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On quenched and annealed critical
curves of random pinning model with
finite range correlations
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Tel.: +33(0)472.44.79.41
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Abstract: This paper focuses on directed polymers pinned at a disordered
and correlated interface. We assume that the disorder sequence is a g-order
moving average and show that the critical curve of the annealed model
can be expressed in terms of the Perron-Frobenius eigenvalue of an explicit
transfer matrix, which generalizes the annealed bound of the critical curve
for i.i.d. disorder. We provide explicit values of the annealed critical curve
for ¢ = 1,2 and a weak disorder asymptotic in the general case. Following
the renewal theory approach of pinning, the processes arising in the study of
the annealed model are particular Markov renewal processes. We consider
the intersection of two replicas of this process to prove a result of disorder
irrelevance (i.e. quenched and annealed critical curves as well as exponents
coincide) via the method of second moment.

AMS 2000 subject classifications: 82B44, 60K37, 60K05.

Keywords and phrases: Polymer models, Pinning, Annealed model, Dis-
order irrelevance, Correlated disorder, Renewal process, Markov renewal
process, Intersection of renewal processes, Perron-Frobenius theory, subad-
ditivity.

1. Introduction

Polymers are macromolecules which are modelized by self-avoiding or directed
random walks. Take for instance S = (S,,),>0 a random walk on Z starting at
0 and such that [Sp4+1 — Sn| < 1. By polymer of dimension 1+1 and size N we
will mean a realization of the directed random walk {(n, S,)},<, <y, where each
segment [(n,S,), (n + 1, Sy+1)] stands for a constitutive unit, called monomer.
Suppose now that a reward h is given to a configuration {(n,Sn)}<,<n
each time it touches the interface, i.e. each time S,, = 0. One can then consider
a distribution on polymers of size N whose density with respect to the initial
distribution is equal, up to a renormalizing constant, to the Boltzmann factor

exp (h x Card{n € {1,...,N}|S, =0}).

Depending on the sign of h, this distribution favorizes or penalizes polymers
pinned to the interface, and letting N go to infinity, the model, called homoge-
neous pinning model, undergoes a localization/delocalization transition.
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Pinning models can also be used to study the interaction between two poly-
mers, since the difference of two random walks is still a random walk. One can
think for example of the two complementary strands of a DNA molecule: in this
case, the values of n for which S,, = 0 are the sites where the two strands are
pinned, and the delocalization transition corresponds to DNA denaturation (or
melting). One could argue that the binding strength between the two strands
actually depends on the base pair, which is A-T or G-C. This corresponds to
looking at a disordered model, i.e. a model in which the reward is n-dependent.
An assumption usually made is that the reward at site n writes

hn:h+6wn

where h € R, 8 > 0 and w = (wy)n>0 is a frozen realization of a sequence
of independent standard gaussian random variables. The space of parameters
is then partitioned in localized and delocalized phases, separated by a critical
curve 5 — h.(f). The presence of disorder has important consequences on the
model. For example, one can show that there is localization for h < 0 provided
that disorder is strong enough (i.e. 8 large enough). If we consider the annealed
model (i.e. the model in which the Boltzmann factor is averaged over disorder),
we have the following lower bound:
ﬁ2

he(B) > —log P(r, < +00) — (1)
where 77 is the first return time of S to 0. In the last few years, many rigorous
results were given on relevance of disorder, which in particular answer the fol-
lowing question: when is ([l|) an equality? For these questions, as well as classical
results on homogeneous and disordered pinning models, we refer to [m, [E], [@]
and references therein.

In this paper we remove the independence assumption on w and study the
effect of correlations on the right-hand side of (), i.e on the annealed critical
curve. This is partly motivated by the long-range correlations in DNA sequence,
see [ and [[L4] on this topic. We also mention [f]] and where the effect of
sequence correlation is investigated, in somewhat different contexts. In [E], the
authors study the effect of a pulling force applied to the extremity of a DNA
strand on the number of broken base pairs (unzipping of DNA) in two correlated
scenarii: integrable and nonintegrable correlations. In [@], the authors consider
the effect of sequence correlation on the bubble size distribution: by bubbles
we mean broken base pairs, and if we keep in mind the analogy with pinning
models, it corresponds to the excursions of the directed random walk between
two visits at 0.

The disorder sequence in our model is a finite-order moving average of an
i.i.d sequence, which is the simplest correlated sequence one can look at, and
the reason for this choice will be clearer further in the text. This will be defined
in Section [, as well as the renewal sequence 7 = (7,,),>0 (the contact points)
and the polymer measures. In Section E, we introduce classical notions for these
models: the free energy, the phase diagram and the (quenched and annealed)
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critical curve of the model. In the proof of Theorem @, a new homogeneous
model emerges, whose hamiltonian does not only depends on the number of re-
newal points but also on their mutual distances. In Section H we are interested
in the annealed critical curve. The main results are Theorem @, which states
that the difference between the annealed critical curve in the correlated case
and the annealed critical curve in the i.i.d. case can be expressed in terms of
the Perron-Frobenius eigenvalue of an explicit transfer matrix, and Proposition
@, which gives a weak disorder asymptotic of the annealed critical curve. Note
that the appearance of Perron-Frobenius eigenvalues is reminiscent of results on
periodic copolymers, see [E] In a second part of the paper (Section E, Theorem
), we show that under certain conditions (the same as i.i.d. disorder actually)
quenched and critical curves (as well as exponents) coincide at high tempera-
tures (small 5). This is the regime of disorder irrelevance. We use the second
moment method, which will lead us to study the exponential moments of two
replicas of a certain Markov renewal process.

2. The model
2.1. Contact points between the polymer and the line

We follow the renewal theory approach of pinning. Let 7 be a discrete renewal
process such that 79 = 0 and 7, = Y ,_, T}, where the inter-arrival times

(or jumps) T} are ii.d. random variables taking values in N’. Furthermore,

K(n) = P(Th = n) = fl(fi where a@ > 0 and L is a slowly varying function.
Without losing in generality, we can assume that ) -, K(n) = 1, ie. 7 is
recurrent. We distinguish between positive recurrence (a > 1 or a = 1 and L
is such that > ., L(n)/n < 4o00) and null recurrence (o € [0,1) or a = 1
and L is such that > -, L(n)/n = +o00). We will denote by 4, the indicator
of the event {n € 7} = U,>o{7 = n} so that if ux := sup{k > 0|7, < N} is

the number of renewal points before IV, then 1y = Zﬁ;l 0. The letter £ will
denote expectation with respect to the renewal process.

We also suppose that for all n > 1, K(n) > 0 (which implies aperiodicity).
This assumption seems quite restrictive, but will be necessary in Section @ If
this condition on K were not fulfilled, we would simply have to reduce the state
space of the matrices defined in Section f| to {n > 1|K(n) > 0}% and to assume
that K is aperiodic.

2.2. Finite range correlations

Let (€,)nez be a collection of independent standard gaussian random variables
(independent from 7), ¢ > 1 a fixed integer, and (ao,...,a,) € R?"! such that
ag + ...+ a2 = 1. Define the disorder sequence w = (wp)n>0 by the g-order
moving average wy, = agEp + ... + Gg€n—q. Then w is a stationary centered
gaussian process and its covariance function p, := Cov(wy,w,,) satisfies py = 1
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and n > ¢ = p, = 0. From now, the notations P and E will be associated to
disorder.

