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Abstract: This paper focuses on directed polymers pinned at a disordered

and correlated interface. We assume that the disorder sequence is a q-order

moving average and show that the critical curve of the annealed model

can be expressed in terms of the Perron-Frobenius eigenvalue of an explicit

transfer matrix, which generalizes the annealed bound of the critical curve

for i.i.d. disorder. We provide explicit values of the annealed critical curve

for q = 1,2 and a weak disorder asymptotic in the general case. Following

the renewal theory approach of pinning, the processes arising in the study

of the annealed model are particular Markov renewal processes.
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1. Introduction

Polymers are macromolecules which are modelized by self-avoiding or directed
random walks. Take for instance S = (Sn)n≥0 a random walk on Z starting at
0 and such that |Sn+1 − Sn| ≤ 1. By polymer of dimension 1+1 and size N we
will mean a realization of the directed random walk {(n, Sn)}0≤n≤N , where each
segment [(n, Sn), (n+ 1, Sn+1)] stands for a constitutive unit, called monomer.

Suppose now that a reward h is given to a configuration {(n, Sn)}0≤n≤N
each time it touches the interface, i.e. each time Sn = 0. One can then consider
a distribution on polymers of size N whose density with respect to the initial
distribution is equal, up to a renormalizing constant, to the Boltzmann factor

exp (h× Card{n ∈ {1, . . . , N}|Sn = 0}) .

Depending on the sign of h, this distribution favorizes or penalizes polymers
pinned to the interface, and letting N go to infinity, the model, called homoge-
neous pinning model, undergoes a localization/delocalization transition.

Pinning models can also be used to study the interaction between two poly-
mers, since the difference of two random walks is still a random walk. One can
think for example of the two complementary strands of a DNA molecule: in this
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case, the values of n for which Sn = 0 are the sites where the two strands are
pinned, and the delocalization transition corresponds to DNA denaturation (or
melting). One could argue that the binding strength between the two strands
actually depends on the base pair, which is A-T or G-C. This corresponds to
looking at a disordered model, i.e. a model in which the reward is n-dependent.
An assumption usually made is that the reward at site n writes

hn = h+ βωn

where h ∈ R, β ≥ 0 and ω = (ωn)n≥0 is a frozen realization of a sequence
of independent standard gaussian random variables. The space of parameters
is then partitioned in localized and delocalized phases, separated by a critical
curve β 7→ hc(β). The presence of disorder has important consequences on the
model. For example, one can show that there is localization for h < 0 provided
that disorder is strong enough (i.e. β large enough). If we consider the annealed
model (i.e. the model in which the Boltzmann factor is averaged over disorder),
we have the following lower bound:

hc(β) ≥ − logP(τ1 < +∞)−
β2

2
(1)

where τ1 is the first return time of S to 0. In the last few years, many rigorous
results were given on relevance of disorder, which in particular answer the fol-
lowing question: when is (1) an equality? For these questions, as well as classical
results on homogeneous and disordered pinning models, we refer to [6], [7], [13]
and references therein.

In this paper we remove the independence assumption on ω and study the
effect of correlations on the right-hand side of (1), i.e on the annealed critical
curve. This is partly motivated by the long-range correlations in DNA sequence,
see [4] and [10] on this topic. We also mention [1] and [9] where the effect of
sequence correlation is investigated, in somewhat different contexts. In [1], the
authors study the effect of a pulling force applied to the extremity of a DNA
strand on the number of broken base pairs (unzipping of DNA) in two correlated
scenarii: integrable and nonintegrable correlations. In [9], the authors consider
the effect of sequence correlation on the bubble size distribution: by bubbles
we mean broken base pairs, and if we keep in mind the analogy with pinning
models, it corresponds to the excursions of the directed random walk between
two visits at 0.

The disorder sequence in our model is a finite-order moving average of an
i.i.d sequence, which is the simplest correlated sequence one can look at, and
the reason for this choice will be clearer further in the text. This will be defined
in Section 2, as well as the renewal sequence τ = (τn)n≥0 (the contact points)
and the polymer measures. In Section 3, we introduce classical notions for these
models: the free energy, the phase diagram and the (quenched and annealed)
critical curve of the model. In the proof of Theorem 3.1, a new homogeneous
model emerges, whose hamiltonian does not only depends on the number of
renewal points but also on their mutual distances. Section 4 is dedicated to our



Julien Poisat/Pinning with correlated disorder 3

results and their proofs. We show in Theorem 4.1 that the difference between the
annealed critical curve in the correlated case and the annealed critical curve in
the i.i.d. case can be expressed in terms of the Perron-Frobenius eigenvalue of an
explicit transfer matrix, and we give a weak disorder asymptotic of this quantity
in Theorem 4.2. Note that the appearance of Perron-Frobenius eigenvalues is
reminiscent of results on periodic copolymers, see [3].

2. The model

2.1. Contact points between the polymer and the line

We follow the renewal theory approach of pinning. Let τ be a discrete renewal
process such that τ0 = 0 and τn =

∑n−1
k=0 Tk, where the inter-arrival times

(or jumps) Tk are i.i.d. random variables taking values in N
∗
. Furthermore,

K(n) = P(T0 = n) = L(n)
n1+α where α ≥ 0 and L is a slowly varying function. If

K(∞) := 1 −
∑

n≥1K(n) > 0 (resp. = 0), we say that the renewal process is
transient (resp. recurrent). If τ is recurrent, we can distinguish between positive
recurrence (α > 1 or α = 1 and L is such that

∑

n≥1 L(n)/n < +∞) and null
recurrence (α ∈ [0, 1) or α = 1 and L is such that

∑

n≥1 L(n)/n = +∞). We
will denote by δn the indicator of the event {n ∈ τ} =

⋃

k≥0{τk = n} so that
if ıN := sup{k ≥ 0|τk ≤ N} is the number of renewal points before N , then

ıN =
∑N

n=1 δn.
We also suppose that for all n ≥ 1, K(n) > 0 (which implies aperiodicity).

