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J. Poisat, Université de Lyon, Institut Camille Jordan, 43 bld du 11 novem-
bre 1918, 69622 Villeurbanne, France, e-mail: poisat@math.univ-lyon1.fr

1



1 Introduction

Polymers are macromolecules constituted of repeating units called monomers.
They can be either natural (like proteins and DNA) or synthetic (like PVC,
polystyrene, silicone, ...). This paper will focus on pinning models (see [8],
[9] and references therein), which are used to study the interaction between
a polymer and an interface (the membrane of a cell or the interface between
two solvents for instance) or between two polymers (which can be the two
strands of a DNA molecule).

In this model, a polymer is represented by the graph of a random walk
(n, Sn)n≥0, where each segment [(n, Sn), (n+ 1, Sn+1)] stands for a monomer
unit. In a simplified way, the energy of a polymer, denoted H, is the number
of times the polymer touches or crosses the interface (the axis line), i.e the
number of times Sn is equal to 0. The probability of a configuration S =
(Sn)n≥0 is then given by the Boltzmann factor

Pβ(S) =
exp(βH)

Z
P(S)

where β is the inverse temperature, Z is a normalization constant (the par-
tition function) and P is the measure of the initial random walk. This new
measure gives additional weight to configurations in which the polymer is lo-
calized near the interface, especially if the temperature is low. By modifying
the parameter β, the model exhibits a localization-delocalization phenomena
as the result of a competition between energy and entropy. Notice that all we
need to define the energy of a polymer is the renewal sequence of the pinning
points, so instead of giving the law of the random walk, we will give the law
of the return time to 0, which at the same time generalizes the model.

One application of this model is the study of the denaturation (or melting)
of DNA. This is the process by which a double-stranded molecule of DNA
unwinds and gives two single-stranded strings; and it is due to the breaking
of the hydrogen bonds between the two strands. In our model, the pinning
points represent the hydrogen bonds that remain unbroken, and since the
binding energy depends on the nucleotide sequence (there are two possible
pairs: adenine-thymine and guanine-cytosine), we want to consider an inho-
mogeneous, or disordered version of our model. Moreover, it has been stated
that the nucleotide sequence in some particular genes is highly correlated
(see [11] and [3]) so the model we choose to study is a disordered pinning
model with a correlated sequence of bases ω = (ωn)n≥0.

This paper is organized as follows. After defining the model more pre-
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cisely, we will prove the existence of a quantity called free energy. Then we
will prove the existence of a critical curve which separates the localized phase
and the delocalized phase in the phase diagram. The end of the section will
be dedicated to annealed bounds and we will have to deal with exponential
moments of the form (here the integration is with respect to the disorder ω)

E

(
exp(β

N∑

n=1

ωn1{Sn=0})

)

which is not easy when the ωn’s are not i.i.d. We propose three ways to
tackle with this difficulty:

First and second-order autoregressive process (Sections 5 and 6).
In this first model, the disorder sequence is given by a gaussian process
with correlation function ρ = (ρn)n≥1 which is null, except for n ≤ 2.
This may be a quite unrealistic assumption on the correlation, but the
model has the advantage of being solvable. Indeed, explicit annealed
bounds are given, and the analysis at high and low temperature is done.
In the first-order autoregressive disorder case, two methods are used.
The first one is longer but more explanatory, and it involves a modified
homegeneous model. Note that we consider a gaussian disorder because
the results have a more readable expression, but it can be generalized
for any law.

Weakly dependent disorder (Section 7). In this part we follow a differ-
ent approach, where we use the new dependence coefficients (see [6] for
a reference) and an approximate subadditive theorem (see [10]).

Causal shift with independent input (Section 8). In this last model,
inspired from time series, the disorder is a function (usually a series)
of independent inputs. This particular structure allows us to give an
annealed bound.

2 Notations

Let (Ω,A,P) be a probability space and τ = (τn)n≥0 be a renewal process
representing the contact points of the polymer with the interface, such that
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{
τ0 := 0

K(n) := P(τ1 = n) = L(n)
n1+α , n ≥ 1

where α > 0 and L is a slowly varying function. Sometimes we will use τ
as the (random) set of values that the process takes, i.e

n ∈ τ ⇐⇒ ∃i ≥ 0 s.t τi = n.