2.3. The quenched and annealed polymer measures

We define the (constraint) quenched polymer measures, which depend on two
parameters, the averaged pinning reward h € R and the amplitude of disorder
B8 >0:

dP, B,h 1 N
N,B,h,w
d = N B exp ( E (ﬂwn + h)5n> 5]\[ (2)

n=1
where
N
ZNphw=F (exp <Z(ﬁwn + h)6n> 6N> (3)
n=1

is the partition function. We also define its annealed counterpart:

d(P®]P))N,B,h . 1 N
dP®P) Z% 5 exp <Z(5wn + h)6n> SN (4)

n=1

where
2580 =EZNghw-

3. Generalities
3.1. Free energy, phase diagram, and critical curve

We give some results which are well-known for i.i.d. disorder, and which can be
generalized to ergodic disorder (see [[Ld, Thm 4.6, p.96]).

Proposition 3.1. For all h € R and all B > 0, there exists a nonnegative
constant F(5,h) such that,

1
F(3,h) = lim NlogZN”g,;Lw

N —+oc0

P-almost surely and in L'(P).

Proof. We use the Markov property as in [E, Prop 4.2, p.91] or [H, (3.1), p.12]
to write

log ZX 4 n, g hw = 108 25y g pw H108 25 5.1, gray,
where 0 is the shift operator. We then use Kingman’s subadditive theorem (see

[E]) In our case, w is ergodic because p, —3 0 (see [ﬂ, Chp 14, §.2, Thm
2]). O



Julien Poisat/Pinning with correlated disorder 5

The phase diagram Ry x R is then divided into a localized phase
L={(Bn|F(B,h) >0}

and a delocalized one
D ={(B,h)|F(B,h) =0}.

For all 8, define the critical point h.(8) := sup{h € R|F(8,h) = 0}. By con-
vexity of F' (as the limit of convex functions), D is convex so the critical curve
B+ he(B) is concave. Moreover, it is nonincreasing and h.(0) = 0. For detailed
arguments, we refer to [L0].

3.2. Annealed free energy and annealed bound

The first difference that occurs when dealing with correlated disorder is that
integrating on w the Boltzmann factor does not yield a classical homogeneous
model (see () below). As a consequence, we will need an additional argument
to define the annealed free energy.

Lemma 3.1 (Hammersley’s approximate subadditivity [L]). Let h: N+ R be
such that for allm, m > 1,

h(n+m) < h(n) + h(m) + A(n +m),

with A a non decreasing sequence satisfying:

A
Zm < 00.

r=1

Then, lim

exists and is finite.
n—-+o0o n

Theorem 3.1. For allh € R and all § > 0, there exists a nonnegative constant
F*(B,h) such that,

a 3 1 a
F*(8,h) = Nl—lg-loo N log Zy 5 5
Moreover, if h?(8) := sup{h € R|F*(3,h) = 0} then

he(B) = he(B). (5)

Proof. First, we compute the variance (with respect to w) of Zivzl wpdy,. For
every realization of 7, we have:

N N N
Var <Z wn5n> = Z Cov(wi,wj)éiéj = Z Op +2 Z pj_iéiéj. (6)
n=1 n=1

ij=1 1<i<j<N
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Then,

52 N N—1N—1i
Zj%,ﬁ,h =F (exp ((h + ?) Z 5n + 52 Z pk5i5i+k> 5N> .
n=1

=1 k=1

Now, we want some sort of superadditivity for the annealed partition function.
For a polymer of size N + M, observe that

Z pj—ibib; = Z pj—idid; + Z Pj—i0i0;

1<i<j<N+M 1<i<j<N N+1<i<j<N+M

+ > pj—i0id;.

1<i<KN<j<N+M

Conditioned on the event {N € 7}, the second term has the same law as
Zl<i<j<M pj—i0;0;. Moreover, the third term is greater than a constant C' only
depending only p and g. We can then write

a
ZN4M,B,h

32 N+M

7) Z Sn + B Z pj—i0i0; | ONON4+M
n=1

1<i<j<N+M

>E|exp| (h+

> e 2% 5w o .n

and we conclude by using Lemma @ to —log Z}y 55, with A(n) = —Cp3?%. Asin
[E, Prop 5.1] we use Jensen’s inequality to prove that

F(B,h) < F*(8,h), (7)

which in turn yields the annealed bound (f]). O

When disorder is i.i.d, () becomes h.(8) > h.(0) — 3?/2 := h%(B) and the
question of knowing whether this is an equality was studied in several papers
and monographs (for example, [[l], [Ld], [Ld] and references therein) where we
learn that the answer depends on the values of o and f.

In the next subsection, the effect of correlations on h¢ will be studied.

4. The annealed critical curve

4.1. The result for ¢ = 1 and the reason why the technique used
does not apply to q > 1

Proposition 4.1. If ¢ = 1 then we have

he(B) = he(0) — %2 —log (1 + K1) (eﬂlf’2 - 1))



Julien Poisat/Pinning with correlated disorder 7

Proof. 1f ¢ = 1, equality () gives:

2 N—-1
fo,ﬁ,h =F (exp ((h+ %)’LN + plﬂQ Z 5n5n+1> 5N> .

n=1

The energetic contribution of a jump can only take two values: h+ (2p1 +1)3%/2
if the jump has size 1 and h + ($2/2 otherwise. The rest of the proof is a slight
modification of the proof of [E, Prop 1.1], except we must consider K ,—7) with

K(y=1)(1) := e”P K(1) and K (y—1)(n) := K(n) if n > 1. 0

If ¢ > 2, the situation is more complicated because in this case we must
consider the energetic contribution of a g-tuple of jumps instead of one of a
single jump. For example, if ¢ = 2, the energetic contribution of a jump of size 1
can be h+(1+2p1)3%/2 or h+(1+2p1+2p2) 32 /2, depending on the value of the
jump just before. This idea of looking at the sequence of g-tuples of consecutive
inter-arrival times is developed in the next section.

4.2. An auzxiliary Markov chain and the transfer matriz

From now we assume ¢ > 2. We will denote by ¢ = (t1,...,t,) a g-tuple in
(N*)? and if (t,),>1 is a sequence of integers, then ¢, := (t,,...,tn4q—1). The
projection on the first coordinate ¢ ~ t; will be denoted by m;. Let G be a
function defined on such g-tuples by G() = >"{_; pt,+...+4., and which should
be interpreted like this: if £ is the g-tuple of the inter-arrival times of ¢ + 1 con-
secutive renewal points on the interface, then G(f) gives the total contribution
of correlations between disorder at theses points.

Notice that when we compute the value of G for some g-tuple of inter-arrival
times, any inter arrival time strictly greater than ¢ ”does not count”. To put it
more precisely, we can consider a ”cemetery state”, denoted by x, and define for
allt € N* and 7 € (N*)9, t* := 1< + *1j4=qy and T = (¢7,...,t;). Then G
can be considered as a function of 7~ instead of 7, if we adopt the following natural
conventions: p, = 0 and for all t € {1,...,q,*}, x+t =t +x = x. From now we
will use the following notations: £ = {1,...,¢,x} and K(x) = >_, . K(n).

