivative of the natural logarithim) (of (31) with respect tac(,), we simply

obtain that:
C(n) _ H -1
Ace) (Y )Xy €)=~y K (34)
Consequently, we obtain that (see Appendix B):

H — 1 H
3y = Ex[ic(n)n 17c(n)} = HFIMF (35)
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where M and F are aNN. x NN, and aNN. x LN, matrices, respectively, defined as:

Mg - My,

M = : : (36)
Mpy.1 -+ Mnp.nN.

Fo=|F - 7 (37)

where M, o andF; are aN x N and aN N, x N, matrices, respectively, defined as:
My = diag{diag{MIQ My} } (38)

F; = blkdiag{f;,f;,....,f;} (39)

Computation of Ec[ — AS In(p(c))]: ¢ is a complex Gaussian vector with zero mean and covariance

matrix R. of size KLN, x K LN, defined as:
Repirp)irpy) = RY ™) for te1,r) patelo, k1) (40)

wherei(I,p) = 1 + (I — 1)N, + pLN, : IN, + pLN, andRY" is the correlation matrix o&,(™ defined
in (7). Thus, the probability density functigr(c) is defined as:

1 —cHR:'c
c) = c 41

Taking the second derivative of the natural logarithim) (of (41) with respect toc and making the

expectation ovec, we simply obtain that:
B[~ ASIn(p()] = Rg! (42)
The MBCRB for the estimation of in NDA context is given by:
MBCRB (c) = (blkdiag{Jm, Iy ees I} + Rgl> o (43)

Notice that the MBCRB is usually looser than the BCRB. As if)(1the MBCRB for the estimation of

« is given by:

MBCRB(a) = Q MBCRB(c) QT + MMSE (44)

December 12, 2008 DRAFT



hal-00368687, version 1 - 17 Mar 2009

IEEE TRANSACTIONS ON SIGNAL PROCESSING 11

2) Data-Aided (DA) Context:

In data-aided (DA) context, the transmitted data symixpls are known at the receiver and then no
averaging over the data is required. Hence, the madtisxcomputed likel,,,, but without averaging over
the data symbols,,,), and consequently it depends on tht# transmitted OFDM symbol. Thudy,, is
given by:

1
H -1 H

whereQ,,) = R, + a1y with R(n) is given by (see Appendix A):

Ry = Eeo [€metn| = %A(I‘oz(n))AH (46)

wheree is the element-by-element product operator &g, is a N x N matrix given by:
Zm = Adiag(x,)}F D F™diag{x(},}A (47)

with D = diag{c2 ,...,02, }. The matrixM,,, is computed likeM but by replacing in equation (38)

by Q) and, the matrix* ,,, is computed likeF but by replacing; in equation (39) by dia,) }f;.
The BCRB for the estimation of in DA context is given by:

-1
BCRB(c) = (blkdiag{I), Iz, )} +Re) (48)

and consequently the BCRB for the estimationcofas (19). It should be noted that BCRB for the

estimation ofa in DA context depends on the transmitted data sequ&nce

B. BCRB for Time-invariant Complex Gains

In this paragraph, we derive an analytical expression ofBG&RB and MBCRB associated to the
estimation of time-invariant Rayleigh complex gains witline OFDM symbol in NDA context. In such
case, we havelC.,, = diag{X,}F, N. = 1, R¥ = o2 Jy(2nf4Tp), BCRB(a) = BCRB(c) and
Q = o2l . Hence, substituting this result in (35), we obtdip = %FHF, and consequently MBCRB
as (45).

