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Abstract—Marked Timed Weighted Event Graphs (in short
MTWEG), which are a sub-class of Petri nets, are widely usedof
modelling practical industrial problems. In this paper, a central
practical problem for the design of streaming (e.g. multimelia
or network packet processing) applications is modelled usg a
MTWEG. The optimization problem tackled here consists then
on finding an initial marking minimizing the overall number o f
tokens for a minimum given throughput.

If the firings of the transitions are periodic, this problem is NP-
complete and can be modelled using an Integer Linear Program
A general lower bound on the minimum overall capacity is
then proved. If the initial MTWEG has a unique circuit, a
polynomial time algorithm based on the resolution of a partcular
Diophantine equation is presented to solve it exactly. We #ly
experiment it on an industrial example.

Index Terms—Timed Weighted Event Graphs, Periodic Sched-
ule, Manufacturing System, Synchronous Dataflow, Buffer op-
mization.

I. INTRODUCTION

Cyclic scheduling problems, in which a set of generic tas
have to be performed infinitely often, have numerous pral:tic0
applications in manufacturing systems or in the design o

digital signal processing. Thus, many theoretical studiese
devoted to these problems (for surveys, see [1], [2]).
Marked Weighted Timed Event Graphs (in short MTWE

G, which are a subclass of Petri Nets can be used to mo

have to be moved from a workshop to another one. These
amount of products, also called Work In Process (WIP in
short), may have economical consequences. Therefore, the
main problem for designers is to devise an initial configiorat

of WIP that allows the system to reach a given productivity
and that uses the smallest amount of WIP.

MTWEG can also be considered for modelling data ex-
changes for streaming applications: transitions corredpo
specific treatments. Places are associated with buffers. Th
total number of tokens of an initial marking is proportional
to the overall surface of the memories. As the whole ap-
plication has to be integrated on a single chip and satisfies
high quality requirements, the surface minimization pewbl
with throughput constraints is crucial for the design ofsthe
systems. However, designers of such systems usually model
their system using Synchronous DataFlow Graph [3] (in short
SDF) which is an equivalent formalism.

For a given MTEG or MTWEG, the two fundamental

lgéjestions are the existence of a schedule and the deteiominat

f the optimal throughput.

¢In the case of MTEG, these two problems are polynomially
solved from a long time [4], [5], [6]. Thus, the minimization
of a the sum of the initial markings for a minimum given

cthroughput is inN P, and many authors developed efficient

i

ristics and exact methods to solve se€¢. as example

some of these problems. Tasks corresponds to transitichs wi * [8]: [9]). The N P-completeness of this last problem was

a fixed duration. Each plage= (¢;,t;)
and one output transition: at the completion of a firingtof
Z; tokens are added tp. At the firing of t;, Z; tokens are
removed fromp. If Z; = 1 for every transitiont; , G is a
Marked Timed Event Graph (in short MTEG).

has exactly one input proved recently in [10].

The existence of a polynomial algorithm for the liveness
and the computation of the throughput of a MTWEG (or
equivalently to a SDF) is a difficult question. Up to now, the
time complexity of all the algorithms developed to answer

MTWEG and MTEG are widely used for modelling anothese two fundamental questions is exponential in the worst

solving practical cyclic scheduling problems. In the cautef

manufacturing systems, they are considered to model compfg

case [11], [12]. The consequence is that the optimization
oblems on MTWEG are possibly not i P: the evaluation

assembly lines. Workshopesp. products) are usually mog- Of the feasible solutions is not possible in polynomial time

elled by transitions résp. tokens). Between two successiv
transformations, productd.€. tokens) have to be stored or

(©2009 IEEE. Personal use of this material is permitted. Hewngvermis-

é/vhich limits dramatically the existence of efficient alghms.

For example, Sauer [13] developed an algorithm to minimize
the sum of the initial markings for a given throughput which
evaluates a feasible solution using an exponential alyurit

sion to reprint/republish this material for advertisingmomotional purposes The evaluation step of this algorithm limits significanttyet

or for creating new collective works for resale or redistitibon to servers or
lists, or to reuse any copyrighted component of this worktimeoworks must
be obtained from the IEEE

size of the instances. In [14], [15], several buffer miniatian
problems with throughput constraint are modelled using an



Integer Linear Program with an exponential number of equaymmetric MTWEG: every place = (¢;,¢;) is associated

tions. More recently, in [16], [17] authors have dealed witlvith a backward place’ = (t;,t;) modelling the limited

this problem with throughput constraint based on a stateespalaces capacity.