In the following we will write 5 ~ f (resp. 3* ~ T ) if for all i € {2,...,q},
8; =t;—1 (resp. sf =t ;). We now make the following remark: the sequence of
q-tuples (Tn)n21 is a Markov chain on a countable state space, and its transition
probability from state 5 = (s1,...,s4) to state ¢ = (t1,...,t,) writes

Q(E, z) = K(tl])l{EWZ}

Note that @ is irreducible because of the positiveness of the K (n)’s. We now
define the nonnegative matrices ()3 and Qz,which will play the role of transfer
matrices, by
Qs(3.5) = " COK (1)1 55
and -
Q53 7) = ¥ ORIt 5y,
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We will write Q* instead of Qf. Since QE is an irreducible nonnegative ma-
trix on the finite state space EY, we know by the Perron-Frobenius theorem
that there exists a Perron-Frobenius eigenvalue A() and an associated right
eigenvector v = (V3(7))zeps With positive components (see ).

4.3. Statement of the results

We are now ready to state our main results. The first one expresses the annealed
critical curve in terms of the Perron-Frobenius eigenvalue of the transfer matrix
Q.

Theorem 4.1. For all « > 0, for all § > 0,

2

ne(B) =~ —log M(8).

It seems difficult to give a nice explicit expression of (), since it is the
Perron-Frobenius eigenvalue of a matrix of size (¢ + 1)9. For ¢ = 2, we have
computed

ﬁZ 1 + 1-— v(B)

he(B) = =5 —log 6(8) — log o

where
B(B) =1+ K(1)(eP )8 1) + K (2)(e”” — 1)

2 2 K(2 2
Y(B) =4AK(1)(1 — K(1))e” P (erP” —1) (1 + K@) (e”? —1) ).
1—K(1)
In the general case, the asymptotic behaviour of the annealed critical curve
for weak disorder can be explicited:

Proposition 4.2. We have

B0 - B
he(B) "RT = (142> pnP(neT) o
n=1

Before going into details, we outline the proof of Theorem @ First, we
introduce in Lemma @ new Markov transition kernels built from the transfer
matrices and an eigenvector associated to A\(5). From these we give a new law for
the sequence of g-tuples of consecutive inter-arrival times, to which we associate
what could be called a “g-correlated” renewal process. This process is in fact
a particular Markov renewal process (these are processes in which the return
times are not necessarily i.i.d., but driven by a Markov chain, see [ﬂ] on this
subject). With Lemma Q, we link the annealed free energy of our initial model
to the homogeneous free energy of the new “g-correlated” renewal process. This
will be the starting point of the proof of Theorem @ Note that for positive

recurrent renewal processes we give a shorter proof than in the general case.
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4.4. A 7qg-correlated” renewal process related to the model

For all g-tuples ¢, define v4(t) = v/} ).

Lemma 4.1. Q4(3,1) := %m and Qﬂ(s )= % are Markov

transition kernels.

Proof. For QE, the result is a direct consequence of the relation Qjv; = )\(ﬂ)yg

and of the positiveness of )\(ﬂ) and vg. For Qg, we write for all 5 = (s1,...,54),
ZQﬂ ERAIZIC Zeﬁ Glozssat) [ (£ g (52, .. . , S, t)
t>1
= Zeﬁ Gl DK ()05 (55, ..., 55, t7)
t>1
= Y O K (s (55,5 t)
t cE
)\(ﬁ)Vﬁ( )
= A(B)vs(3).
The result follows in the same way as for QE O

Since Ql’g is a finite irreducible transition matrix (it has the same incidence
matrix as Q;;, which is irreducible), it has a unique invariant probability mea-

sure that we denote by pj. If we define pg a measure on (N*)? by pg(t) =

K(t K(tg—1
Bl Bltea) 7). dhen

Lemma 4.2. pug is the invariant probability of Qﬂ.

Proof. By a direct computation, pg is a probability. Now we prove that it is
invariant. For all ¢ € (N*)?, we have

Z 115(3)Qp(3.T)

= AB) e OB (1) 3

1

(S,tl,...,tq_l)
(S,tl,. ..,tqfl)

= A(ﬂ)*lem“’%;(f*)K(tqf
KSKfl . Kfq 1 *(S*atfv"wtz 1)
T (s)K(th). .. K( )Mﬂ(

K(s))K (7). .. K(t;_)) v(s* 65, i)

s>1
(5"t )
B8ttt 1)
(S*atfv"'vt;—l)

a ug(f*) eyt G )

_ )\(ﬂ)fleﬁZG(f*)VE(z*)K(t*) /Lﬁ(z) K(s) 1
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where for the last equality we use the fact that s is the invariant probability
of Q%. O

We define a new law on the interarrival times (T},)n>1, denoted by Pg, by
the following relations:

q
Py(Ty=t1,...., Ty =tg) = [[ K(t)
h=1
and for all £k >0
Ps(Thtgo1 = tar1|Thrr = t1, ..., Thyq = tg) = Qa((t1, ..., tg), (2, .., tgs1))

To determine T}y 44+1 conditionnally to the past, only TZ 41 is relevant (and not
Tri1) since it can be checked that

Ps(Tiyg—1 =tgr1|Thr1 = t1,. .., Thyq = tg)
5 K(tg41)
= tr ), (th, .t x —1T=2
Qﬁ(( 1 ’ q)a( 2 ’ q+1)) K(t;+1)

= PB(Tk-i-q—l = tq+1|TI:+1 = t*f, s ’Tl:Jrq = t;)-

Under Pg, (Tn)n>0 is then a (delayed) Markov renewal process with markov
modulating chain (T;iq)quJrl, and semi-Markov kernel: for alln > 1, z,y € EY,

— — ~ K(n)
Ps(Thrgr1 =0, Tiyo = y|Tyq = 7) = Qj(x, y)ml{n*:yq}-

Lemma 4.3. For allh € R and all 8 >0,

N—+oc0

1 o e
F*(B,h) = lim N log £ (e(h'f‘%)m—i-ﬁ >N, G(Tn)(SN) )

Proof. On one hand, we have by integrating over disorder the partition function:

2
Z4 sn=E | exp | in(h+ %) +8% D piidid;
1<i<j<N
3 N—1N—i
=F (eXP <ZN(h + 7) + B2 Z Z Pk5i5i+k>> .
i=1 k=1

On the other hand, >/~ | G(T,,) = Zf;l {1 Pe0idirk. We prove the lemma
by showing that there exists a constant C(p, ¢) such that

N N—1N—i
Z G(T,) — Z Z PR0i0ivk| < C(p,q).
=1 i=1 k=1
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Indeed,
-1

q
R0y + Z PRONON 1k
k=1

N q N
Z Z Pr0ibiyy =

i=1 k=1 7

Eol
Il 5
o

1

[
i

i q
PrO0iyr + Z PLONON 4+
k=1

I
™
]

z&

K2

+ Z Z PR Oi gk

i=N—q+1 k=N—i+1

ki
X

where the second term is bounded in absolute value by ¢ x max;=1. 4|p;| and
the third term by @ X max;=1..q |pil- O

Lemma 4.4. For all h € R and all >0,

1 2
Fu’(ﬁ, h) _ NEIEOO N 10g Eﬂ (e(h-i-%-i-log )\(B))ZN(SN) .