In this case, each element of the veatay,) = diag{x,, }Fc.,,) depends on only one elementxf,
then, the computation af is possible. It should be noted that, in NDA context , the BCiRpends on
the modulation scheme of the OFDM symbols. Therefore, in theelewe evaluatd for 4QAM OFDM

symbols. Hence, using the Gaussian nature of the noise anegihiprobability of the normalized QAM
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symbols, we find that (see Appendix C):

N
— 1 =2 (Y& Y t+el FIF V2
ln(p(y(n)|c(n))) = In|porae ” (Vi)Y Fe{iy F7Fee) U osh( n(k:)))cosh(gﬂm(an(k)))}
: (49)
wherea, (k) = [y(n)],’;gfc(n) andg! is the kth row of the matrixF. The result of the second derivative

of (49) with respect ta&,, is given by (see Appendix C):
A In(p(Y ) C()) = — 7F1F
V2 %
2 2
+Z [20 Yk GRGE ( ~ tanh? (L Re(an(k)) ) — tanh <o2'm(“"("7))>ﬂ

In the general case, the expectation of (50) with respeyg,;pc(n) does not have any simple analytical

(50)

solution. Hence, in practice, we have to resort to either enigal integration methods or some approxi-
mations. In the following, we present both the high-SNR aredithiv-SNR approximations of the BCRB,
as defined in [25].

High-SNR BCRB Asymptote: Now, we investigate the BCRB behavior at high SNR. From the difini
of the BIM (13), only the first termi(e., Ec[Fi(c)]) depends on the SNR, which is fully characterized

by J. Hence, we focus on the behavior &f At high SNR .e., 0? — 0), the tanh-function in (50) can
be approximated asanh<§x> ~ sgn(x). Hence, we obtain the high-SNR asymptoteJpfvhich is:

1
b = —F"F (51)

g
This implies thatl, = J,,,, hence the high-SNR asymptote of the BCRB is equal to the MBCRIBs

corroborates the result derived by Moeneclaey [26] in the-Bayesian case for a scalar parameter.

Low-SNR BCRB Asymptote: Now, we consider, the low-SNR asymptote of the BCRB in the NDA

QAM context. Following the same reasoning as before, at loR &N., 02 — +00), we havetanh(z) ~

2z arroundz = 0. Hence, we obtain:

N
1 _ N
Agﬁ’i; ln( (y(n)|c(n))) ~ _#FHF + Z [Oﬁ[y(n)]k[y(n)]kgkgz (04 - an(k)an(k))] (52)
k=1
Substituting (52) in (26), we obtain the low-SNR asymptotel oivhich is (see Appendix D):

2 3
3 = (ﬁ+%+%)FHF (53)

0'
The Asymptotic BCRB (ABCRB) defined in [25] leads to a lower bdwn the MSE. This ABCRB
is given by:
-1
ABCRB(c) = (blkdiag{Jmm, s Jmin} Rgl) (54)
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whereJ, i, = min(vy, v,)FEF, v = % + %,i; + %8 and vp = # In Appendix E, we show that:

MBCRB (c) < ABCRB(c) < BCRB(c) (55)

This corroborates the result derived in [25] for a mono-earpghase estimation problem.

Notice that the termcgl)ﬁ—llc(n) = %FHF does not depend on the transmitted data sequgnce
Hence, the FIM defined in (14) and the modified FIM defined in (16) apeaks. So, in the case of
"time-invariant”, the true BCRB in data-aided (DA) contdstequal to the MBCRB in non-data-aided
(NDA) context.

V. DISCUSSION

In this section, we bring to the fore the behavior of the pryasibounds, namely the off-line and the
on-line BCRBs (DA context), MBCRBs and ABCRBs (NDA conteky the complex gains estimation.
A normalized 4QAM OFDM system)N = 128 subcarriers,N, = % subcarriers is used (note that
SNR= 2% and (SNR)dB = (ﬁ—z)dB + 3dB). The normalized channel model is Rayleigh with= 6
paths of parameters given in [2] [3] [5]. We consider two sg@s: "time-invariant” with N, = 1 and
f4T = 1073, and "time-varying” with2 < N. < 5 and0.05 < f;7 < 0.5. we remind that, in time-
invariant scenario, the BCRB in DA context and the MBCRB in AlDontext are equals . It sould be
noted that, in case of time-varying scenario and DA contie,BCRBs are computed with a transmitted
data sequence generated by a Maximal-Length Sequences (ML&pg@1{28] of 13 shift registers with
a feedback polynomigR0033]g (octal representation).