exploration with model checking techniques. It is assumed that two successive firings of the same
Another way to circumvent this problem is to reduce th&ansition cannot overlap: this is modeled by a self-loagcpl

set of feasible solutions. Benabiet al. [18] developed a p = (¢, t;), Vi, € T with My(p) = Z;. For a sake of

polynomial time algorithm for the computation of a periodisimplicity, these loops are not pictured.

firing of the transitions. This result can be regarded as aThe instantaneaous marking of a place P at timer >0

generalization of Reiter’s result for MTEG [19]. In the caxfe is denoted byM (7, p). Clearly, M (0,p) = My(p).

MTWEG, the existence of a periodic firing of the transitions

is clearly more restrictive than the liveness. Utmap firing For any couple of integerga,b) € N2, gcd(a,b) (resp.

transition. The periodic scheduling policy is not necealser Icm(a,b)) denotes the greatest common divisoesp. least

optimal for the throughput criteria. However, optimizatio common multiple) ofa and b. For_every couple of values

problems, such as the minimization of the initial markinggp, q) € N x N*, we set[p]? = [ﬂ -q.

are now in NP and efficient algorithms may be developed

(even if the problem inV P-complete). As example, Wiggers 1. EXAMPLE

et al. [20] developed a heuristic to solve it. Let us consider a car-radio application described in [22].
In this paper, we study the minimization of the overalfhe inputs of such systems are basically a MP3-reader and

number of initial tokens in a MTWEG for a periodic schedule, cell phone. The output is a mixed sound from these two

with a given period. Section 2 is dedicated to basic definio streams. Without any additional treatment, the output iis-re

and the description of our problem. In Section 3, we show théduced in the system through the cell phone, causing an

modelling of a car radio using a MTWEG. Section 4 presentgho effect. In order to obtain a pure speech in the cell phone

some important known basic results on periodic schedutes.dn additional input stream, corresponding to a microphsne i

Section 5, we show that our problem can be formulated usiagded.

an Integer Linear Program and we show a first general lowerFigure 1 presents the streams and the main treatments. The

bound on the overall places capacities. We prove in Sectiorfifst stream entrance, modelled by is the MP3 readett;

and 7 that, if the MTWEG is a circuit, the determination otorresponds to the entrance of the additional microphene.

an optimal marking may be solved polynomially. In Sectiofs the output#; is the audio echo cancellation tagk.mixes

8, we apply our algorithm to the example presented in Sectigie two input streamsts produces a pure speech from the

3. We conclude in Section 9. streamsts and the cell phone.

Il. MODEL AND NOTATIONS

A. Basic definitions J_‘ M
A Marked Timed Weighted Event Gragh= (7', P, [, M) MP3 o—t7 t1 |f9 Out To
is defined by a set of place® = {pi,...,pm} and a set of ~ Reader T‘ Speaker
transitionsT’ = {1?1_, ..., tn}. Every p|aCQO € P is defined be- Cell T
tween two transitions; and¢; and is denoted by = (¢;,¢;). Phone I
For any transitiont; € T, we setP*(t;) = {p = (ti,t;) € :
P,tj S T} and 'Pi(ti) = {p = (tj7ti) S P,tj S T} |
Moreover, it is supposed thétis strongly connected: for every Micro- :
couple of verticegx,y) € (P UT)?, there exists a path i phone |
from z to y. I
Every placep € P is initially marked byM(p) € N tokens. :
We also suppose that every transitigris valued by a strictly ~  ~ -~~~ ~~~"" "~~~ "7"7"7"77777
positive integetZ; and a processing tim&t;). If ¢; is fired at Fig. 1. Block diagram of a car-radio application
time 7, Z; tokens are removed from every plages P~ (t;).
At time 7 + ((t;), Z; tokens are added to every plapec Figure 2 shows the modelling of the whole application
PH(;). by a MTWEG G. Transitionst,, t4, t¢ and tg are simple

A place p = (t;,t;) has a bounded capacitif(p) > 0 rate convertors. Places model intermediate buffers oftdichi
if the number of tokens stored ip can not exceed”(p): Ccapacity between the components. _
vr >0, M(r,p) < F(p). A MTWEG G = (T, P, M, l, F) The processing times of the transitions are usually fixed by
is said to be a bounded capacity graph if the capacity of evéyysical considerations and are presented by table I.
placep € P is bounded by (p). Itis proved in [21] that every
placep = (¢;,t;) with bounded capacity may be replaced
by a couple of place$p; = (ti,t;),p2 = (t;,;)) denoted A. Schedules
by (p1,p2). with the initial marking My(p1) = My(p) and Let G be a MTWEG. A schedule is a functien 7' x N* —
My(p2) = F(p) — My(p). So, in this paper, we only considerQ* which associates, with any tuple;,q) € T x N*, the