This assumption seems quite restrictive, but will be necessary in Section 4.2. If
this condition on K were not fulfilled, we would simply have to reduce the state
space of the matrices defined in Section 4 to {n ≥ 1|K(n) > 0}q (and assume
that K is aperiodic).

2.2. Finite range correlations

Let (εn)n∈Z be a collection of independent standard gaussian random variables
(independent from τ), q ≥ 1 a fixed integer, and (a0, . . . , aq) ∈ R

q+1 such that
a20 + . . . + a2q = 1. Define the disorder sequence ω = (ωn)n≥0 by the q-order
moving average ωn = a0εn + . . . + aqεn−q. Then ω is a stationary centered
gaussian process and its covariance function ρn := Cov(ω0, ωn) satisfies ρ0 = 1
and n > q ⇒ ρn = 0. From now, the notations Pω and Eω will be associated to
disorder.

We mention that our results are adaptable to non gaussian laws, provided
they have exponential moments.

2.3. The quenched and annealed polymer measures

We define the (free and constraint) quenched polymer measures, which depend
on two parameters, the averaged pinning reward h ∈ R and the amplitude of
disorder β ≥ 0:
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dPa
N,β,h,ω

dP
=

1

Za
N,β,h,ω

exp

(

N
∑

n=1

(βωn + h)δn

)

(1{a=f} + δN1{a=c})

where

Za
N,β,h,ω = E

(

exp

(

N
∑

n=1

(βωn + h)δn

)

(1{a=f} + δN1{a=c})

)

is the partition function. We also define their annealed counterparts:

d(P⊗ Pω)
a
N,β,h

d(P⊗ Pω)
=

1

Zann,a

N,β,h

exp

(

N
∑

n=1

(βωn + h)δn

)

(1{a=f} + δN1{a=c})

where
Zann,a

N,β,h = EωZ
a
N,β,h,ω.

3. Generalities

3.1. Free energy, phase diagram, and critical curve

We give some results which are well-known for i.i.d. disorder, and which can be
generalized to ergodic disorder (see [6, Thm 4.6, p.96]).

Proposition 3.1. For all h ∈ R and all β ≥ 0, there exists a nonnegative
constant F (β, h) such that for both a = c and a = f,

F (β, h) = lim
N→+∞

1

N
logZa

N,β,h,ω

Pω-almost surely and in L1(Pω).

Proof. If a = c, we use the Markov property as in [6, Prop 4.2, p.91] or [7, (3.1),
p.12] to write

logZc
N+M,β,h,ω ≥ logZc

M,β,h,ω + logZc
N,β,h,θMω

where θ is the shift operator. We then use Kingman’s subadditive theorem (see

[12]) (ω is ergodic since ρn
n→∞
−→ 0, see [5, Chp 14, §.2, Thm 2]). If a = f, we

use the same remark as in the proof of [6, Thm 4.1, p.94].

The phase diagram R+ × R is then divided into a localized phase

L = {(β, h)|F (β, h) > 0}

and a delocalized one
D = {(β, h)|F (β, h) = 0} .

For all β, define the critical point hc(β) := sup{h ∈ R|F (β, h) = 0}. By convex-
ity of F (as the limit of convex functions), D is convex so the critical curve β 7→
hc(β) is concave. Moreover, it is nonincreasing and hc(0) = − log(1 − K(∞)).
For detailed arguments, we refer to [6].
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3.2. Annealed free energy and annealed bound

The first difference that occurs when dealing with correlated disorder is that
integrating on ω the Boltzmann factor does not yield a classical homogeneous
model (see (3) below). As a consequence, we will need an additional argument
to define the annealed free energy.

Lemma 3.1 (Hammersley’s approximate subadditivity [8]). Let h : N 7→ R be
such that for all n, m ≥ 1,

h(n+m) ≤ h(n) + h(m) + ∆(n+m),

with ∆ a non decreasing sequence satisfying:

∞
∑

r=1

∆(r)

r(r + 1)
<∞.

Then, lim
n→+∞

h(n)

n
exists and is finite.

Theorem 3.1. For all h ∈ R and all β ≥ 0, there exists a nonnegative constant
F ann(β, h) such that for both a = c and a = f,

F ann(β, h) = lim
N→+∞

1

N
logZann,a

N,β,h.

Moreover, if hannc (β) := sup{h ∈ R|F ann(β, h) = 0} then

hc(β) ≥ hannc (β). (2)

Proof. First, we compute the variance (with respect to ω) of
∑N

n=1 ωnδn. For
every realization of τ , we have:

Var

(

N
∑

n=1

ωnδn

)

=
N
∑

i,j=1

Cov(ωi, ωj)δiδj =
N
∑

n=1

δn + 2
∑

1≤i<j≤N

ρj−iδiδj . (3)

Then, Zann,c

N,β,h = E

(

exp
(

(h+ β2

2 )
∑N
n=1 δn + β2

∑N−1
i=1

∑N−i
k=1 ρkδiδi+k

)

δN

)

. Now,

we want some sort of superadditivity for the annealed partition function. For a
polymer of size N +M , observe that

∑

1≤i<j≤N+M

ρj−iδiδj =
∑

1≤i<j≤N

ρj−iδiδj +
∑

N+1≤i<j≤N+M

ρj−iδiδj

+
∑

1≤i≤N<j≤N+M

ρj−iδiδj.