Fig. 3 superimposes versus time index, the on-line and thitneffABCRBs (NDA and time-invariant,
faT = 0.001) or BCRBs (DA and time-varyingf;7" = 0.1 and N, = 2) for different block-observation
lengths K at SNR= 104 B. In the off-line context, we can see that the best complergyastimation is
achieved at the midblock, whereas the estimates are likebetpoorer at the block border. This stems
from the fact that in the center position of the polynomiaéffigients vectorc we have more adjacent
(past or future) and strongly correlated variables thahetorder of the vectar. Concerning the online
bound, at the beginning when the number of observation®eases, the estimator takes into account
more and more information and the estimation is improved;ldbund thus decreases and converges to
an asymptote. The estimation performance is then limitechbyobservation noise independently of the
number of observations taken into account. However, inrolleéeach the asymptote, it is sufficient to
use 10 past OFDM symbols for the slow channgll{ = 0.001) whereas 3 past OFDM symbols for the

rapid channel ;7 = 0.1).
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We now analyse the bound behavior versus the SNR over a blodk ef 20 and K = 1. Fig. 4
superimposes the BCRBs evaluated oi&t OFDM symbols Monte Carlo trials and the ABCRBs for
NDA context and time-invariant scenari¢;{" = 0.001) in (a) and, the BCRBs for DA context and time-
varying scenario {;7" = 0.1) in (b). We can verify that BCRB < ABCRB < BCRB as proved in
Appendix E. At low SNR, the on-line boundi (= K = 20) and the off-line bound+( = 10) coincide
because the observation noise masks the a priori dynamymgmial coefficients evolution. However,
as SNR increases, the off-line bound decreases more thanntheeobound because the information
provided by each observation,, is preponderant over the a priori knowledgecofAt high SNR, the
MBCRB and the ABCRB are very close, as predicted by our th@aleanalysis.

We now want to emphasize the benefit of using past symbols ie-itiwariant scenario. For this, we
make a zoom on Fig. 4 (a) as shown in Fig. 5 (a) and we add as bericiineaBCRBs for a block-
observation lengtlk’ = 1 (as in Fig. 4 (b)). This benchmark corresponds to the case vtherestimator
uses only the current symbol instead of the current and gagbals. We can obviously measure the great
potential gain obtained by taking into account the pastrinetion (X = 20 versusK = 1). However,
we can also measure, from Fig. 5 (a), the potential perform@amprovement for Data Aided (MBCRB
= BCRB) versus Non Data Aided (BRCB) contexts in time-ingatiscenario. In time-varying scenario
and NDA context, we can not evaluate the true BCRB even witmtglcCarlo trials. So, we can only
compare a lower closed-form of the BCRB in NDA context, the GHB, to the true BCRB in DA
context as shown in Fig. 5 (b). We can even so notice a potgrgirmance improvement for DA with
respect to NDA in time-varying scenario.

We now study the bound behavior versMisand SNR over a block ok = 10, in case of time-varying.
Fig. 6 gives the BCRBs foryT = 0.5 in terms of SNR in (a) andV, in (b). We observe in (a) that,
whatever SNR, the bound is not always decreasing in ternié.@nd at high SNR, the bound converges
to the MMSE (the model error). As we see in (b), for SNRI5dB, 25dB and 35dB, the minimum of
the bound is obtained av. = 3, 4 and 5 polynomial coefficients, respectively. This is dueht® last
coefficients which will be poorly estimated in presence ofseoindeed, they are negligible compared to
the noise level as we have seen in Fig. 2. Hence, in order todge®d estimation of the complex gains
time-variation, we have to choog€. according to SNR angl; 7. The Table | shows how to selecié.,
for realistic values of SNR and different values fHfT", such that the bound is minimal. For example

if f4T = 0.3, we chooseN. = 3 and 4 for SNRe [0;29] and SNRe [29;40], respectively. We can

December 12, 2008 DRAFT



hal-00368687, version 1 - 17 Mar 2009

IEEE TRANSACTIONS ON SIGNAL PROCESSING 15

introduce a New BCRB (NBCRB) which is independant/éf, defined as:
NBCRB(a) = n}vgn(BCRB(a)) (56)

Wheren]zvicn(-) is the minimum ovetV,.. This definition in (56) will stand for the ABCRB and the MBCRB
in case of NDA.