Proof. By decomposing on the possible values of 7)y, we have on one hand:

E (e(h+8_22)7'N+ﬂ2 Z:l]i1 G(Tn)(SN)

N 5 _
=N et N PR COIQ,T) . Q1. T KOU(E)

tlvatn
tit+...+tn=

(Bt 5 +log A(B)n

:Z— > Qptr,ta) ... Qpln—1, 1) K®(t)

= t1,...tn
t1+...+in

N
_ Ze(h-i-ﬂ +log A(8))n

n=1

va(ty) ~ 5 -

S DR LT N AR MR AT SIS

ARG

tyto =N

and on the other hand,

E <e<h+‘f+logA<ﬂ>>w5N)

82 o n N (T F N (T n 7
P HesA@In N Qp(tr, ) - Qa1 ) K®(H)

T1yetn
ti+...+tp=N

Il
1=
m/\

Since vs(t) = v} (") and v* is a finite vector with positive components, there

exists ¢ and C two positive constants such that for all ;,%,, ¢ < UZ((?)) < C.
We conclude by using this remark and Lemma @ O
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4.5. A short proof of Theorem in the positive recurrent case

In accordance with Lemma @, we will work on the homogeneous pinning model
of the process 7 under P3. In the positive recurrent case, a renewal-type lemma
is obtained, which allows us to conclude.

Lemma 4.5. Ifa>1, orif a =1 and L is such that 3, -, L(n)/n < oo then
W tends Pg-almost surely and in L*(Pg) to a positive constant.

Proof. From Lemma @, under Pg, the sequence of g-tuples (T, ..., Thtq—1)k>0
is a positive recurrent Markov chain, with invariant probability measure jg. If

the previous conditions on « are satisfied, m; : ¢ — ¢; (the projection on the
first coordinate) is pg-integrable. As a consequence,

N

T 1 Pg—a.s.

NN:N E Fl(Tk,...,Tk+q_1) g_a)s c:= E t1 Xulg(tl,...,tq)<00.
k=1

Ps—a.s.
We deduce from this that 4F [ () by using the inequality 7, <

c
N < 7,y+1. The convergence in L' follows from the Dominated Convergence

Theorem. O
From Lemma @, h < 7%2 — log A\(B) implies that F*(5,h) = 0. Suppose
now that h = 7%2 —log A(B) + € with € > 0. By Jensen’s inequality, we have
that
Ep(iy)

1
N IOg Eﬁ (GEZN) Z €T.

We conclude that F*(,h) > 0 by using Lemma @ and Lemma @

4.6. Proof of Theorem @ in the general case

We now give a proof without any assumption on «. The starting point is Lemma
Q and we will actually identify the free energy of the pinning model associated
to the law Pg. Let’s fix € > 0. We introduce the matrices

Qp.r(5,1) = e MQp(5,1)
and ) N
3515711 = PGy .7
where ¢p(s*) = s* if s* € {1,...,q} and

e*FtK
br(x) = %mg%

i.e. ¢ (x) verifies
e PorOK (%) =" e K (1). (8)
t>q

We will denote by A(f, F') the Perron-Frobenius eigenvalue of the irreducible
matrix Qf p.
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Lemma 4.6. There is a unique positive real denoted by Fg(e) such that
A(B, Fi(€)) = exp(—e).

Proof. Componentwise, Q’g r is smooth and strictly decreasing with respect to

F. Since A(B, F) is a simple root of the characteristic equation of QEF (see
[B, Thm 1.1]), A(8, F) is also a smooth function of F' by the Implicit Function
Theorem. From the formula (see [[LH])

sk
)
A(B,F) = max min M
v>0 Jw; >0 vj
2 pa vi=1

one also obtains (see , Appendix A.8]) that A(8, F) is strictly decreasing in
F and that A(S,F) — 0 as F' — oo. Since A(3,0) = 1 > exp(—e), the result
follows. O

Let 7* be a Perron-Frobenius right eigenvector of Q;Fﬂ(e). We define v by
v(t) =" (t). (9)
Lemma 4.7. The matrices
(t)
)= (10)

(3

A

PF(E, Z) = Qﬂ,FB(e) (5,%

~—

and

()

11
are stochastic and irreducible matrices. Furthermore, if we denote by l* the
invariant probability measure of P, then | defined by

PHET) = Qo 5

q No—Fs(e)s;

_ _ K(sj)e "8le)si
1(3) :=1"(3") / -
1 2 e momam

(12)

is the invariant probability measure of Pr.

Proof. The proof is left to the reader. It consists in straightforward computations
very similar to Lemma [1.1] and Lemma [£.3. We use Lemma [L.q to prove ([LI]),and
(1Ld)

®. @, [ to prove . O

Note that, like Q5 and Qg, Pr satisfies the “consistancy“ condition
Pr(5,1) £0& 35~ 1.

This allows us to define a new law PU) on 7, the law for which (Tn)n21 is a
Markov chain with transition kernel Pr and initial distribution [.
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Lemma 4.8. There exists two constants C > ¢ > 0 such that
cef? N PEN(N ¢ 1) < Eg (exp(eiy)dn) < CefBEONPEN (N € 7).
Proof. Decomposing the partition function and using ([[() we get

Eg (exp(ein)on)

=> Y emQs(tr ). . Qstngi Enqp1) KU (E1)

n=1 t1 a---7zn7q+1

ti+..+tn=N
N
= ng(e)N Z PF(Zl,Eg) .. .PF(En_q,Zn_,ﬁ_l)l(Zl)
n=1 El ..... ?n7q+1
ti+...+th=N
5(t K94(F e~ F(e)(t1+-+tq)
x [ = _V( 1) ( 1)6 _ o4
D(tn—q+1) 1(t1)

and, from (E), ([19) and the finiteness of E?, the term in parenthesis is uniformly
bounded by two positive constants C and c. |

From this we deduce:

Lemma 4.9. For all e > 0,
1
lim NEﬁ (exp(en)on) = F(e) > 0.

This lemma (combined with Lemma [£.4) tells us that
2

P28, ~ 2 log M(B) +¢) = Fi(e).

Proof. Since PF)(N € 1) < 1, it will be sufficient to prove that

liminf PE)(N € 7) > 0.

N—o00

We use an argument that has been already used in the study of Markov renewal
processes arising in the study of periodic pinning (see [E, Chp VIL.4], [E] or
[ld, Chp 3]). We choose arbitrarily the state 1 = (1,...,1) € (N*)?. Consider
(0n)n>0 the following sequence of stopping times:

0y = inf{n > 1|T,, = 1}

Op+1 = inf{n > 9k|Tn =1}

Since (T,,)n>0 is positive recurrent under PU")| these stopping times are finite
almost surely. If we now define the process 77 by 7¢ := 74 then it is clear that

PYNN er1)>PFNN e %)
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By the strong Markov property, 77 is a (delayed) renewal process whose inter-
arrival times are on average equal to

m = EiF) (Tl + ...+ TOO—l) = EiF) Z Wl(Tn)1{00>n}
n=1

=> mOEY Y Lr, i)
T n=1

] ( ]l) < o0.
By the Renewal Theorem, we have
PENer NI 1/m>0
and the proof is complete. |

Theorem (.1]is now a direct consequence of Lemma Q combined with Lemma

4.7. The weak disorder asymptotic: proof of Proposition @

We now give some lemmas which will be useful for the proof of Proposition @
If I C E9 and z,y € EY then we will denote by Q*' the matrix with entries
Q" (z,y) = Q*(2,y)Liyeny- If M is an n by n matrix then Com(M) is the
matrix of the cofactors of M, i.e. Com(M)(i,5) = (—1)"*7 det M; ; where M%J
is the n — 1 by m» — 1 matrix obtained by deleting the i-th line and the j-th
column of M.

Lemma 4.10. Q* is primitive and its invariant probability measure is K®4(s%) =

K(s7)... K(sy).