We define K(∞) = 1 −
∑

n≥1K(n) so that τ is recurrent if and only if
K(∞) = 0. In that case, it is positive recurrent if and only if α > 1. We will
assume that K(·) is aperiodic and that K(∞) < 1.

For any real h, any nonnegative real β, any real sequence ω and any
integer N (the size of the polymer) we define the partition function :

Za

N,β,h,ω := E

(
exp

(
N∑

n=1

(βωn + h)1{n∈τ}

)
1{τ∈Ωa}

)

where a = f (free) or a = c (constraint) and

{
Ωf = Ω
Ωc = {N ∈ τ} .

Sometimes we will use the notation

ıN := sup{k ≥ 0 | τk ≤ N} =

N∑

n=1

1{n∈τ} (1)

Let (E,A, µ, T ) be another probability space where T is a measure-
preserving transformation on E that is µ-ergodic. We are interested in the
existence of the free energy when ωn = f(T nx) for x ∈ E and for a suitable
measurable function f . In this case the partition function will be denoted by
Za
N,β,h,x.

Remark 2.1. When β = 0 (homogeneous case), we will simply denote the
partition function by ZN,0,h.

We will also define a new law for the polymer with parameters (β, h, ω)
and density:

dP
a
N,β,h,ω

dP
(τ) =

1

Za
N,β,h,ω

exp

(
N∑

n=1

(βωn + h)1{n∈τ}

)
1{τ∈Ωa}
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Remark 2.2. We have therefore three ways to write the integral sign:

• E for the initial polymer law (i.e the law of the renewal process),

• E
a
N,β,h,ω (and also VaraN,β,h,ω, Cova

N,β,h,ω) for the polymer law defined
above,

• Eµ for the disorder.

3 Free energy

In [8], the existence of the free energy is first proved in the homogeneous case,
then in the case of disorder given by an i.i.d sequence. The proof for the more
general case of stationary ergodic sequences using Kingman’s subadditive (or
superadditive) theorem is presented as an alternative approach. Here we will
give the full details of the proof.

Theorem 3.1. For every f in L1(µ) and every (β, h) in R
+×R, there exists

a nonnegative constant F (β, h), called free energy, such that for a = c and
a = f,

1

N
log(Za

N,β,h,x) → F (β, h) µ-a.s and in L1(µ).

Remark 3.1. The existence of the free energy is proved for a fixed couple
(β, h) so we will write Za

N,x instead of Za
N,β,h,x to make the proof more read-

able. The dependence of the free energy F with respect to its parameter (β, h)
will be studied in the next section.

Proof. First, we will prove the theorem in the constraint case (a = c) using
Kingman’s subadditive theorem (see [12] for a reference). For M < N let’s
consider the random subsets τ that contain M and N. It leads to the following
inequality :

Zc

N,x ≥ E

(
e

PM
n=1(βf(Tnx)+h)1n∈τ e

PN
n=M+1(βf(Tnx)+h)1n∈τ 1M∈τ1N∈τ

)

Then, from Markov property,

Zc

N,x ≥ Zc

M,xZ
c

N−M,TMx
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We will now note Zc
M,N,x := Zc

N−M,TMx
and define for every M < N , FM,N,. :=

logZM,N,. which is a measurable function on E. The transformation T pre-
serves the measure µ so (FM,N) is stationary and it is super-additive by the
previous inequality. It is now enough to prove that supN

1
N

Eµ(F0,N) <∞ :

1

N
Eµ(F0,N) ≤

1

N
Eµ log E

(
exp

(
N∑

n=1

|β||f(T nx)| + |h|

))

=
|β|

N

N∑

n=1

Eµ|f(T nx)| + |h|

= |β|Eµ(|f |) + |h|

which is finite since f is integrable. By Kingman’s theorem,
logZc

N,.

N
tends

(almost surely and in L1(µ)) to a measurable function F (β, h) which is T-
invariant. By ergodicity of T, it is a constant.

In the second part of the proof we show that this constant is nonnegative.

1

N
logZc

N,x ≥
1

N
log E

(
exp

(
N∑

n=1

(βf(T nx) + h)1{n∈τ}

)
1{τ1=N}

)

=
1

N
log
(
exp(βf(TNx) + h)K(N)

)

= β
f(TNx)

N
+
h

N
+

logK(N)

N

which tends to 0 µ-a.s as N tends to infinity by Birkhoff’s theorem and the
assumption on K(.).