Conditioned on the event {N ∈ τ}, the second term has the same law as
∑

1≤i<j≤M ρj−iδiδj . Moreover, the third term is greater than a constant C only
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depending only ρ and q. We can then write

Zann,c
N+M,β,h

≥ E



exp



(h+
β2

2
)

N+M
∑

n=1

δn + β2
∑

1≤i<j≤N+M

ρj−iδiδj



 δNδN+M





≥ eCβ
2

Zann,c

N,β,hZ
ann,c

M,β,h

and we conclude (for a = c) by using Lemma 3.1 to − logZann,c

N,β,h with ∆(n) =

−Cβ2.For a = f, we use the same remark as in [6, Thm 4.1, p.94] (observe that
for a fixed value of the parameters h and β, the amount of energy necessary to
complete an excursion is bounded). As in [6, Prop 5.1] we use Jensen’s inequality
to prove that F (β, h) ≤ F ann(β, h), which in turn yields the annealed bound
(2).

When disorder is i.i.d, (2) becomes hc(β) ≥ hc(0)− β2/2 := hannc (β) and the
question of knowing whether this is an equality was studied in several papers
and monographs (for example, [7], [13], [6] and references therein) where we
learn that the answer depends on the values of α and β.

In the next subsection, we will study the effect of correlations on hannc in our
model.

4. The annealed critical curve

4.1. The result for q = 1 and the reason why the technique used

does not apply to q > 1

Proposition 4.1. If q = 1 then we have

hannc (β) = hc(0)−
β2

2
− log

(

1 +
K(1)

1−K(∞)

(

eρ1β
2

− 1
)

)

Proof. If q = 1, equality (3) gives:

Zann,c
N,β,h = E

(

exp

(

(h+
β2

2
)ıN + ρ1β

2
N−1
∑

n=1

δnδn+1

)

δN

)

.

The energetic contribution of a jump can only take two values: h+(2ρ1+1)β2/2
if the jump has size 1 and h+ β2/2 otherwise. The rest of the proof is a slight
modification of the proof of [6, Prop 1.1], except we must consider K(q=1) with

K(q=1)(1) := eρ1β
2

K(1) and K(q=1)(n) := K(n) if n > 1.

If q ≥ 2, the situation is more complicated because in this case we must
consider the energetic contribution of a q-tuple of jumps instead of one of a
single jump. For example, if q = 2, the energetic contribution of a jump of size 1
can be h+(1+2ρ1)β

2/2 or h+(1+2ρ1+2ρ2)β
2/2, depending on the value of the

jump just before. This idea of looking at the sequence of q-tuples of consecutive
inter-arrival times is developed in the next section.
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4.2. An auxiliary Markov chain and the transfer matrix

From now we assume q ≥ 2. We will denote by t = (t0, . . . , tq−1) a q-tuple in
(N∗)q and if (tn)n≥0 is a sequence, then tn := (tn, . . . , tn+q−1). The projection
on the first coordinate t 7→ t0 will be denoted by π0. Let G be a function defined
on such q-tuples by G(t) =

∑q−1
k=0 ρt0+...+tk , and which should be interpreted

like this: if t is the q-tuple of the inter-arrival times of q+1 consecutive renewal
points on the interface, then G(t) gives the total contribution of correlations
between disorder at theses points.

Notice that when we compute the value of G for some q-tuple of inter-arrival
times, any inter arrival time strictly greater than q ”does not count”. To put
it more precisely, we can consider a ”cemetery state”, denoted by ⋆, and for all
t ∈ N

∗ and t we define t∗ := t1{t≤q} + ⋆1{t>q} and t
∗
= (t∗0, . . . , t

∗
q−1). Then G

can be considered as a function of t
∗
instead of t, if we adopt the following natural

conventions: ρ⋆ = 0 and for all t ∈ {1, . . . , q, ⋆}, ⋆+ t = t+ ⋆ = ⋆. From now we
will use the following notations: E = {1, . . . , q, ⋆} and K(⋆) =

∑

n>qK(n).

We will now make the following remark: the sequence of q-tuples (Tn)n≥0 is
a Markov chain on a countable state space, and its transition probability from
state s = (s0, . . . , sq−1) to state t = (t0, . . . , tq−1) writes

Q(s, t) := K(tq−1)

q−1
∏

k=1

1{si=ti−1}.

Note that Q is irreducible because of the positiveness of the K(n)’s. We now
define the nonnegative matrices Qβ and Q∗

β,which will play the role of transfer
matrices, by

Qβ(s, t) = eβ
2G(t) K(tq−1)

1−K(∞)

q−1
∏

i=1

1{si=ti−1}

and

Q∗
β(s

∗, t
∗
) = eβ

2G(t∗)
K(t∗q−1)

1−K(∞)

q−1
∏

i=1

1{s∗
i
=t∗

i−1}
.

Since Q∗
β is an irreducible nonnegative matrix on the finite state space Eq,

we know by the Perron-Frobenius theorem that there exists a Perron-Frobenius
eigenvalue λ(β) and an associated right eigenvector ν∗ = (ν∗(t

∗
)) with positive

components (see [11]).