We now analyse the bound behavior vergy$. Fig. 7 gives the NBCRB in DA context (time-invariant
and time-varying) versug,T for SNR = 20dB and K = 10. We notice that the NBCRB increases in
terms of f;T. This is because the correlation between variables becommwwyer whenf;T' decreases.

So, the estimation gain for slow channel variations is mogaicant.

VI. CONCLUSION

In this contibution, we have derived an analytical exp@ssf a BCRB for the estimation of time-
varying and time-invariant Rayleigh channel complex gaiithin one OFDM symbol. In case of time-
varying, we have introduced a New BCRB (NBCRB) and we havevshihat a good estimation of the
complex gains time variation can be obtained by choosingtimeber of polynomial coefficients according
to the noise level and the Doppler spread. These bounds afid ugen analyzing the performance of
complex gains estimators in DA and NDA contexts and in oe-iamd off-line scenarios. Moreover, we
have shown the benefit of using the past OFDM symbols in charstiehaion process, whereas most

methods use only the current symbol.

APPENDIXA

EVALUATION OF THE CORRELATION MATRIX R

In this Appendix, we detail the calculus to obtain the expi@s of the correlation matrifR of the
polynomial approximation error in the observation moagl) = He ,, X(,,), in both context data-aided
(DA) and non-data-aided (NDA). Th& x N correlation matrixR is defined by:

H H H
R = Elemeln] = E[He, xwx(i) HE., ©D

Hence, the elements dR are given by (57), shown at the top of the next page. since lgments
He., lk,m and[X(,]x are uncorrelated. Using (11), the first expectation in (57) & calculated as (58),
since the L different model errofs[¢Ts]} are uncorrelated wherE is defined by (30).

In NDA context, we have %{x(n)]ul [X(m))ua | = Ousue SiNCE the unknown data symbols are uncorrelated

and normalized, wheré, ,,, is the Kronecker symbol. Hence, by using (58), the equatiat) becomes
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N N N N
Rtm = E[z >~ He T Hecn lins X s X ﬂ:] = 3 S E[ e b Hecn Tins | B[ e i 2

ur=1uz=1 up=1us=1

(57)
1 L N—-1N-1 .
E|:[H§(n)]k7u1[Hﬁ(n)]m,u2:| = mzejbr N [Z Z E{fl(n)(qlTs)gl(n) (QQTS):|€]27T N T J2m =y ‘12‘|
=1 q1=0g2=0
1 L o N—-1N-1 e B
- ﬁzaileﬂw R [Z [F]qﬁlm‘f‘leﬂﬂ e q2] (58)
=1 q1=0q2=0
6 N—-1N-1 . N ﬂN 1 »
maqgy—kaqy o 41—42
[Rlem (NDA) =~ Y Mlytrgme™ 8 Y e = N L) gs1,g416727 % 9 (59)
q1=0 gq2=0 u=1 q:O
1 N—-1N-1 . L N N
o maz—kay B )
[Rmkm (DA) = N2 Z Z g 1,417 F Z Z Z Uil[x(n)]ul[x(n)]* eI a2 St ua
q1=0q2=0 =1 u1=1us=1
1 = -
= N2 Z Z q1+1, qz+1[Z(n)]lI1+l qz+1e N (60)
q1=0g2=0

as (59) where3 = Zle ail, and consequently we obtain the correlation mafixin NDA context as
defined by (28).

In DA context, the data symbols are known at the receiver tieeaveraging over the data is required.
Hence, by using (58), the equation (57) becomes as (60) whermatrix Z,,) is defined by (47), and

consequently we obtain the correlation matR,,) in DA context as defined by (46).