All these results still hold for a = f since

Zc

N,x ≤ Zf

N,x ≤ cN exp(|βf(TNx)| + |h|)Zc

N,x µ a.s

for a suitable positive constant c. Indeed, for j ∈ {1, . . . , N} we denote by
Ej the event in which the last renewal point before N is N-j. We have (we

use the notation Zf
N,x(Ej) := E

(
exp

(∑N

n=1(βωn + h)1{n∈τ}

)
1{τ∈Ej}

)
) by
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Markov property:

Zf

N,x = Zc

N,x +
N∑

j=1

Zf

N,x(Ej)

= Zc

N,x +

N∑

j=1

Zc

N−j,xP(τ1 > j)

= Zc

N,x +

N∑

j=1

Zc

N−j,x

(
∞∑

n=j+1

K(n)

)

But
∑∞

n=j+1K(n) ∼ L(j)
αjα (see Appendix A of [8] and references therein for

this point) so there exists a positive constant c such that for every j in
{1, · · · , N},

∑∞
n=j+1K(n) ≤ cjK(j) ≤ cNK(j). It gives

Zf

N,x ≤ Zc

N,x + cN

N∑

j=1

Zc

N−j,xK(j)

Now notice that from Markov property,

Zc

N,x =

N∑

j=1

Zc

N−j,x exp(βf(TNx) + h)K(j).

We obtain

Zf

N,x ≤ Zc

N,x + cN exp(|βf(TNx)| + |h|)Zc

N,x

≤ (1 + cN exp(|βf(TNx)| + |h|))Zc

N,x

≤ CN exp(|βf(TNx)| + |h|)Zc

N,x

for a suitable constant C.

4 The Phase Diagram

We are now interested in the representation of the free energy in the half plane
{(β, h), β ≥ 0, h ∈ R}, called the phase diagram. We will show the existence
of a concave curve β 7→ hc(β) called the critical curve, which separates the
localized phase L = {(β, h)|F (β, h) > 0} from the delocalized phase D =
{(β, h)|F (β, h) = 0}. The arguments, based on the convexity of the free
energy, are given in [8]. Still we will give a detailed proof.
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4.1 Existence of a critical curve

From now we will assume, unless stated otherwise, that the disorder is
centered, i.e

∫
E
f(x)dµ(x)(= Eµ(ω0)) = 0. We don’t lose any generality,

since a polymer with homogeneous charge h and a disorder (ωn)n≥0 with
mean m is the same as a polymer with centered disorder (ωn −m)n≥0 and
homogeneous charge h +m.

Theorem 4.1. The following properties hold:

• (β, h) 7→ F (β, h) is convex on R
+ × R

• D is convex

and if we denote hc(β) := sup{h|F (β, h) = 0} then

• hc(.) is concave and continuous

• ∀β ≥ 0, hc(β) ≤ hc(0) = − log
∑

n≥1K(n)

Remark 4.1. We will not prove that hc(0) = − log
(∑

n≥1K(n)
)

(see [9] or
chapter 2 of [8] for this point, and more generally for what happens in the
homogeneous case) but we will just notice that hc(0) = 0 if τ is recurrent and
hc(0) > 0 otherwise.

Remark 4.2. The last point of the theorem gives us an upper bound for hc.
This bound can actually be made strict when the charges (ωn)n≥0 are i.i.d
(see chapter 5 of [8]), which shows that disorder has a localizing effect.

Proof. To prove our first point, let’s consider logZc
N,β,h (we omit x) as a

function of β and h and show that it is convex for all N. By derivation under
the integral sign, we have that

∂2

∂h2
logZc

N,β,h = VarcN,β,h

(
N∑

n=1

1n∈τ

)

∂2

∂β2
logZc

N,β,h = VarcN,β,h

(
N∑

n=1

ωn1n∈τ

)

∂2

∂h∂β
logZc

N,β,h = Covc

N,β,h

(
N∑

n=1

1n∈τ ,
N∑

n=1

ωn1n∈τ

)
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To make the proof clearer we will note a =
∑N

n=1 1n∈τ and b =
∑N

n=1 ωn1n∈τ
so that the hessian of logZc

N,β,h writes:

H =

(
Var(a) Cov(a, b)

Cov(a, b) Var(b)

)

where we have omitted the subscripts on Var and Cov. If we write χH =
X2 − sX + p then

s = Var(a) + Var(b) ≥ 0

p = Var(a) Var(b) − Cov(a, b)2 ≥ 0 by Cauchy-Schwarz

∆ := s2 − 4p = (Var(a) − Var(b))2 + 4 Cov(a, b)2 ≥ 0

The hessian is positive for all (β, h) so the function (β, h) 7→ 1
N

logZc
N,β,h is

convex (for every N and µ- almost surely). Let t be in (0, 1) and (β, h) =
t(β0, h0) + (1 − t)(β1, h1). We have for every ω

1

N
logZc

N,β,h,ω ≤ t
1

N
logZc

N,β0,h0,ω
+ (1 − t)

1

N
logZc

N,β1,h1,ω

From Theorem 3.1 we have then

F (β, h) ≤ tF (β0, h0) + (1 − t)F (β1, h1)

which proves the convexity of F . Also it is clear that the convexity of F (·, ·)
leads to the convexity of D.

Our second point is the concavity of hc(·). For all (β1, β2) and t∈ [0, 1]
we want hc(tβ1 + (1 − t)β2) ≥ thc(β1) + (1 − t)hc(β2), ie:

F (tβ1 + (1 − t)β2, thc(β1) + (1 − t)hc(β2)) = 0

which is immediate by convexity of D. Continuity follows directly for β > 0.
For the continuity at β = 0, notice that the free energy could be defined for
every β ∈ R, without changing anything to the convexity of F.

For the last point (hc(β) ≤ hc(0)), it is enough to prove that F (0, h) ≤
F (β, h). Since β → Eµ logZc

N,β,h,. is convex and that its derivative at β =

0 is EµE
c
N,0,h

(∑N

n=1 ωn1n∈τ

)
= 0 (remember that ω0 = f(.) is centered),

β → Eµ logZc
N,β,h,. is nondecreasing and by taking the limit N → ∞, so is

β → F (β, h).
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4.2 Annealed bounds

4.2.1 Annealed bound for the i.i.d case.

In the i.i.d case, it is easy to give a lower bound, called annealed bound (see
Figure 1). We will note

Λ(β) = log Eµ

(
eβω0

)
∈ [0,+∞]

and assume that β0 = sup{β ≥ 0|Λ(β) < ∞} > 0. Note that Λ is a convex
function on [0, β0).

Theorem 4.2. If the ωn’s are i.i.d, then

∀β ∈ [0, β0), hc(β) ≥ hann,iidc (β) := hc(0) − Λ(β)

Proof. From Jensen inequality we have

1

N
Eµ(logZa

N,β,h,ω) ≤
1

N
log E

(
eh

PN
n=1 1{n∈τ}Eµ

(
eβ

PN
n=1 ωn1{n∈τ}

)
1{τ∈Ωa}

)

(2)
Since the ωn’s are i.i.d,

Eµ

(
eβ

PN
n=1 ωn1n∈τ

)
= exp

(
Λ(β)

N∑

n=1

1{n∈τ}

)

Then,
1

N
Eµ(logZa

N,β,h,ω) ≤
1

N
logZa

N,0,h+Λ(β)

and by taking the limit,

F (β, h) ≤ F (0, h+ Λ(β))

We conclude by evaluating this inequality with h = hc(0) − Λ(β).

Here the independency of the ωn’s is crucial. In the next sections we will
give some annealed bounds without this assumption.
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h

L

0

hc(β)
D

β

−Λ(β)

1

Figure 1: The critical curve β 7→ hc(β) of the phase diagram (when hc(0) = 0)
and the annealed bound in the i.i.d case
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4.2.2 A generalization of Λ

Let’s denote by (A) the following assumptions on the disorder:

• The random variable ω0 is µ-integrable and centered (or, if we choose
the notation of a dynamical system, f ∈ L1(µ) and

∫
E
f(x)dµ(x) = 0)

• the sequence ω = (ωn)n≥0 is stationary and ergodic.