4.3. Statement of the results

We are now ready to state our main results. The first one expresses the annealed
critical curve in terms of the Perron-Frobenius eigenvalue of the transfer matrix
Q∗
β.
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Theorem 4.1. For all α ≥ 0, for all β ≥ 0,

hannc (β) = hc(0)− Λ(β)

where

Λ(β) :=
β2

2
+ logλ(β).

It seems difficult to give a nice explicit expression of Λ(β), since it is the
Perron-Frobenius eigenvalue of a matrix of size (q + 1)q. For q = 2, we have
computed

Λ(β) =
β2

2
+ logφ(β) + log





1 +
√

1− ψ(β)
φ(β)2

2





where

φ(β) = 1 +
K(1)

1−K(∞)
(e(ρ1+ρ2)β

2

− 1) +
K(2)

1−K(∞)
(eρ2β

2

− 1)

ψ(β) = 4
K(1)

1−K(∞)

(

1−
K(1)

1−K(∞)

)

eρ1β
2

(eρ2β
2

− 1)

×

(

1 +
K(2)

1−K(∞)−K(1)
(eρ2β

2

− 1)

)

.

In the general case, the asymptotic behaviour of the annealed critical curve
for weak disorder can be explicited:

Proposition 4.2. Let τ̂ be the renewal process starting from 0 with inter-arrival
time law K̂ := K

1−K(∞) . Then we have

hc(0)− hannc (β)
β→0
∼

(

1 + 2

q
∑

n=1

ρnP(n ∈ τ̂ )

)

β2

2
.

By a classical argument (see [7, p.6] or [6, Rmk 1.19, p.40]) we will restrict
ourselves in what follows to τ recurrent, i.e. K(∞) = 0, hc(0) = 0 and τ̂ = τ .

Before going into details, we outline the proof of Theorem 4.1. First, we
introduce in Lemma 4.1 new Markov transition kernels built from the transfer
matrices and an eigenvector associated to λ(β). From these we give a new law for
the sequence of q-tuples of consecutive inter-arrival times, to which we associate
what could be called a “q-correlated” renewal process. This process is in fact
a particular Markov renewal process (these are processes in which the return
times are not necessarily i.i.d., but driven by a Markov chain, see [2] on this
subject). With Lemma 4.4, we link the annealed free energy of our initial model
to the homogeneous free energy of the new “q-correlated” renewal process. This
will be the starting point of the proof of Theorem 4.1. Note that for positive
recurrent renewal processes we give a shorter proof than in the general case.
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4.4. A ”q-correlated” renewal process related to the model

For all q-tuples t, define ν(t) = ν∗(t
∗
).

Lemma 4.1. Q̃β(s, t) :=
Qβ(s,t)ν(t)
λ(β)ν(s) and Q̃∗

β(s
∗, t

∗
) :=

Q∗

β(s
∗,t

∗

)ν∗(t
∗

)

λ(β)ν∗(s∗) are Markov

transition kernels.

Proof. For Q̃∗
β, the result is a direct consequence of the relation Q∗

βν
∗ = λ(β)ν∗

and of the positiveness of λ(β) and ν. For Q̃β , we write for all s = (s0, . . . , sq−1),
∑

t

Qβ(s, t)ν(t) =
∑

t≥1

eβ
2G(s1,...,sq−1,t)K(t)ν(s1, . . . , sq−1, t)

=
∑

t≥1

eβ
2G(s∗1 ,...,s

∗

q−1,t
∗)K(t)ν∗(s∗1, . . . , s

∗
q−1, t

∗)

=
∑

t∗∈E

eβ
2G(s∗1,...,s

∗

q−1,t
∗)K(t∗)ν∗(s∗1, . . . , s

∗
q−1, t

∗)

= λ(β)ν∗(s∗)

= λ(β)ν(s).

The result follows in the same way as for Q̃∗
β.

Since Q̃∗
β is a finite irreducible transition matrix (it has the same incidence

matrix as Q∗
β, which is irreducible), it has a unique invariant probability mea-

sure that we denote by µ∗. If we define µ a measure on (N∗)q by µ(t) =
K(t0)
K(t∗0)

. . .
K(tq−1)
K(t∗

q−1)
µ∗(t

∗
), then

Lemma 4.2. µ is the invariant probability of Q̃β.

Proof. By a direct computation of
∑

t µ(t), µ is a probability. Now we prove
that it is invariant. For all t ∈ (N∗)q, we have

∑

s

µ(s)Q̃β(s, t)

= λ(β)−1eβ
2G(t)ν(t)K(tq−1)

∑

s≥1

µ(s, t0, . . . , tq−2)

ν(s, t0, . . . , tq−2)

= λ(β)−1eβ
2G(t∗)ν∗(t

∗
)K(tq−1)

×
∑

s≥1

K(s)K(t0) . . .K(tq−2)

K(s∗)K(t∗0) . . .K(t∗q−2)

µ∗(s∗, t∗0, . . . , t
∗
q−2)

ν∗(s∗, t∗0, . . . , t
∗
q−2)

= λ(β)−1eβ
2G(t

∗

)ν∗(t
∗
)K(t∗q−1)

µ(t)

µ∗(t
∗
)

∑

s≥1

K(s)

K(s∗)

µ∗(s∗, t∗0, . . . , t
∗
q−2)

ν∗(s∗, t∗0, . . . , t
∗
q−2)

= (λ(β)−1eβ
2G(t∗)ν∗(t

∗
)K(t∗q−1)

µ(t)

µ∗(t
∗
)

∑

s∗∈Eq

µ∗(s∗, t∗0, . . . , t
∗
q−2)

ν∗(s∗, t∗0, . . . , t
∗
q−2)

= µ(t)
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where for the last equality we use the fact that µ∗ is the invariant probability
of Q̃∗

β .