APPENDIX B

EVALUATION OF J,,

In this Appendix, we detail the calculus to obtain the expi@s of J,,, defined in (35). Using the

definition of IC(,,) in section Il, we have:

Air - Al
1
H -1

A = K(n)ﬂ K(n) = N2 (62)

Ari -+ ArL

H

whereA, ; = Zl(") Q*lzl(,") is a N. x N, matrix with elements given by:

(A, = fi'diagix(h M QM diag{x, }r (63)
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Taking the expectation of (63) ovetr we obtain:
Ex [[Alvl’]d,d’} = Mgty (64)

since the symbols are normalized an uncorrelated with oédpeeach other. Consequently, we obtain

that:
Ex [Al,l/} =FI Mg Fr (65)
and finally we obtain the expression &f, defined in (35).

APPENDIXC

DERIVATION OF EXPRESSION(49) AND (50)

Substituting (31) in (27), we obtain:

1 p(X n ) 2 H
ln(p(y(n)’C(n))) = — 52 (yﬁ)y(n) + mffl)m(n)) + ln( (n) 2602 Re(y(n)m(">)> (66)

|7r02|N]X( )

since the normalized 4QAM- symbols are equiprobable,(p(x,)) = 4%). However, in this casen,,) =

diag{X( }Fc,,) then, y M) = Zan [X(n)]& Wherea,, (k) is defined in section IV part B. Hence,

we obtain:
N
Ze(,%Re(yfi)mw) — H ( Z esze(an(k)[X<n>]k)) (67)
X(n) E=1"\[X(m)]x
Since Xk = 7(jzl + j) (i.e., 4QAM-symbol) then, we obtain:
Z ev%Re(a"(k)[X(")]") = 4cosh(§Re(an(k)))cosh<glm(an(k))> (68)
Xl w

Inserting this result into (66), we obtain the expressiofd®). Taking the second derivative of (49) with

respect toc,,) and using these results below:

1 .
Ve, Re(an(k)) = §[V(n)]kgk
1 .
VC(mIm(an(k)) = Z[y(n)]kgk (69)

we obtain finally the expression in (50).
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APPENDIXD
EVALUATION OF J;

In this Appendix, we detail the calculus to obtain the exgpi@s of J;, defined in (53). Inserting the

definition of a,, (k) into (52) and substituting the result in (26), we obtain:

= FiF - *ngEc e W Yol -+ 829 G Eo ol 01 (Yo by 1))
(70)
Using thatly,,|x = [x(n)]kgfc(n) + [W(n)]x, the normalized symbols and the noise are independant and,

these results below:

Bl [[X(n)]i] = E[ww]k[[W(n)]i} = 0
Epwen) [[wm)]i[w(n)]z"’} = 20" (71)
we obtain:
Ey\C[[y(n)]k[y(n)];c} = gfc(n>0ﬁ)gz+02
Ey|c[([Y(n)]k[Y(n)]12)2} = 2U4+4029£C(n) (n)gk+gk C(n)C( )gkgk C(n)c( el (72)

Hence,J; becomes:

N
+25 ) ViEe [c(n)cffl)vkc(n)c@)] \ (73)

=1
N
1 H H H
+5> ViEe [C<n>°<n>VkC<n> Cim) V kCn) C(nﬂ Vi
whereV,, = gig! is aL x L matrix. LetT; = C(n)Cﬁ)VkC(n)Cﬁ) andTy = c(n)cgl)vkc(n)cﬁ)vkc(n)cﬁ)
then, the elements of these matrices are given by:

L L
T = D22 Vilawlewli[Cmly, (6wl [em]), (74)