In the previous subsection we obtained an annealed bound by first in-
tegrating on the disorder the annealed partition function, which yielded a
homogeneous partition function with charge h + Λ(β). The inequality we
present now holds for more general disorder (i.e not necessarily i.i.d).

First we define τ̂ = (τ̂n)n≥0 a renewal process whose law is given by

P(τ̂1 = n) =
K(n)

1 −K(∞)
:= K̂(n)

and
τ̂0 := 0 (3)

This new renewal process is recurrent, so that the expression
∑N

n=1 ωτ̂n is
well defined for any N . We can then state the following proposition.

Theorem 4.3. Under assumptions (A), if

Λd(β) := lim
1

N
log EEµ(exp

(
β

N∑

n=1

ωτ̂n

)
)

exists and is finite, then

hc(β) ≥ hannc (β) := hc(0) − Λd(β).

Remark 4.3. Notice that if the ωn’s are i.i.d, then Λd = Λ, so Λd is indeed
a generalization of Λ.

Proof. We first assume τ is recurrent, so that hc(0) = 0 and the law of τ̂
is the same as the one of τ . Recalling the notation (1), we have by Jensen
inequality

1

N
Eµ logZf

N,β,h ≤
1

N
log EEµe

PN
k=1(h+βωk)1k∈τ

=
1

N
log EEµe

PıN
k=1 h+βωτk

12



where the sum is void whenever ıN = 0. By partitioning on the possible
values of ıN , we obtain

EEµ

(
e

PıN
k=1 h+βωτk

)
=

N∑

n=0

EEµ

(
e

PıN
k=1 h+βωτk1{ıN=n}

)

= P(ıN = 0) +

N∑

n=1

EEµ

(
e

Pn
k=1 h+βωτk1{τn≤N}1{τn+1>N}

)

≤ 1 +
N∑

n=1

EEµ

(
e

Pn
k=1 h+βωτk

)

and since from the existence and finiteness of Λd(β),

EEµ

(
e

Pn
k=1(h+βωτk

)
)

= en(h+Λd(β))+g(n)

(where g(0) = 0 and g(n) = o(n)) we have by choosing h = −Λd(β)

1

N
Eµ logZf

N,β,−Λd(β) ≤
1

N
log

(
N∑

n=0

eg(n)

)

From Theorem 3.1, the left-hand term tends to F (β,−Λd(β)) and the right-
hand term tends to 0 as N tends to +∞, therefore F (β,−Λd(β)) = 0, which
means that hc(β) ≥ −Λd(β).

In fact, assuming that τ is recurrent is not restrictive. If it is not case,
we write

Zc

N,β,h,ω = E

(
e

PN
n=1(h+βωn)1{n∈τ}1{N∈τ}

)

=
N∑

n=1

∑

0:=t0<t1<...

<tn−1<tn:=N

n−1∏

k=0

eh+βωtk+1K(tk+1 − tk)

=
N∑

n=1

∑

0:=t0<t1<...

<tn−1<tn:=N

n−1∏

k=0

eh+log(1−K(∞))+βωtk+1 K̂(tk+1 − tk)

and since hc(0) = − log(1 −K(∞)), we have

Zc

N,β,h,ω = E

(
e

PN
n=1(h−hc(0)+βωn)1{n∈τ̂}1{N∈τ̂}

)
.
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5 Annealed bound for a first-order autore-

gressive gaussian process

Let ε = (εn)n∈Z be a gaussian white noise, i.e the ǫn’s are independent stan-
dard centered gaussian random variables. Since we are able to give an an-
nealed bound for i.i.d sequences, we will try to do so for the simplest corre-
lated sequence derived from such sequences: the linear combination of two
consecutive terms of the white noise. Let’s define the disorder, for all n and
for some real a0, a1, as

ωn = a0εn + a1εn−1 (4)

It is an exemple of what is called in the statistical literature a moving
average (or autoregressive process). More precisely, it is a first order one,
since ωn only depends on the present value of the noise and its value on the
moment just before. A q-order moving average would be a linear combination
of (εn, εn−1, . . . , εn−q).

Of course, the ωn’s are centered gaussian r.v with variance σ2 := a2
0 + a2

1,
and ω is stationary. Its covariance function is given by

ρn := Cov(ω0, ωn) =

{
a0a1 if n = 1
0 if n > 1

(5)

Taking a covariance function with a cut-off at n = 1 means that the disorder
at a site only interact with its closest neighbours.