Let (T̃k)k≥0 be a process of inter-arrival times in N
∗ defined by the ini-

tial distribution P(T̃0 = t0, . . . , T̃q−1 = tq−1) =
∏q−1
k=0

K(tk)
1−K(∞) and the relation

P(T̃k = tq|T̃k−q = t0, . . . , T̃k−1 = tq−1) := Q̃β((t0, . . . , tq−1), (t1, . . . , tq−1, tq))
for all k ≥ q. From this we define the process τ̃ by τ̃0 = 0 and for all n ≥ 1,
τ̃n =

∑n−1
k=0 T̃k. We generalize the definitions and notations of Section 2.1 to

the process τ̃ : P̃, ı̃N , and so on. The process τ̃ is what we have called a “q-
correlated“ renewal process, since the law of one inter-arrival time depends on
the value of the q previous ones.

Lemma 4.3. For all h ∈ R and all β ≥ 0,

F ann(β, h) = lim
N→+∞

1

N
logE

(

e(h+
β2

2 )ıN+β2 ∑ıN
n=1G(Tn)

)

(the sum in the right hand side is void on the event {ıN = 0}).

Proof. On one hand, we have by integrating over disorder the partition function:

Zann
N,β,h = E



exp



ıN (h+
β2

2
) + β2

∑

1≤i<j≤N

ρj−iδiδj









= E

(

exp

(

ıN (h+
β2

2
) + β2

N−1
∑

i=1

N−i
∑

k=1

ρkδiδi+k

))

.

On the other hand,
∑ıN

n=1G(Tn) =
∑N

i=1

∑q
k=1 ρkδiδi+k. We prove the lemma

by showing that there exists a constant C(ρ, q) such that

∣

∣

∣

∣

∣

ıN
∑

n=1

G(T n)−

N−1
∑

i=1

N−i
∑

k=1

ρkδiδi+k

∣

∣

∣

∣

∣

≤ C(ρ, q).

Indeed,

N
∑

i=1

q
∑

k=1

ρkδiδi+k =

N−1
∑

i=1

q
∑

k=1

ρkδiδi+k +

q
∑

k=1

ρkδNδN+k

=

N−1
∑

i=1

N−i
∑

k=1

ρkδiδi+k +

q
∑

k=1

ρkδNδN+k

+

N−1
∑

i=N−q+1

q
∑

k=N−i+1

ρkδiδi+k

where the second term is bounded in absolute value by q ×maxi=1...q |ρi| and

the third term by q(q+1)
2 ×maxi=1...q |ρi|.
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Lemma 4.4. For all h ∈ R and all β ≥ 0,

F ann(β, h) = lim
N→+∞

1

N
log Ẽ

(

e(h+Λ(β))ı̃N
)

.

Proof. Remember that we suppose K(∞) = 0. By decomposing on the possible
values of ıN , we have on one hand:

E

(

e(h+
β2

2 )ıN+β2 ∑ıN
n=1G(Tn)

)

= P(ıN = 0) +
N
∑

n=1

e(h+
β2

2 )n

×
∑

t0,...tn
t0+...+tn−1≤N
t0+...+tn>N

eβ
2 ∑

n
k=1 G(tk)Q(t0, t1) . . . Q(tn−1, tn)K

⊗q(t0)

=
∑

t>N

K(t) +

N
∑

n=1

e(h+Λ(β))n

λ(β)n

∑

t0,...tn
t0+...+tn−1≤N
t0+...+tn>N

Qβ(t0, t1) . . . Qβ(tn−1, tn)K
⊗q(t0)

=
∑

t>N

K(t) +

N
∑

n=1

e(h+Λ(β))n

×
∑

t0,...tn
t0+...+tn−1≤N
t0+...+tn>N

ν(t0)

ν(tn)
Q̃β(t0, t1) . . . Q̃β(tn−1, tn)K

⊗q(t0)

and on the other hand,

Ẽ

(

e(h+Λ(β)) ˜ıN
)

=
∑

t>N

K(t) +

N
∑

n=1

e(h+Λ(β))n
∑

t0,...tn
t0+...+tn−1≤N
t0+...+tn>N

Q̃β(t0, t1) . . . Q̃β(tn−1, tn)K
⊗q(t0)

Since ν(t) = ν∗(t
∗
) and ν∗ is a finite vector with positive components, there

exists c and C two positive constants such that for all t0, tn, c ≤
ν(t0)

ν(tn)
≤ C. We

conclude by using this remark and Lemma 4.3.

4.5. A short proof of Theorem 4.1 in the positive recurrent case

In accordance with Lemma 4.4, we will work on the homogeneous pinning model
of the process τ̃ . In the positive recurrent case, a renewal-type lemma is obtained,
which allows us to conclude.
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Lemma 4.5. If α > 1, or if α = 1 and L is such that
∑

n≥1 L(n)/n <∞ then
ı̃N
N

tends almost surely and in L1 to a positive constant.

Proof. From Lemma 4.2, the sequence of q-tuples (T̃k, . . . , T̃k+q−1)k≥0 is a pos-
itive recurrent Markov chain, with invariant probability measure µ. If the pre-
vious conditions on α are satisfied, π0 : t → t0 (the projection on the first
coordinate) is µ-integrable. As a consequence,

τ̃N
N

=
1

N

N−1
∑

k=0

π0(T̃k, . . . , T̃k+q−1)
a.s.
→ c :=

∑

t1,...,tq−1≥1

t0 × µ(t0, . . . , tq−1) <∞.