11:1 l2:1

[T2]l,l’ = Z Z Z Z [Vk]n,m [Vk} 13,14 [C(n)]z[c(n)]z2 [C(n)]z4 [C(n)}; [C(n)]z [C(n)];3

l1:1 l2:1 13:1 l4:1

Using thatD = E; [c(n)cf{)

and sixth order moments for complex Gaussian variables, hairo

] = diag{c3,,...,02, }, Ec..1. [[ o } = 0 and the definitions of fourth

E¢[T:] = DVD+ Tr(V4D)D

2
Ec[Ts] = 2DV,DV;D + 2Tr(V;D)DV,D + Tr(V;DV,D)D + (Tr(VkD)) D (75)
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Using thatg/ Dgj, = Tr(V,D) = SE o2 =3, Tr(V,DV,D) = * and DV, DV,D = sDV,,D and,

inserting these results into (73), we obtain finally the egpi@n ofJ; defined in (53).

APPENDIXE

PROOF OF THE INEQUALITY (55)

From the definition of),,;,, we havel,,;, < J,, = J, and then we have the first inequality in (55),
i.e., MBCRB (c) < ABCRB(c). To prove the second inequality in (55), we have to show dh&tJ,,,;,.
From Fig. 8, we see that thenh?(x) function is tangent to the curvg= z? atz = 0 and hasy = 1

as horizontal asymptote. Hence, we can write, for every 0, these two properties below:
tanh*(z) < 1 and tanh®(z) < z* (76)

Using these two properties, we obtain from (50) that:

(n)

1
AL In(p(YimylCmy)) = ——QFHF (77)

AL Py S) > FHF+Z[ Yol nﬂ;gzgz(&an(k)amk))} (78)
Substituting (77) and (78) in (26), we obtain:
J < J, and J < J (79)

Hence, we havd < J,,,;,, and consequently the second inequality in (5%), ABCRB(c) < BCRB(c).
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THE MINIMUM OF THE BCRB(a) FORGSM CHANNEL [3]

TABLE |

SNR(dB) 0 22 29 38 4(
faT
0.05 Ne=2 | No=2 | N.=2 | No.=2
0.1 Ne=3| No=3 | No=3 | No.=3
0.2 Ne=3| No=3 | No=3 | Ne=4
0.3 Ne=3| No=3 | No=4 | No.=4
0.4 Ne=3| No=4 | No=4 | No.=4
10°

-20

—N_ =5
c

100.001 0.05 0.1

0.2

0.3
T

Fig. 1. MMSE for a normalized channel with = 6 paths andy = 144

Fig. 2. Average variances of the first three coefficients for a noredlchannel withZ, = 6 paths andv = 144
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=@= On-line ABCRB
— Off—line ABCRB K=5

= Off-line ABCRB K=10
m— Off—line ABCRB K=15
o = Off-line ABCRB K=20
. Off-line ABCRB K=30

10 15 20 25 30
Observation Block Length K

(@)

10

=©= On-line BCRB

= Off-line BCRB K=3

m— Off—line BCRB K=10

@ = Off-line BCRB K=15
s i i i = Off-line BCRB K=20

Off-line BCRB K=30

10 15 20 25 30
Observation Block Length K

(b)

Fig. 3. BCRBs vs number of observations, for SNR10dB: (a) time-invariant withf;7" = 0.001; (b) time-varying with
faT =0.1 andN,. = 2
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MSE

—10

—+— On-line MBCRB K=20

—©— On-line ABCRB K=20

—m— Off—line ABCRB at n=10 for K=20

- ©- On-line BCRB K=20 (Monte Carlo)

- @- Off-line BCRB at n=10 for K=20 (Monte Carlo)

—20 —-10 o

10 20 30 40 50 60 70

MSE

=©-On-line BCRB K=20
=i—- Off—line BCRB at n=10 for K=20
=© BCRB K=1

10 20 30 40

23

Fig. 4. BCRBs vs SNR: (a) time-invariant witfy7" = 0.001 (J is evaluated ovei0* OFDM symbols Monte Carlo trials);

(b) DA time-varying with f47' = 0.1 and N, = 2
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10°
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K =1 and K = 20; (b) time-varying withf;7 = 0.4, N. =3 and K = 10
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