Such a sequence ω is ergodic. Indeed, we only need that ρn tends to 0
as n tends to ∞ for ω to be ergodic. For this point, the reader can refer to
chapter 14 of [4]. All the assumptions are now satisfied for the existence of
the free energy.

Remark 5.1. In this section we will assume that
∑

n≥2K(n) 6= 0, i.e the
renewal process does not only make jumps of one unit. We make this as-
sumption so that the new model that we introduce in the first subsection does
not reduce to a classical homogeneous model .

The main theorem of this section gives an annealed bound on the critical
curve for this type of disorder:
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Theorem 5.1. If the disorder ω is given by (4) then we have for all nonneg-
ative β,

hc(β) ≥ hannc (β) := hc(0) −
β2σ2

2
− log

(
1 +

K(1)

1 −K(∞)
(eρ1β

2

− 1)

)

Remark 5.2. As it was mentionned in the introduction, this result can be
generalized for non gaussian white noise (εn)n∈Z. In the general case, we
define Λ⋆(·) := Eµ (e·ε0) and Theorem 5.1 writes (whenever Λ⋆ is finite)

hc(β) ≥ hannc (β) := hc(0) − Λ⋆(a0β) − Λ⋆(a1β)

− log

(
1 +

K(1)

1 −K(∞)
(eΛ

⋆((a0+a1)β)−Λ⋆(a0β)−Λ⋆(a1β) − 1)

)

One can check that taking Λ⋆(β) = β2

2
gives Theorem 5.1

In a first part we will introduce a modified homogeneous pinning model
whose relevance will be clearer when we integrate out the disorder. The
second part is the proof of the theorem and the last part is a discussion on
the result.

5.1 A new homogeneous model and its phase diagram

Let P̃
a

N,β̃,h̃
be a new probability measure whose density with respect to the

polymer measure is given by:

dP̃
a

N,β̃,h̃

dP
(τ) =

1

Z̃a

N,β̃,h̃

exp

(
h̃

N∑

n=1

1{n∈τ} + β̃

N−1∑

n=0

1{n∈τ}1{n+1∈τ}

)
1{τ∈Ωa}

where (β̃, h̃) ∈ R
2 and Z̃a

N,β̃,h̃
is the partition function of this new polymer

measure.

Even if it is a homogeneous model, there are two parameters, because
there are two different terms in the hamiltonian: one of them is the usual
pinning term

∑N

n=1 1{n∈τ} and the other one is a new term of interaction,
which will give additional weight to configurations in which the polymer
crosses the interface at neighbouring sites.

What we want to show is that:
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Theorem 5.2. There exists a nonnegative function (β̃, h̃) 7→ F̃ (β̃, h̃) such
that for all (β̃, h̃) in R

2,

• 1
N

log Z̃c

N,β̃,h̃
→ F̃ (β̃, h̃)

• F̃ (β̃, h̃) > 0 ⇐⇒ h̃ > h̃c(β̃) := hc(0) − log
(
1 + K(1)

P

n≥1K(n)
(eβ̃ − 1)

)

Remark 5.3. The function F̃ is the free energy naturally associated with the
new polymer measure.

Proof. We will follow the ideas of [8] (Ch. 1) on the classical homogeneous
pinning model and write the partition function more explicitly:

Z̃c

N,β̃,h̃
=

N∑

n=1

∑

0:=t0<t1<...

<tn−1<tn:=N

n−1∏

k=0

eh̃
(
1 + (eβ̃ − 1)1{tk+1−tk=1}

)
K(tk+1 − tk) (6)

Now let’s define

Kβ̃(n) =

{
K(1) exp(β̃) if n = 1
K(n) if n > 1

so that (6) rewrites as

Z̃c

N,β̃,h̃
=

N∑

n=1

∑

0:=t0<t1<...<tn−1<tn:=N

n−1∏

k=0

eh̃Kβ̃(tk+1 − tk) (7)

Let’s set
φ(F ) =

∑

n≥1

Kβ̃(n)e−Fn

which is well defined and continuous for F ≥ 0 (the function series is normally
convergent). Since φ is strictly decreasing and