Proof. For allt" € E4,

(K#1Q5)(f) = Y K®(")Q5(57,7)

s*ebq

= > K®Us*t, .t K (L)
s*ek

= > K(sOE(t})... K(t;_)K(t)
s*ek

= KoI(F")
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so K®1 is the invariant probability measure of Q. Moreover,
Q)IET)=P Ty, =t;,... T, = ;|17 =st,.... T =s})

=P (T;, =t},....T5, =t;)

= K®(t")
which is positive under the assumptions of Section R.1. Since (Q%)? > 0, Qj is
primitive. O
Lemma 4.11. Tr (Com(Id —Q*)) # 0 and for all x € E?

Tr (* Com(Id —Q*)Q*{#})

Tr (* Com(Id —Q*))

Proof. In this proof we will use the properties of the Perron-Frobenius eigenvalue

of a primitive matrix, that one can find for example in [[[5.
We define for all z € E9:

= K®(x).

o Tr("Com(Id —Q*)Q*{"})
P = i Com(ld—Q7))

By Lemma , we only need to prove that p is the invariant probability measure
of Q*.

Since @ is stochastic, 1 is clearly a right eigenvalue of Q* with associated
eigenvector 1 (the vector with 1 on all its components). Moreover, Q* is primi-
tive (Lemma (J1.10])) so the Perron-Frobenius eigenvalue exists and all we have
to prove is that |A| < 1 for every (possibly complex) eigenvalue of @Q*. Indeed, if
v is an eigenvector associated with such an eigenvalue, and z € E9 is such that
o) = max o(y)| then

Mo(z) = Z Q" (z,y)v(y)

yeka

so [AJv(z)] < |v(z)], i.e [A| < 1. This proves that 1 is the Perron-Frobenius
eigenvalue of QQ*, with associated eigenspace R1L.

Now, from [B, Ch. 1, Corollary 2], we have that the rows of ¢ Com(Id —Q*)
are all equal to the same left eigenvector (for the eigenvalue 1) of Q*, that we
will denote by L. A first consequence is that Tr (Com(Id —Q*)) # 0 because the
entries of L are either all positive or all negative. Another consequence is that
if we define

m = (m(@)sep = (Tr (" Com(1d —Q)@~")

rxeF4
then m(z) = L(x) for all « € E?. Moreover, from the relation
(Id —Q*)" Com(Id —Q*) = 0
we deduce that Z m(z) = Tr (* Com(Id —Q*)). Since p is simply m renormal-

reFR4
ized by o m(z), it is the invariant probability of Q*. O
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Proof of Proposition @ In what follows, we will use the notations @ and Qf

as shortcuts for %(0) and aang (0). First we will show that 5 — A(8) is in-

finitely differentiable (C* would be enough). Let’s define ¢(8, A) = det(A1d —Q7)
so that ¢(3,X) is the characteristic polynomial of @, and ¢(8, A(8)) = 0 for
all 8. The Perron-Frobenius eigenvalue of a nonnegative primitive matrix be-
ing a simple root of its characteristic equation, %(6, A(B)) # 0 for all B > 0.
Since ¢ is infinitely differentiable, the same holds for A by the Implicit Function
Theorem.

Now, a straightforward computation shows that (we use that A\(0) = 1)

0
5 log A(B)ls=0 = XN(0)
62 " / 2
57 BN B0 = X'(0) = X(0)"
All we need to show then is
N(©0) = 0 (13)
q
XN'(0) = 2) puP(nen). (14)
n=1

By derivating the relation ¢(5, A\(8)) = 0 we obtain

99 0¢
op oA

We already know that 6¢ $(0,1) # 0 and since Q = 0 then g—g((), 1) = 0, which
leads to ([L3).

All we have to do now is to prove ([l4). A Taylor expansion of det(\(3) Id -Q%)
gives:

2200,1) + N (0)22(0,1) = 0.

det(A(8)Id Q%) = det (Id —Q* + (\'(0)1d — Q”)ﬂ2 + 0(52))

= Tr (* Com(Id —Q*)(\"(0) 1d —Q; )) 52 + 0(3?)

where we have used the differential of the determinant: det(A + H) = det(A4) +
Tr(*Com(A)H) + o(||H||). But since det(Qj — A(8)Id) = 0 we have

Tr (* Com(Id —Q*)(\"(0) Id —Qf)) = 0

which yields
Tr(*Com(1d —Q*)QY)
Tr(*Com(Id —Q*))

Note that Tr(*Com(Id —Q*)) # 0 (Lemma [L.10).

'(0) =
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Let’s now consider (g as a function of (p,)1<n<q. Observe that
0ELET) =26(1)QE(E,T)
so Q@ linearly depends on (p,)1<n<q. We have then

/O/(pla"'apq) - /0/(05"'705pq) +Q/O/(p15"'aqulvo)

The result of the theorem is clearly true for ¢ = 1 (remember that we have an
explicit expression of h%(f) in this case, see Proposition @ ) SO we can suppose
that it is true for a (¢ — 1)-order moving average and show that the result holds
for ¢q. The induction hypothesis then implies

Tr(*Com(Id —Q*) Q) (p1, -+, pg-1,0)) _ %=
om0 q = 2;pnp(n €T)

so the only thing left to prove is that

Tr(*Com(Id —Q*)Q( (0, ...,0, pq))
Tr(*Com(Id —Q*))

=2paP(q € 7). (15)

Let’s define I, = {5" € E9 s.t. py appears in G(5%)} and notice that
§00,...,0, pg) = 20,Q" 0.
We obtain from Lemma [L.11):

Tr(*Com(Id —Q*)Q"s) Yo
RCom(@ gy = 2 K@)

trel,
=P(ger)
which proves (.6). O

5. The irrelevance regime

In this section we will work with free partition functions (remove the dy in
definitions (f]),() and (). This has no incidence on the free energy.

5.1. Introduction and statement of the result

The following result states that under some assumptions on K and 3, quenched
and annealed critical curves and exponents are the same. This is the irrelevance
regime.

Theorem 5.1. If w is a gaussian moving average of finite order q and if o €
(0,1/2) or if « =1/2 and L is such that

oo

1
Z nL(n)? =0

n=1
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then there exists Sy > 0 such that for 5 < Bo, he(8) = h%(B) and

g JeFBR) 1
h—hz(s)+ log(h — ha(B)) o (16)

Disorder irrelevance has been proved by several authors, with different meth-
ods, in the case of i.i.d. disorder (see [L],[1§ and [[]}). A key element is the
control of the second moment of the partition function at the annealed critical
point, which is linked to the exponential moments of the number of intersections
between two replicas of the initial renewal process 7. As in [L]], we will establish
() by proving separately the liminf and the limsup parts. The liminf part
is just a consequence of Jensen’s inequality F(3,h) < F%(8,h) and of the be-
haviour of F%(8, h) near the annealed critical point. The lim sup part relies on
the control of the second moment. In our case, additional difficulties arise from
the presence of a Markov renewal process instead of a classical renewal process
at the annealed critical point. Moreover the law of this Markov renewal process
depends on f3, so we will tackle a problem of continuity in 5 (see end of Section
b.3.1). Once the second moment is controlled, we use arguments from [ to
conclude. Unlike what the title of ] suggests, there is no martingale involved
in our problem.

Henceforth, we assume « satisfies the assumption of Theorem @

5.2. The liminf part

The following proposition tells us that at the neighbourhood of the annealed
critical point, the annealed free energy has the same behaviour as the homoge-
neous one.