IV. PERIODIC SCHEDULES



TABLE |
PROCESSING TIMES(t;), t; € T IN MILLISECONDS

t1 t2 t3 ta ts te | tr | ts to t1o
l 2.3x 1072 10 9.091 0.125 0.125 10 24 10 2.3x 1073 0.125

Wheregcdm- = ng(Zl, ZJ)
For our example, the throughput of the output must be equal

to 44.1kHz, thus — = 44.1ms™'. Since Zy = 80, we get
Wy

Wy _4
K=—=283.10""ms.
Z

For fgny placep = (¢;,t;) € P, let us denote byH (p) =
Mo(p) + ged;; — Z; and L(p) = £(t;). For a circuitc,
H(c) = > ,c.H(p) and L(c) = > ..L(p). Theorem 2
expresses a necessary and sufficient condition for theegxist
of a periodic schedule deduced from Bellman-Ford algorithm
[24].

Theorem 2. There exists a periodic schedule iff, for every
circuit ¢ of G, H(c) > 0.

The minimum feasible valu&°rt of K is then:

I
= e T @)

opt

whereC(G) denotes the set of circuits 6f.

Fig. 2. A MTWEG G modelling a car-radio application Numerous polynomial and pseudo-polynomial algorithms
were developed to compuf€°?t (see.as example [25], [26]).

L . . . An experimental study of these algorithms can be found in
starting time of thejth firing of ¢;. There is a strong relatlon-e[27]
ou”

ship between a schedule and the corresponding instantain
marking. Indeed, a schedule is feasible if the number ofriske

of every placep = (¢;,t;) remains non negative at each time V. GENERAL PROBLEM

instant. It is assumed here thgt is a strongly connected MTWEG.

It has been proved in [23] that the initial markingThe general problem is first presented and modelled by an
My(p) of any placep = (t;,t;) may be replaced by Integer Linear Program. A lower bound of the overall capacit
L%J .ged(Z;, Z;) without any influence om. Thus, IS then proved.
we assume that the initial marking/,(p) of every place
p = (t;,t;) € P is a multiple ofged(Z;, Z;). A. Problem Formulation

The throughput of a transition) for a schedule is defined | et g = (T, P,1, M,) be a symmetric MTWEG ands €
as q QT a fixed value for the period. The general problem tackled

N (ti) = Jm, ) here is to find an initial markind/Z(p), p € P such that:

1) The overall capacity)® . p F'(p) = >, cp Mo(p) is
B. Periodic schedules minimum.
A schedules is periodic if there exists a vectow — 2) There exists a periodic schedule with a period at most

(wi,...,w,) € QF" such that, for any couplét;,q) € equal to K.
T x N*, s(t;, q) = s(t;, 1) + (¢ — 1)w;. w; is then the period _The problem may be formulated by the following Integer
of the transition:; and A*(¢;) = L its throughput. Linear ProgramiI(K):

The following theorem proved in [18] characterizes the min (Zpep Mo(p))

periodic schedule of a strongly connected MTWEG.
vp = (tivtj) € Pv S(tja 1) - S(tiv 1) > é(tl)+

Theorem 1. For any feasible periodic schedule there exists K - (Z; — My(p) — geds ;)
K € Q** such that, for any couple of transitiolis, ¢,;) € 72, Vp = (ti,t;) € P, Mo(p) = kij - gedi 7
% = % = K. Moreover,s is feasible iff, for any place Vp=(ti,t;) €P ky €N '

i J

Loy vt e T, s(ti,1) >0
p={tity) € P, The first inequality expresses the necessary and sufficient
s(tj, 1) — s(ts, 1) > 0(t;) + K(Z; — Mo(p) — ged; i), condition associated with a plapgeon the first starting times of



a feasible periodic schedule following Theorem 1. The sdcon and then, since the numbers of tokens are integer values,
equality comes from the restriction 8f,(p), p = (¢;,t;) € P n - 1

g _ 1
to multiples ofged; ; = ged(Z;, Z;). ZMo(pi) > 5 Z (pi, P})