We deduce from this that ˜ıN
N

a.s.
→ 1

c
> 0 by using the inequality τ ˜ıN ≤ N ≤ τ ˜ıN+1.

The convergence in L1 follows from the Dominated Convergence Theorem.

From Lemma 4.4, h ≤ −Λ(β) implies that F ann(β, h) = 0. Suppose now that
h = −Λ(β) + ǫ with ǫ > 0. By Jensen’s inequality, we have that

1

N
log Ẽ

(

e(h+Λ(β)) ˜ıN
)

≥ ǫ
Ẽ( ˜ıN )

N
.

We conclude that F ann(β, h) > 0 by using Lemma 4.5 and Lemma 4.4.

4.6. Proof of Theorem 4.1 in the general case

We now give a proof without any assumption on α. The starting point is Lemma
4.4 and we will actually identify the free energy of the pinning model associated
to τ̃ . Let’s fix ǫ > 0. We introduce the matrices

Q̃β,F (s, t) = eǫ−Ftq−1Q̃β(s, t)

and
Q̃∗
β,F (s

∗, t
∗
) = eǫ−FφF (t∗q−1)Q̃∗

β(s
∗, t

∗
)

where φF (s
∗) = s∗ if s∗ ∈ {1, . . . , q} and

φF (⋆) = −
1

F
log

∑

t>q e
−FtK(t)

K(⋆)

i.e. φF (⋆) verifies

e−FφF (⋆)K(⋆) =
∑

t>q

e−FtK(t). (4)

We will denote by λF the Perron-Frobenius eigenvalue of the irreducible matrix
Q̃∗
β,F .

Lemma 4.6. There is a unique positive real denoted by F̃ (ǫ) such that

λF̃ (ǫ) = 1.
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Proof. Elementwise, Q̃∗
β,F is smooth and strictly decreasing with respect to F .

Since λF is a simple root of the characteristic equation of Q̃∗
β,F (see [11, Thm

1.1]), λF is also a smooth function of F by the Implicit Function Theorem. From
the formula (see [11])

λF = max
v≥0∑

Eq vi=1

min
j:vj>0

(Q̃∗
β,F v)j

vj

one also obtains (see [6, Appendix A.8]) that λF is strictly decreasing in F and
that λF → 0 as F → ∞. Since λ0 = exp ǫ > 1, the result follows.

Let ν̃∗ be a Perron-Frobenius right eigenvector of Q̃∗
β,F̃ (ǫ)

. We define ν̃ by

ν̃(t) = ν̃∗(t
∗
). (5)

Lemma 4.7. The matrices

P (s, t) := Q̃β,F̃ (ǫ)(s, t)
ν̃(t)

ν̃(s)
(6)

and

P ∗(s∗, t
∗
) := Q̃∗

β,F̃ (ǫ)
(s∗, t

∗
)
ν̃∗(t

∗
)

ν̃∗(s∗)
(7)

are stochastic and irreducible matrices. Furthermore, if we denote by l∗ the
invariant probability measure of P ∗, then l defined by

l(s) := l∗(s∗)

q−1
∏

j=0

K(sj)e
−F̃ (ǫ)sj

K(s∗j )e
−F̃ (ǫ)φF̃(ǫ)(s

∗

j
)

(8)

is the invariant probability measure of P .

Proof. The proof is left to the reader. It consists in straightforward computations
very similar to Lemma 4.1 and Lemma 4.2. We use Lemma 4.6 to prove (7),and
(4), (5), (7) to prove (6).

Note that, like Qβ and Q̃β, P satisfies the “consistancy“ condition

P (s, t) 6= 0 ⇔ si = ti−1∀i ∈ 1, . . . , q − 1.

We define the process τ (F ) by τ
(F )
0 = 0 and

τ (F )
n =

n−1
∑

k=0

T
(F )
k =

n−1
∑

k=0

π0(T
(F )

k )

where (T
(F )
n )n≥0 is a Markov chain of transition P and initial distribution l.



Julien Poisat/Pinning with correlated disorder 14

Lemma 4.8. There exists two constants C ≥ c > 0 such that

ceF̃ (ǫ)N
P(N ∈ τ (F )) ≤ Ẽ

(

exp(ǫı̃N )δ̃N

)

≤ CeF̃ (ǫ)N
P(N ∈ τ (F ))

Proof. Decomposing the partition function and using (6) we get

Ẽ

(

exp(ǫı̃N )δ̃N

)

=

N
∑

n=1

∑

t0,...,tn−1

t0+...+tn−q=N

eǫnQ̃β(t0, t1) . . . Q̃β(tn−q−1, tn−q)K
⊗q(t0)

= eF̃ (ǫ)N
N
∑

n=1

∑

t0,...,tn−q

t0+...+tn−1=N

P (t0, t1) . . . P (tn−q−1, tn−q)l(t0)

×

(

ν̃(t0)

ν̃(tn−q)

K⊗q(t0)e
−F̃ (ǫ)(t0+...+tq−1)

l(t0)
eǫq

)

and, from (5), (8) and the finiteness of Eq, the term in parenthesis is uniformly
bounded by two positive constants C and c.

From this we deduce:

Lemma 4.9. For all ǫ > 0,

lim
1

N
log Ẽ

(

exp(ǫı̃N )δ̃N

)

= F̃ (ǫ) > 0.

Proof. Since P(N ∈ τ (F )) ≤ 1, it will be sufficient to prove that

lim inf
N→∞

P(N ∈ τ (F )) > 0.