Proposition 5.1. There exists a slowly varying function L' such that
Fo(B,ha(8) + A) "~ L/(a)aYe,
Proof. The annealed free energy is defined by the implicit equation
A(B, F(B,he(B) + A)) = e~

where A(S, F') is the Perron-Frobenius eigenvalue of Qz; » (see Lemma [£.q and
[9). This can be rewritten as:

1—AB,F*(B,he(B) +A)) =1—e 2

and since the right-hand term is of the order of A when A goes to 0, it is enough
to prove that the left-hand term is of the order of A®.Indeed, if " is such that
ts €{1,...,q} then

QE,F(E*aE*) - QE(E*aE*) ~p\o0 —cste Fitg



Julien Poisat/Pinning with correlated disorder 20
but if ¢; =, we have by Abelian arguments

Q5. p (5 F) = Q55 T) = —L.(1/F)F®
where L, is a slowly varying function. We conclude the proof by writing

A(B,F) —1=AQj r) — MQ5)
~FN0 DAQ; (QEF - Qfa)
= —cste L,(1/F)F*®.

where A is a differentiable function of the (g + 1)2¢ entries of positive matrices.
O

5.3. The limsup part

We adopt the following notations:
Kﬁvzvy(n) = PB(Tk = n’Tk—qul = y|Tk—q = ‘T)

and

Pszvy(n € T) = Z PB(Tk = n)Tk—qJ’_l = y|Tl_q = .’L')
k>0

This section is organized as follows: in a first part we look at the intersection
between two replicas of a Markov renewal process under the law Pg. From this
we control in a second part the second moment of the partition function at the
annealed critical point. In a last part, we exploit this result to obtain the lim sup
part of Theorem E

5.8.1. Intersection of Markov renewal processes

The main result of this part is:

Proposition 5.2. There exists Sy > 0 such that for all B < By and for all
1€0,...,q},

E?Q exp(ﬁQZ(S,(Ll)éfﬁl) < 00.

n>1

As it will be explained further in the proof, it is enough to focus on the case
[ = 0, when the term inside the exponential is the number of intersections of two
independent copies of a Markov renewal process with law Ps. We begin with
the following observation:

Proposition 5.3. If 7Y and 7® are two independent copies of a Markov
renewal process with law Pg, then 7 N 7(2) is a (delayed) Markov renewal
process.
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The proof is left to the reader. It is a matter of writing that conditionally on
the event that 7(Y) and 7(2) meet at some point n, then the future, in particular
the next intersection point, only depends on the states of the Markov modulating
chains of 7™ and 7(? at n.

In the above proposition, the term Markov renewal process has to be under-
stood in the large sense: it can happen (and actually it will be the case in the
range of a’s we consider) that (7(YN7(2)),, = 400 for some n > 1. We will denote
by PE the law of this intersection Markov renewal process, with Markov modu-

lating chain in (E7)2, and (K5 4.y (1))n>1,2,ye(ma)2 its semi-Markov (sub)kernel.
Hence we have to prove that Ef (exp(ﬁ2 Y ons1 5n)) < oo if B is small enough.

We define the following matrices of Laplace transforms (for A > 0):

Poau(N) =) e PL, (neT)

n>1

¢ﬁ,r,y(>‘) = Z eiAnK,g,m,y(n)'

n>1

Notice that ¢g(0) is the matrix of the Pf

5y (1 < 00)’s for ,y € (B9)°.

Proposition 5.4. The matriz ¢5(0) is irreducible and nonnegative. If we denote
by 6(B) its Perron-Frobenius eigenvalue then

1. 0(0) = PE2((rW N7@); <o) =1— (3,50 Pnen)?) "t < 1.
2. For all B, there exists a constant ¢ such that

PR 0= N| <exo(B)N,

n>1

Proof. First we prove the irreducibility. Let z = (2, 2®)) and y = (3, y?)
be in (E9)2. We want to prove that there exists a sequence xg 1= x, 1, T2,...,7; =
y with ¢ > 1 such that

7
I Pilapye (71 < 00) > 0.
k=0

It is enough to show that

H K oo () >0 (17)
k=0

for some ny; > 1. One can find without much difficulty a path of positive prob-
ability on which 7() starts from z(!), 7(2) starts from 2(?) and they intersect
at some point where respectively they are in states y") and y(®). This path
provides suitable i and (z, k) 1<k<i-

For the first point, we will only prove the first part of the equality, that
is 0(0) = P®2((r™M N 7(?)); < 00). The other part has been stated several
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times in the literature (see [[§] for instance). Remember that at 3 = 0 the
Markov renewal process is in fact the initial (classical) renewal process, and so
the quantities P!, (n € 7), K), (n) and P}, (11 < 00) do not depend on z. As
a consequence, the quantity

PP((rMVnr®?) <o) = Y PP (m <)
ye(E9)?

is an eigenvalue of ¢o(0) with positive right eigenvector 1.
For the last point we have

PE Z5nZN SPE(T1<OO,...,TN<OO)
n>1

This proposition implies that if 3 is such that 6529(6) < 1 then

Ep eXp(ﬂQZ(Sn) < 0.

n>1

2In other words, the only thing left to prove is that for 5 small enough,
e?(B) < 1. Actually we will prove that #(3) is continuous at 3 = 0. Since
we do not have direct access to PE, we first find a formula which is analogous
to

PP((rM 7)) <o) =1 () Pnern)?)™,

n>0
i.e. which relates 0(3) to sums of Green functions of Pj'.

Proposition 5.5. The matriz ¢3(0) has finite components and is irreducible.
If we denote by V() the Perron-Frobenius eigenvalue of ©g(0) then

0(8) =1-9(8)"".

Before proving Proposition @, we need a lemma, and for this lemma we need
additional notations. We define EY = {z € E9: 2, = x} and for all 2,y € FY,

2 Kﬁxy(”)
Ky y(n) = =20
+) Qj(x,y)
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which is the probability under Pg of making a jump of size n knowinAg departure
state = and arrival state y. The letter 8 is omitted because the K, ,(n)’s do
not depend on it: actually, if y € EY, then IA(my(n) = %1,0,1; otherwise,
Kpy(n) =1,—y,.

Lemma 5.1. For all xg,21,...,x1 € F9,

n o0 L
(oot Kooyt #Enyw)(n) "2 20160 <1< oy € B9 (18)

K(*)ntte
and there exists ¢ > 0 such that for all k,xg,x1,...,2x € E? and n > kq
_ : . L)
(Kag oy * Koy ay %o % Koy 3 2 )(n) <k K(x)nta (19)

Proof. Assertion ([[§) comes from the fact that if g(n) = L(n)/n*** is a prob-
ability kernel with L a slowly varying function, then ¢**(n) ~ kq(n) (see [@,
Lemma A.5)) and only the K, ,’s for which y € EZ contribute to the tail be-
haviour. For k& = 1, (@) is clearly true. One can adapt the induction in the
proof of [[Ld, Lemma A_5] to conclude. O

Proof of Proposition . First we prove finiteness of the components. Let z =
(1, 72),y = (y1,42) be in (E?)?. We have

Y PRay(n€T) = Poayys(n € 7)Posays(n €7) (20)

n>0 n>0

so we have to look at the tail behaviour of the Pg g, 4, (n € 7)’s. But for all
xz,y € E1 we can write