B. A general lower bound on the overall capacity
Lemma 1. Let (p,p’). be a couple of place witp = (¢;,;)

2) Similarly, we get for the circuit’,

andp’ = (t;,t;). Let also the value - ne [1e
) Mo(p;) > | = is Dy
ooy W)+ 1) Z o 2; o)
Fie(p,p') = =2=—> = 2¢cd,; + (Zi + Z).
3) By Lemma 1, circuitgt;, pi, tiy1, 0}, t:), i € {1,...,n}
Then, for every feasible solutiof/ of II(K), M{(p) + induces

M () = [Fj (o )]0,

o Mo(ps) + Mo(p) > [Fj(pi, p)] &+
Proof: Let the circuitc = (¢;,p,t;,p’,t;). Then,L(c) —

KH(c) = L(t;) + U(t;) — K(Zi + Z; — M{(p) — 5( ') — So, the systenX(K) to solve for a symmetric circuit is:

2gcd, ;). If Mg is feasible, we gel.(c) — KH(c) <0 and  min (zpep JV[o(p))

thus Mg (p) + Mg (p') > ) +4t) 29cd,; + (Zi + Z;). i1 Mo Pz [ Do Fz*( (pi p})]

Since Mg (p) and Mg (p') are divisible byged; ; we get the . i1 Mo(p7) { Y Fi p“fd )

result. n Vie{l,...,n}, Mo(p;) + MO(pz) [Fi(pi, py) ] 5
For every couple of place®,p’). € P2, (¢/,p). is also a Vp = (L, ) € P, Mo(p) = kij - ged

circuit. Theorem 3 is a simple outcome of Lemma 1: Vp = (t;,t;) € P, ki €N

Theorem 3. B = Z p')cEP2, p=(tit;) 2 ’—FK(p Pl (Bediy) )
is a lower bound on the overaII capacny of a MTWEGor B. A Lower bound of the overall capacity

a maximum fixed perio&’ € Q. From the two first equations, we get
VI. A POLYNOMIAL SPECIAL CASE - -
. . - ZMO(pi) + ZMO(PQ) > A,
Let us consider here thaf is a double circuits ofn - :
transitions defined as= (t1,p1,t2,02, - -+, tn, Py tny1) With _ Le=n , )
t1 = tpp1 andc = (tps1,0l,tn, .-, t2, ), t1). It is also with A = 2 x [3300, Fi(pipi)]. So A is a
assumed thagcd(Zi, ..., Z,) = 1. This assumption is not 'OWer bound of the overall capacity. Moreovey =

(ged; iq1)
restrictive: if it is not true, it is proved in [23] that thetzgers 3Zz 1 [Fi (P p)] 1" is also a lower bound by Theorem

Zi, ti € T can be replaced by gcd(Zy, . without So, max(A, B) is a lower bound of the overall capacity.

any influence on the existence and the per|o of a perioditowever, this bound may be improvedAf > B:
schedule.
We first present a simplification of the ILP presented ihemma 2.1t A> B, thenA = B + 1.
the last section by eliminating the starting times of thetfirs  Proof: Clearly,
firings of the transitions. Then, we improve the lower bound N N
presented previously. Lastly, we introduce a new sysfeamd A=9x 1 Frip )| < Fr(p o) | + 1
we show that, every solution & gives an optimal solution. 2 Z KPipi) | < Z < (Pi.pi)
The resolution ofS is detailed in the next section.

and
A. Simplification of the L|r_1ear Program. _ {Z Fi(pi. p) —‘ Z (FE (pi, ) gch ) _ g
By Bellmann-Ford algorithm, there exists a solutibf (p), e
p € P for II(K) if every circuitc verifies L(c) — K H(c) < 0.
Thus, the system may be simplified by eliminating the stgrtmso lemma holds. u
times of the first firing of the transitions as follow: Theorem 4. Let the indexj € {1,...,n} such thatged, ;4
1) For the first circuite, is minimum. IfA > B, then the minimal overall capacity for

a period K is equal to or greater tharB + ged; ;4.

L(c) = KH(c) = 25—y U(t:) Proof: If the overall cap(acity 0;‘ any couple of places
" (pi,p}) is exactly [Ff (pi, p})]®%i+1) | then the overall ca-
+KZ(Zi_M0(pi)_gcdii+1) <0. pacity is B. If A > B, this solution is then not feasible.