We use an argument that has been already used in the study of Markov renewal
processes arising in the study of periodic pinning (see [2, Chp VII.4], [3] or
[6, Chp 3]). We choose arbitrarily the state 1 = (1, . . . , 1) ∈ (N∗)q. Consider
(θn)n≥0 the following sequence of stopping times:

θ0 = inf{n ≥ 0|T
(F )

n = 1 }

θk+1 = inf{n > θk|T
(F )

n = 1 }

Since (T
(F )

n )n≥0 is positive recurrent, these stopping times are finite almost

surely. If we now define the process τθ by τθn := τ
(F )
θn

then it is clear that

P(N ∈ τ (F )) ≥ P(N ∈ τθ)
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By the strong Markov property, τθ is a (delayed) renewal process whose inter-
arrival times are on average equal to

m := E1 (T
(F )
0 + . . .+ Tθ0−1)

F = E1

∞
∑

n=0

π0(T
(F )

n )1{θ0>n}

=
∑

t

π0(t)E1

∞
∑

n=0

1
{T

(F )
n =t,θ0>n}

=
∑

t

π0(t)
l(t)

l(1 )

=

∑

k≥1 k(l ◦ π
−1
0 )(k)

l(1 )
<∞.

By the Renewal Theorem, we have

P(N ∈ τθ)
N→∞
→ 1/m > 0

and the proof is complete.

Theorem 4.1 is now a direct consequence of Lemma 4.4 combined with Lemma
4.9.

4.7. The weak disorder asymptotic: proof of Proposition 4.2

We now give some lemmas which will be useful for the proof of Proposition 4.2.
If I ⊂ Eq then we will denote by Q∗,I

0 the matrix with entries Q∗,I
0 (s∗, t

∗
) =

Q∗
0(s

∗, t
∗
)1{t∗∈I}. If P is an n by n matrix then Com(P ) is the matrix of the

cofactors of P , i.e. Com(P )(i, j) = (−1)i+j detMi,j where Mi,j is the n− 1 by
n− 1 matrix obtained by deleting the i-th line and the j-th column of P .

Lemma 4.10. Q∗
0 is primitive and its invariant probability measure is K⊗q(s∗) =

K(s∗0) . . .K(s∗q−1).

Proof. For all t
∗
∈ Eq,

(K⊗qQ∗
0)(t

∗
) =

∑

s∗∈Eq

K⊗q(s∗)Q∗
0(s

∗, t
∗
)

=
∑

s∗∈E

K⊗q(s∗, t∗0, . . . , t
∗
q−2)K(t∗q−1)

=
∑

s∗∈E

K(s∗)K(t∗0) . . .K(t∗q−2)K(t∗q−1)

= K⊗q(t
∗
)
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so K⊗q is the invariant probability measure of Q∗
0. Moreover,

(Q∗
0)
q(s∗, t

∗
) = P

(

T ∗
q = t∗0, . . . , T

∗
2q−1 = t∗q−1|T

∗
0 = s∗0, . . . , T

∗
q−1 = s∗q−1

)

= P
(

T ∗
q = t∗0, . . . , T

∗
2q−1 = t∗q−1

)

= K⊗q(t
∗
)

which is positive under the assumptions of Section 2.1. Since (Q∗
0)
q > 0, Q∗

0 is
primitive.

Lemma 4.11. Tr (Com(Q∗
0 − Id)) 6= 0 and for all s∗ ∈ Eq

Tr
(

tCom(Q∗
0 − Id)Q

∗,{s∗}
0

)

Tr (tCom(Q∗
0 − Id))

= K⊗q(s∗).

Proof. In this proof we will use the properties of the Perron-Frobenius eigenvalue
of a primitive matrix, that one can find for example in [11].

We define for all s∗ ∈ Eq:

p(s∗) :=
Tr
(

tCom(Q∗
0 − Id)Q

∗,{s∗}
0

)

Tr (tCom(Q∗
0 − Id))

.

By Lemma 4.10, we only need to prove that p is the invariant probability measure
of Q∗

0.
Since Q∗

0 is stochastic, 1 is clearly a right eigenvalue of Q∗
0 with associated

eigenvector 1 (the vector with 1 on all its components). Moreover, Q∗
0 is primi-

tive (Lemma (4.10)) so the Perron-Frobenius eigenvalue exists and all we have
to prove is that |λ| ≤ 1 for every (possibly complex) eigenvalue of Q∗

0. Indeed,
if v is an eigenvector associated with such an eigenvalue, and s∗ ∈ Eq is such
that v(s∗) = max

t
∗

∈Eq
|v(t

∗
)| then

λv(s∗) =
∑

t
∗

∈Eq

Q∗
0(s

∗, t
∗
)v(t

∗
)

so |λ||v(s∗)| ≤ |v(s∗)|, i.e |λ| ≤ 1. This proves that 1 is the Perron-Frobenius
eigenvalue of Q∗

0, with associated eigenspace R1 .
Now, from [11, Ch. 1, Corollary 2], we have that the rows of tCom(Q∗

0 − Id)
are all equal to the same left eigenvector (for the eigenvalue 1) of Q∗

0, that we
will denote by L. A first consequence is that Tr (Com(Q∗

0 − Id)) 6= 0 because
the entries of L are either all positive or all negative. Another consequence is
that if we define

m = (m(s∗))s∗∈Eq =
(

Tr
(

tCom(Q∗
0 − Id)Q

∗,{s∗}
0

))

s∗∈Eq

then m(s∗) = L(s∗) for all s∗ ∈ Eq. Moreover, from the relation

(Q∗
0 − Id)tCom(Q∗

0 − Id) = 0
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we deduce that
∑

s∗∈Eq

m(s∗) = Tr
(

tCom(Q∗
0 − Id)

)

. Since p is simply m renor-

malized by
∑

s∗∈Eq m(s∗), it is the invariant probability of Q∗
0.