Pgzy(n € 1) = Psa(n €1y)

where 7, = 79, (y), and

oo(y) = lnf{k > vazqurl = y}
9n+1(y) = lnf{k > Hn(y)aT;;—q—i-l = y}

By the markov renewal property, under Pg, for all y € E9, 7, is a (delayed,
because we can start at x # y) classical renewal process. We are then left with
proving that the interarrival distribution of 7, has (approximately) the same
tail behaviour as the original renewal process (which satisfies the assumptions
of Theorem f.1)). We then conclude with the result of [{f] on renewal theorems
with infinite mean to show that the series in (R() converges. We fix the state
y € B, and write 6 = 6y(y), which is finite almost surely (T, ),>1 is a recurrent
Markov chain). We write J,, = T;_q the markov modulating chain. Then

Psy(Th+...+Ty=n) = ZEM (Lipiy Po(To+ ...+ Ty =nlJo... Jy)))

k>1
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From our previous remark on the laws K, , and Lemma @ we have

P57y(T0 + ...+ Ty = n|J0Jk) = (KJO,‘]I *KJ17J2 *...*KJk717Jk)(n)
woso L) NE
wite X K

where
k

N = Z 1isepsy

i=1
From Markov chain theory (see [E, Chap 1.3] for example),
U5 (EY)

Epy Y Ly=iyNi = Epy Ny = T
k>1 5(y)

where [ is the invariant probability measure of Ql’g Finally we have

BUED L)

Pﬁ(T0+...+T9:TL)N* X s
b K (x) ~ nlte

(21)

but one has to justify the interchange of the integration and the asymptotic
equivalent. Indeed, from the upper bound (@) in Lemma m, one can apply
the Dominated Convergence Theorem, because E(6¢) < oo (it is not hard to see
that the tail of 6 decays exponentially fast).

We prove the last point of the proposition. The following Markov renewal
equation hold: for all z,y € (E9)?,

Py, ,mer)=0ylumo+ Y. Y PS..(n—kenK], (k) (22)
z€(E9)2 k=1

= 5z,y1n:0 + Z Z Kg,z,z(k)PE,z,y(n —ke 7_) (23)
z€(E9)2 k=1

Taking the Laplace transforms we get for A > 0

s(A) =Id+ps(\)ds(A) = Id +d5(N)ps(N).

Thanks to the first part of the proposition, that has been just proved, we can
take the limit as A goes to 0, which yields

©p(0)(I1d —¢5(0)) = (Id —¢5(0))ps(0) = 1d
from which we can conclude. O

As a consequence, we will prove that 9¥(f8) is continuous at § = 0, which is
the same as proving that for all z,y in (E9)?, the series 3, - Pf, ,(n € 7) are
continuous at 8 = 0. -
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It is not difficult to see that for all n > 0, z,y € (E?)?, the Green function
Pg, ,(n € 1) is continuous in 4 but the continuity of the series

Z Pg,,(neT)

n>0

is not immediate. We will see that the last quantity can be written as the L2
norm of a certain function. The continuity will thus be proved on this L? norm
via the Dominated Convergence Theorem.

We define the following Fourier series:

J’ﬁ,r,y(@) = Z eiG”Kﬂ,m,y(n)

n>1
Ppay(0) = Z ewnPﬂ,w,y(” €7)
n>0
‘ﬁ?sy';y(e) = Z ewnPﬂ,w,y(|n| €)
nez

The matrix ¢o(f) will be written ¢(f). The functions ¢p ., are continuous
~Sym

whereas ¢g.4.,(0) and @57 (0) are in L?(—m,m) (the space of functions which
are square integrable with respect to the Lebesgue measure on (—m, 7)), because
of our knowledge on the decay of the Pg , ,(n € 7)’s (cf previous section).

Proposition 5.6. The matriz Id —@3(9) is 0-almost everywhere invertible, and

1 i . R
Piay(ner) = o [ omind (2 Re((1d —ds(6)); L) — 1) d.

Furthermore there exists a positive constant C' such that for B small enough, for
all x,y € B9

(1 =¢5(0) Jawl < C sup [[(1d =$(6)) s el (24)

s, te B4

0- almost surely.

Proof. Let
qﬁ(ﬁz)(H) = Z e Pg(Tp ki1 — Tok =)

n>1

be the characteristic function of the interarrival times of 7, under Py (cf previous
section) and

(%(Bm,y) (9) = Z einepﬁ,m(Teo(y) - TL),

n>1

which are continuous functions (the term in the sum is bounded in absolute
value by a probability). From our aperiodicity conditions, gbg”)(t?) = 1 if and
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only if § = 0. From [f, Lemma 3.1.1] (the proof can be found in [i§, Chap. 11.9])
we have #-almost everywhere

-t
1-67(0)

and more generally, for all z,y € E?, one can show by decomposing the proba-
bility (under Pg) starting from x that n is in 7, according to the value of 7 the
first time state y is reached, and by taking the Fourier transform, that

P50

em 65 (0)
G 0) =1+ —L——
e 103 (0)

From the Markov renewal equations @), written for Pg instead of PE, one can
deduce that almost everywhere,

$p(0) =1d+¢5(0)P(0) = Id +¢3(0)ds(0),

which proves the first part of the proposition. Then we can write

1 " —in0 ~S
Poay(ner) =g | ™50, (0)d0
1 " —1in ~
=57 | 7" @Re(@pay(0) ~1)d0
— 1 " —inb ~ _1
“or ) € (2 Re([Id —3(0)];,) — 1) a9,

which ends the proof of the first part.
Now we prove the second part of the proposition (equation (@)) We recall
that 56
: N S
B
0p,2,y(0) = 02y(0) 72—
and ¢g 1= ¢5(0 = 0) is simply the matrix Q*, so

A= 3 erow W (25)

e v (@)
We define the matrix Rg(0) = A(8)(Id —¢s(0)) — (Id —p(0)). It is enough to
prove that the coefficients of Rz(6)(Id —¢(6))~" decrease to 0 as 3 tends to 0,

uniformly in #. This is not immediate because there is a singularity at 6§ = 0.
Recall that

- .y tCom(Id — (6
(10 —G5(0)) ! = -~ —C0))

det(Id —¢(9))
We know that as @ goes to 0, det(Id —¢(@)) is of the lowest order among
the (¢zy — ¢ay(9))’s, for x,y € E7, so we have to look at the elements of
R3(0)! Com(Id —¢(6)). More precisely we have to check that
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e as f goes to 0 there are no terms of order 0,
e all terms of higher order have coefficients which go to 0 as 8 goes to 0.