=1 So, there is at least a coupl(@;,p}). with i € {1,...,n}
Thus, | [ such thatMo(p:) + Mo(p}) > [Fi (pi, p})] ). So a new
ZMO(pi) > ZFf*f i1, lower bound of the capacity i® + ged, ;. By Lemma 2,

p 2= B+ged; ;. > B+ 1= A, and theorem follows. |



C. Building another linear system

The idea here is to build a simpler systefnand to prove
that an optimum solution for.(K') can be deduced from every
solution of S.

Let us define the sequenek, i € {1,...,n} as follows:

o If B> A, we setd; = [F(p;,p,)]®%+0) for every

ie{l,...,n}

o Else, letj € {1,...,n} such thatged; ; ; is minimum.
We setd; = [Ff(p;,p})] (ngJ‘”])4—g<:de-Jr1 andA; =
[Fje (pi p)]®he) for everyi € {1,....,n} — {5}.

Let

be the value of the overall capacity aad= {% . We also

note, for everyi € {1,...,n}, a; = ged, ;4. It is proved in

the next section that the following syste$ncan be solved by
a polynomial-time algorithm.

C:Z?ZICLZ'Ii
Vie{l,...,n},z; €N
ViE{l,...,n},OSaifL‘igAi

Theorem 5. Letz}, i € {1,...,n} be a solution ofS. Then,
the initial markingMy defined asvi € {1,...,n}, Mg (p:)
a;zy and My (p;) = A; — a;x} is an optimum solution of

S(K). '

Proof: For everyi € {1,...,n}, M{(p;) and M (p}) are
clearly divisible byged, ;. Moreover, Mg (p;) + Mg (p;) =
A; > [F(p,p)] %) Thus, the third inequality of (K)
is fulfilled for every couple of places.

Two subcases must be considered:

1) If B > A, then% = — > 7 Thus, sinceé is an
integer value(C' = %J > é Now,
pY=0C>_==|=Z * (0. D
;Mo(pz) C> 9 {2 ;FK(pzapz)—‘

and the first inequality oE(K) is fullfilled.
On the same way,

> Mi(pi) = {%W > EZF}E@“M
=1 i=1

and the second inequality &f(K) is also verified.
Lastly, the overall capacity i€ = Y., A; = B, thus
it is minimum.

2) Let us suppose now thd& < A. Then, by Theorem 4,
A=B+1and
Q_B—i—aj _aj_l-i-é
2 2 2 2

. A . .
Sincea; > 1 andE is an integer,

C= {%J > %il’%(m,pé)w ;

Q

Since Y7L, Mg (p;) = C and 330_, Mg(p}) = |3
the two first inequalities oE(K) are verified.

Lastly, the overall capacity equal3 = B + a; and is
minimum by Theorem 4, which completes the proof.

VIl. RESOLUTION OFS

In this section, a polynomial time-algorithm is developed t
solve the systens. We first present two technical lemmas
expressing inequalities o’ and the sequencel;, i €
{1,...,n}. Then, a three steps algorithm is detailed to solve
S.

A. Technical properties

The two following lemmas express important technical
properties on4;, i € {1...,n} andC:

Lemma 3. Vi€ {1,...,n}, A; > Z; + Zi11 — 2a;.
Lemma 4. Z?Zl(Zl—aZ) S C S Z?:l AZ—Z?:l(Zl—aZ)

B. Step 1 for solvings

The systemd_" ; a;z; = ged(ay, ..., a,) With z; € Zis a
linear diophantine equation and can be solved by a genaraliz
tion of the extended euclidean algorithm by a time-compyexi
algorithm bounded by (n log(max(ay, .. .,a,)?)).

For our problem, we have ged(a,...,an)
ged(Zy,...,Z,) = 1. So, a solution toC = I  ax;
with z; € Z can be easily obtained. Let us denote it by
X = (21,...,%).

C. Step 2 for solvings

The aim now is to build, fromX, another solutionX to
the equalityC' = ", a;z; with X € N”. Let us build the
sequence of integer&y, k € {0,...,n} as follows:

2) foranyi € {1,...,n — 1}, A; must be divisible by

lcm(a;, a;+1) and the inequalitie® < a;7; — A;—1 +
A; < Z;+1 must be true.
Observe that, since,; is divisible by lcm(a;, a;11), there
are at least lcrfu;,a;41) values in the integers interval
[0, Z;+1] and the sequench, exits. Moreover, since;&;, A;
andAi_l are all divisble byli, a;iTi— A1+ A; < Zi+1 —a;.