φ(0) =
∑

n≥1

Kβ̃(n) =
∑

n≥1

K(n) + (eβ̃ − 1)K(1)

lim
∞
φ = 0

we have that for all h̃ such that

exp(−h̃) ∈

(
0,
∑

n≥1

K(n) + (eβ̃ − 1)K(1)

]
(8)
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there exists a unique element of [0,+∞), denoted by F̃ (β̃, h̃) such that

φ(F̃ (β̃, h̃)) = exp(−h̃). (9)

If condition (8) is not satisfied we set F̃ (β̃, h̃) = 0. Note that condition (8)
is equivalent to

h̃ ≥ − log(
∑

n≥1

K(n)+(eβ̃ − 1)K(1))

= hc(0) − log

(
1 +

K(1)∑
n≥1K(n)

(eβ̃ − 1)

)

and we denote by h̃c(β̃) the right-hand term of the inequality, so that F̃ is a
nonnegative function defined on R

2 satisfying:

F̃ (β̃, h̃) > 0 ⇐⇒ h̃ > h̃c(β̃).

All we need to prove now is the first point of the theorem, i.e F̃ is actually
the (new) free energy. We begin by the case F̃ (β̃, h̃) > 0. Note that equation
(9) can be rewritten as

∑

n≥1

Kβ̃(n)e−F̃ (β̃,h̃)neh̃ = 1

If we set Knew

β̃,h̃
(n) := Kβ̃(n)e−F̃ (β̃,h̃)neh̃, the renewal process with interarrival

law given by Knew

β̃,h̃
(·) is positive recurrent and (6) becomes

Z̃c

N,β̃,h̃
=

N∑

n=1

∑

0:=t0<t1<...<tn−1<tn:=N

n−1∏

k=0

eF̃ (β̃,h̃)(tk+1−tk)Knew

β̃,h̃
(tk+1 − tk)

= exp(F̃ (β̃, h̃)N)Pnew

β̃,h̃
(N ∈ τ)

By the renewal theorem (see [1]), we now have

Z̃c

N,β̃,h̃
∼

1∑
n≥1 nK

new

β̃,h̃
(n)

exp(F̃ (β̃, h̃)N)

and we may conclude. In the case F̃ (β̃, h̃) = 0, we have that
∑

n≥1K
new

β̃,h̃
(n) =

∑
n≥1Kβ̃(n)eh̃ ≤ 1 so that Knew

β̃,h̃
(·) is a sub-probability, or a probability on

N
∗

if we set Knew

β̃,h̃
(∞) = 1 −

∑
n≥1K

new

β̃,h̃
(n). Therefore,

Z̃c

N,β̃,h̃
= P

new

β̃,h̃
(N ∈ τ) ≤ 1

Since Z̃c

N,β̃,h̃
≥ exp(h̃)K(N), we may now conclude.
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The second point of Theorem 5.2 gives the exact expression of the critical
curve that separates localized and delocalized phases in the phase diagram
(see figure 2). In particular we have the following properties on h̃c, whose
proofs are left to the reader:

Proposition 5.1. The function β̃ 7→ h̃c(β̃) is a concave decreasing function,
and

• h̃c(0) = − log(
∑

n≥1K(n))(= hc(0))

• limβ̃→−∞ h̃c(β̃) = − log(
∑

n≥2K(n))

• h̃c(β̃) ∼+∞ −β̃

• h̃′c(0) = − K(1)
P

n≥1K(n)

We will make a few comments on these results. First, notice that the
value of h̃c at 0 makes it consistent with the classical homogeneous model.
Then, the absolute value of the derivative at β̃ = 0 is equal to

K(1)∑
n≥1K(n)

= P(τ1 = 1 | τ1 <∞)

so what we have established here is a connection between the localizing effect
of the interaction term for β̃ near 0 and the weight of K(1) with respect to
the sum of the K(n)’s. Another interesting point is the limit when β̃ →
−∞, which means that the critical point converges to the one of a classical
homogeneous model where we have added the value of K(1) to K(∞) and
then put K(1) at 0.