Proof of Proposition 4.2. In what follows, we will use the notations Q′
0 and Q′′

0

as shortcuts for
∂Q∗

β

∂β
(0) and

∂2Q∗

β

∂β2 (0). First we will show that β 7→ λ(β) is

infinitely differentiable (C2 would be enough). Let’s define φ(β, λ) = det(Q∗
β −

λ Id) so that φ(β,X) is the characteristic polynomial of Q∗
β, and φ(β, λ(β)) = 0

for all β. The Perron-Frobenius eigenvalue of a nonnegative primitive matrix
being a simple root of its characteristic equation, ∂φ

∂λ
(β, λ(β)) 6= 0 for all β ≥ 0.

Since φ is infinitely differentiable, the same holds for λ by the Implicit Function
Theorem.

Now, a straightforward computation shows that (we use that λ(0) = 1)

∂Λ

∂β
(0) = λ′(0)

∂2Λ

∂β2
(0) = 1 + λ′′(0)− λ′(0)2.

All we need to show then is

λ′(0) = 0 (9)

λ′′(0) = 2

q
∑

n=1

ρnP(n ∈ τ). (10)

By derivating the relation φ(β, λ(β)) = 0 we obtain

∂φ

∂β
(0, 1) + λ′(0)

∂φ

∂λ
(0, 1) = 0.

We already know that ∂φ
∂λ

(0, 1) 6= 0 and since Q′
0 = 0 then ∂φ

∂β
(0, 1) = 0, which

leads to (9).
All we have to do now is to prove (10). A Taylor expansion of det(Q∗

β−λ(β) Id)
gives:

det(Q∗
β − λ(β) Id) = det

(

Q∗
0 − Id+(Q′′

0 − λ′′(0) Id)
β2

2
+ o(β2)

)

= Tr
(

tCom(Q∗
0 − Id)(Q′′

0 − λ′′(0) Id)
) β2

2
+ o(β2)

where we have used the differential of the determinant: det(A+H) = det(A) +
Tr(tCom(A)H) + o(‖H‖). But since det(Q∗

β − λ(β) Id) = 0 we have

Tr
(

tCom(Q∗
0 − Id)(Q′′

0 − λ′′(0) Id)
)

= 0

which yields

λ′′(0) =
Tr(tCom(Q∗

0 − Id)Q′′
0)

Tr(tCom(Q∗
0 − Id))

.
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Note that Tr(tCom(Q∗
0 − Id)) 6= 0 (Lemma 4.10).

Let’s now consider Q′′
0 as a function of (ρn)1≤n≤q. Observe that

Q′′
0(s

∗, t
∗
) = 2G(t

∗
)Q∗

0(s
∗, t

∗
)

so Q′′
0 linearly depends on (ρn)1≤n≤q. We have then

Q′′
0(ρ1, . . . , ρq) = Q′′

0 (0, . . . , 0, ρq) +Q′′
0(ρ1, . . . , ρq−1, 0)

The result of the theorem is clearly true for q = 1 (remember that we have an
explicit expression of Λ in this case, see Proposition 4.1 ) so we can suppose
that it is true for a (q− 1)-order moving average and show that the result holds
for q. The induction hypothesis then implies

Tr(tCom(Q∗
0 − Id)Q′′

0 (ρ1, . . . , ρq−1, 0))

Tr(tCom(Q∗
0 − Id))

= 2

q−1
∑

n=1

ρnP(n ∈ τ)

so the only thing left to prove is that

Tr(tCom(Q∗
0 − Id)Q′′

0 (0, . . . , 0, ρq))

Tr(tCom(Q∗
0 − Id))

= 2ρqP(q ∈ τ). (11)

Let’s define Iq = {s∗ ∈ Eq s.t. ρq appears in G(s∗)} and notice that

Q′′
0(0, . . . , 0, ρq) = 2ρqQ

∗,Iq
0 .

We obtain from Lemma 4.11:

Tr(tCom(Q∗
0 − Id)Q

∗,Iq
0 )

Tr(tCom(Q∗
0 − Id))

=
∑

t
∗∈Iq

K⊗q(t
∗
)

= P(q ∈ τ)

which proves (11).

5. Open questions

Here are possible developments and open questions we wish to discuss.

1. What happens to these results if we consider a more general moving av-
erage ωn =

∑

k≥0 akεn−k, where
∑

k≥0 a
2
k = 1? For example, it would

be interesting to consider power-like decaying correlations: the difficulty
is that much of the arguments used for finite order moving averages, in
particular the reduction to a finite space E = {1, . . . , q, ⋆}, cannot be
applied.

2. In which cases do we have hc(β) = hannc (β)? In the case of i.i.d. disorder, it
has been shown that for α < 1/2, disorder is relevant (hc(β) = hannc (β) for
small enough β), while for α > 1/2, it is irrelevant. Does the same critical
value αc = 1/2 hold in the correlated case?
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Poincaré Probab. Statist. 25(1), 93–98 (1989)

[13] Toninelli, F.L.: Localization transition in disordered pinning models. In:
Methods of Contemporary Mathematical Statistical Physics, Lecture Notes
in Mathematics, pp. 129–176 (2009)

arXiv.org:0807.4285