On one hand we have

(Id *(b(@))x,x = (dsx,m - (51,1(9)) + Z éz,y
y#T

and for x # vy, R . R R
(Id *‘b(@))ryy = (¢x7y - ‘bz,y(o)) + Guy
On the other hand, we easily compute, using @),
R3(0)z,c = €s(, x)(‘l;mx - ngm(o)) + Z es(z, y)‘izy
y#z
Rp(0)2y = €5(2,9)(Pa,y — Puy(0)) — €5(w,9)
where eg(z,y) := (eBZG(y)% - 1) (which tends to 0 as § goes to 0). From

these expressions, one can verify without much difficulty that the second point
is satisfied. For the terms of order 0 in 6 of Rz(6)! Com(Id —¢(6)), it is equal to
0; it is shown by computation, using the fact that * Com(Id —qAﬁ) is constant on
its columns (see Section @) O

We can now conclude this first part with
Proof of Proposition . . We begin with [ = 0, i.e. we show that
E'E(exp(ﬂ2 Z On,)) < 00

n>1

for 8 small enough. From Proposition @, it is enough to show that eﬁzﬁ(ﬂ) <1
for B small and as 6(0) < 1, we will show that 6(3) — 6(0) as § — 0. From
Proposition f.5, this reduces to the continuity of ¥(B) at f = 0 and so, to the
continuity of the series

> Py, (nem)

n>0

at 8 =0, for all z,y € (E9)2. From (R{) one can write

1
> Phayner) =3 (1 + > Poorn (0] € 7)Poan g (In] € T))

n>0 nez

where & = (21, 22) and y = (y1,y2). From Proposition f.q and Parseval’s identity
we have

1 7s Jsym
Z ngzvy(n € T) = 5 (1+ < ¢By71;17y1’¢ﬂy1121y2 >L2(_7"a7")) (26)
n>0

1 . .
=3 (1+ < 2Re((Id —¢3);,,,) — 1,2Re((Id —¢3)5,,,) — 1 >L2(,M)) . (27)
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But for all s,t € 1,
2 oy—1 L? 5 \—
(Id—gg)5; = (Id—¢o);;
because (P4) in Proposition f.g allows the use of the Dominated Convergence
Theorem. As a consequence the scalar product in the right-hand side of (%) is
continuous at 5 = 0.

We now deal with the case 1 < [ < ¢. Let us write 72 — := {77(12) —1,n > 0}.
Then

S oWaE, = 17D n (™ -

and 7(M N (72 —1) is a delayed renewal process with the same interarrival time
distribution as 7" N 7(2) which is the case | = 0. O

5.3.2. Control of the second moment

We will prove in this section

Proposition 5.7. There exists Sy > 0 such that for all 8 < By,
supE (Z2 a ) < 00.
b N.B,he ()

Proof. Replica method gives:

E(Zn,0,)2 = B (" Zrm O +000E (P il 0n (7482

— g®2 (ezl 12 SN RO+ B Var(F w,8$)) B Cov(Z wnd S wn 6(2)))

and
N N N
Cov <Z wnéfll),anég)) = Z Cov(wp, wpm )0 M52
n=1 n=1 n,m=1
N
=Y 6P+ Y Cov(wn, wn)dM6R).
n=1 1<|n—m|<q
Define

Cn (W, 7)) Z 55> 4 Zp Z 5(1)57(12_2k + 5(2)5n2k)

n=1

and take h = h%(8). Then

E(Znpne)® < CoES? (eBZCN(T(l),T@))) .
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Moreover, notice that
Cy(rM, 7)) < Z sM5@ 4 Zp Z 5(1)5(2 .+ 5(2)5n+k)
n=1

where p; = p, V 0. By repeated use of Holder’s inequality we prove that for
all B > 0, there exists nonnegative constants Cg, cg,c1,...,cq and eg,e1,...,¢eq
such that

q e
IE(ZN,ﬁ,hg)2 <Cp H (E?Q (e‘:kﬁ2 2o 553)5512#)) ’ .
k=0

We conclude by using Proposition @ O

5.3.3. End of limsup part

We define:
Ay ={l7N[0,N]| < N}

(sometimes we will omit the superscript ). We will prove

Proposition 5.8. For all 8 < By (with By as in Proposition , forall v < «,
there exists ¢ > 0 such that

hm inf P(Py g ha (A%) > ¢) >

Once this is proved, the following proposition provides the limsup part of
Theorem @:

Proposition 5.9. If for all v < «a, there exists some positive constant ¢ such
that L
HH]lvinf ]P)(Png,hg (A?V) > C) >c (28)

then
s OB(F(5.1)

h—ha(g)+ 10g(h — he(B))

Proposition E is proved in [E . One can check that the independance as-
sumption is not needed there.

To prove Proposition @, we need the control of the second moment (see
Proposition f.7) and several lemmas, such as:

1
<=
«

Lemma 5.2 (Paley-Zygmund inequality). If Z is a nonnegative random vari-
able with finite variance, and if 0 < u < 1, then
(E(2))?

P(Z > uE(Z)) > (1 — U)QW

Lemma 5.3. For all >0, liminfx 4 oo EZN g .pa > c¢(B) > 0.
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Proof. In the first part of the paper it was proved that

EZn g.nas) = c1(B)Pg(n € 7)

when considering the constraint partition function. With free partition function,
it is not difficult to prove that

EZN g .na(p) = c1(B).
O

Lemma 5.4. For all 8 < By (Bo as in Proposition m), there exists & > 0,
c € (0,1) such that
i%fP(ZN,B,hg > (S) > cC.

Proof. From Lemma @, we have for all v € (0,1),

(E(ZN phe))?
E(Z?V,ﬁ,hg)

For N large enough and g8 < 3y, we have from Lemma @ and Lemma @,
ue(B)
2

P(Znpne > uE(Zngng)) > (1= u)?

P(Zn,p,pa > ) > P(ZN,g,ne > vE(ZN,p,ha))

2 (c(B)/2)®
z (=) Supny E(Z?V,B,hg)

)

which is positive thanks to Proposition E The result follows by choosing u
close enough to 1. O

Lemma 5.5. For all B > 0, there exists Cg > 0 such that
EZN 3.ha Pn g s (AY) < CaPa(AY).
Proof.
EZN g,ha Pn,gpa (AY) = EE (1ANeZ(ﬂwn+hZ(B))6n)
—FE (1ANe(logA(ﬁ)§)Eén+§ Varzwngn)
<C(B)E (1AN6710g AB) S 6n+> 00 00, ,,kga;n%)

< C'(B)Ps(An).

Lemma 5.6. For all 8 >0, v < «,

Py(AY) V250,
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Proof. Let us choose arbitrarily z in E?. Then:
Pg(Ay) = Ps(lrn [0, N]| < N7)
< Py(|r. N[0, N]| < N7)

which tends to 0 as N tends to +o0o because the tail exponent of the return
times of 7, is o (see proof of Proposition .5, equation (1)), so |7 N[0, N]| is
of the order of N¢. O

Proof of Proposition . We first prove that for all a € (0,1),
P(PNﬁgyhg(E) >a) > EPy g na (An) — a.
Indeed, this follows from
P(Pn,g,ne(AN) > a) > EPy g pe (A—N)l{PN,B,hg(H)>a}

and
EPN,ﬁ,hg (An) < a+ EPN,ﬂ,hg (AN)I{PN,B,hg (An)>a}

Then, from Lemma @,

EPx g1 (AN) < E (Papne (AN)1(zy 5 0955) ) + P(Zn e < )
< 6 "EZN g he P gna(AN) + (1 = P(Zn,gpa > 0))
<07'CpPs(An) + (1 = P(Zngpe > 0)) .
From Lemma @ and Lemma @, we have
lim inf EPn,gne(AN) > ¢

SO

1imNinf]P’(PN751hg (A,)>a)>c—a

and we conclude the proof by choosing a in (0, ¢). O

5.4. Conclusion: proof of Theorem

We can now conclude:

Proof of Theorem .. The bound () and Proposition f.] tell us that h.(8) >
h¢(B) and

li —
nnz (5)+ Tog(h — h(8)) = o
whereas Proposition @ and Proposition @ tell us that

limsup 28GR 1

h—ha(g)+ log(h —he(8)) ~ «
(and so that h.(8) < h%(B)). Therefore we have all the ingredients to prove the
theorem. O

log F(B, h) - 1
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