We set, forevery € {1,...,n—1},7; = &, — i1 ‘

i a;

ATERE

Lemma 5 X = ( ,Z,) € N" and verifiesC

Z?:l a;T; .
Proof: By definition of X,

n n n n
E CLiJ_?i = E aiji — E Ai,1 + E Az
=1 i=1 i=1 =1

Now, sinceAg = A,, =0,

n n n—1 n—1
i=1 =1 =1 =1



and thusC' = Y"1 | a;Z;.
Clearly, X € Z™. So, we must check that, for eveiye
{1,...,”}, z; > 0.
1) This is true by definition ofA; for i € {1,...,n —1}.
2) Now, for every: € {1,...,n — 1}, ;% < Zj41 — a4
and

n—1 n—1
anTy, = C — Z a;z; > C — Z(Zi+1 - ai).
=1 i=1

By Lemma 4,
n—1
C - Z z+1_az >Zl_an20
i=1

and thusz,, > 0.

D. Step 3 for solvings

We compute now fronX a solutionX * for systemsS. Let us
build the sequence of positive integdrg, k € {1,...,n+1}
as follows:

1) (I)n+1 =0,%; =1

2) for anyi € {2,...,n}, if a;@; + ®;41 > A;, then

computed; such thatd; — 7; < a;z; + ;11 — D; < A;
and @, is divisible by lcn{a;—1,a;). Otherwise, set
®, =0.

As previously, the sequenck; exists sinceZ; is divisible
by lcm(a;—1,a;), so there are at least Idm_1, a;) values in
the integer interva)A; — Z; + 1, A;]. Moreover,A; — Z; and
a;T; + ®;41 — ®; are divisible bya;, so the first inequality
becomesd; — Z; — a; < a;T; + i1 —P; < A;

We set, forevery € {1,...,n—1}, 2] = &;+—
The proof of Theorem 6 is similar to Lemma 5. ’

Theorem 6. X* = (a7,...,z})
S.

Piy1 P

Q;

€ N™ is a solution to system

VIIl. APPLICATION TO THE CARRADIO
Table Il summarizes the values obtained for our example.[5]
TABLE II
OPTIMAL INITIAL MARKINGS FOR THE MTWEG PICTURED BY FIGURE 2
Buffers ai Fy, (7] | M0 | M50
(p1,p)) 80 70560 8821, 113, 76%
(p2,p5) 35280 | 67353,048 2a2 0 2a2
(p3, g) 441 67353,048 1533 55a3 98as
(pa,P}) 441 882 2a4 2a4 0
(ps, pL) 441 70560 160us 16Qus 0
(ps, P} 80 70560 882u 88206 0
(p7, %) 7056 | 225792 32a7 0 32a7
(ps, PL) 80 70560 882 0 8823
(p9, pg) 80 160 2a9 0 2a9
(p10,P}) | 441 | 67353,048] 1530 0 152010

The initial marking for the places from the circuit =
(tlap17t27 R
developed here. We obtained for the lower boungls=
350595 and A = 347270. SinceB > A, Q@ = B = 350595

ts, ps,t1) was computed using the algorithm

and C = {%J = 175297. The vectors obtained for the
three steps areX = (215 - C,0,-39 - C,0,0,0), X
(113,0,0,0,57,1764) and X* = (113, 0, 55, 2, 160, 882).
For any couple of place§;, p;) € P which are not inc,
the minimum capacity of the buffer IS’ (p;, p}) | (@) These
buffers are initially empty, sd/g (p;) = 0. If we setM{ (p;) =
[Fﬁ(pi,p’i)](“”, we obtain a feasible solution for the system
Y(K). Thus, it is an optimal initial marking.
If we compare our numerical results to [22], our results are
slightly better. As example, for the couples, p5), they get
a capacity ofl58a3, which is not minimum. Moreover, they
supposed that a buffer is either initially full or empty, whi
limits solutions space and allows them to cut circuits. lyast
time complexity of their algorithm is unknown.

IX. CONCLUSION

We have developed in this paper a polynomial time algo-
rithm for the minimization of the overall number of tokens
for a minimum throughput. We proved that this problem can
be modelled using an Integer Liner Program. A pertinent
lower bound of the overall number of tokens is easily deduced
from this formulation. We also proved then that if the initia
MTWEG has a unique circuit, the problem considered is
equivalent to a specific Linear Diophantine problem soleabl
by a polynomial time algorithm. This last algorithm was
considered to solve exactly a practical application.
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