5.2 Proof of Theorem 5.1

First we will show that

Proposition 5.2. For every real h, and nonnegative β,

F (β, h) ≤ F̃ (a0a1β
2, h+

β2σ2

2
)
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Figure 2: The phase diagram of the new homogeneous model
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Proof. Let’s fix a realization of τ . Then
∑N

n=1 ωn1{n∈τ} is a centered gaussian
r.v, with variance given by

Varµ(
N∑

n=1

ωn1{n∈τ}) =
N∑

k,l=1

Covµ(ωk, ωl)1{k∈τ}1{l∈τ}

From (5), we have

Varµ(
N∑

n=1

ωn1{n∈τ}) = σ2
N∑

n=1

1{n∈τ} + 2a0a1

N−1∑

n=1

1{n∈τ}1{n+1∈τ} (10)

Notice that the term
∑N−1

n=1 1{n∈τ}1{n+1∈τ} is similar to the term introduced
in the hamiltonian of the new homogeneous model. From (2) and (10) we
obtain

1

N
Eµ(logZc

N,β,h,ω)

≤
1

N
log E

(
e(h+ σ2β2

2
)

PN
n=1 1{n∈τ}ea0a1β

2
PN−1

n=1 1{n∈τ}1{n+1∈τ}1{N∈τ}

)

If a0a1 ≥ 0, then

1

N
Eµ(logZc

N,β,h,ω)

≤
1

N
log E

(
e(h+ σ2β2

2
)

PN
n=1 1{n∈τ}ea0a1β

2
PN−1

n=0 1{n∈τ}1{n+1∈τ}1{N∈τ}

)

and from Theorem 3.1 and Theorem 5.2, the left-hand term tends to F (β, h)

while the right-hand term tends to F̃ (a0a1β
2, h + β2σ2

2
). If a0a1 < 0 then,

since 1 ≤ ea0a1β
2
1{1∈τ}−a0a1β

2
, we have

1

N
Eµ(logZc

N,β,h,ω)

≤ −
a0a1β

2

N
+

1

N
log E

(
e(h+ σ2β2

2
)

PN
n=1 1{n∈τ}ea0a1β

2
PN−1

n=0 1{n∈τ}1{n+1∈τ}1{N∈τ}

)

and we conclude by letting N tend to +∞ as in the previous case.

To prove Theorem 5.1, we only need to apply the inequality from Proposi-
tion 5.2 with h := h̃c(a0a1β

2)− β2σ2

2
. What we get is the following inequality:

F
(
β, h̃c(a0a1β

2
)
−
β2σ2

2
) ≤ 0

This implies hc(β) ≥ h̃c(a0a1β
2) − β2σ2

2
, which is precisely Theorem 5.1.
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5.3 Limits at low and high temperatures

First note that

hannc (β) = hann,iidc (β) − log

(
1 +

K(1)

1 −K(∞)
(eρ1β

2

− 1)

)
(11)

which is consistent with taking the covariance ρ1 equal to 0. The second term
of the right hand term is then due to the correlation between two consecutive
terms of the disorder sequence. It does not only involve the value of this
correlation but also the quantity K(1)

1−K(∞)
, which can write (with the notation

of section 4.2.2) P(τ̂1 = 1) or P(τ1 = 1|τ1 <∞). In fact, this is quite natural,
because if K(1) = 0, then the polymer never visits two neighbouring sites,
so the correlation between ωn and ωn+1 will have no effect.

Moreover, if the ωn’s are positively correlated (ρ1 > 0) then for β > 0,
hannc (β) < hann,iidc (β) and if they are negatively correlated (ρ1 < 0), then
for β > 0, hannc (β) > hann,iidc (β). It shows that positive (resp negative)
correlations tend to localize (resp delocalize) the polymer (at least as far as
the annealed measure is concerned).

We will now precise the effect of correlations in the high and low temper-
atures limits. We assume K(1) > 0.

5.3.1 High temperature limit

By high temperature limit, we mean that β tends to 0. A linearization of
(11) gives

hannc (β) − hc(0) ∼0 −

(
1 + 2

ρ1

σ2

K(1)

1 −K(∞)

)
σ2β2

2

which also writes

hannc (β) − hc(0)

hann,iidc (β) − hc(0)
∼0 1 + 2

ρ1

σ2

K(1)

1 −K(∞)

where the coefficient (1 + 2 ρ1
σ2

K(1)
1−K(∞)

) is nonnegative since K(1)
1−K(∞)

≤ 1 and
2|ρ1|
σ2 = 2|a0a1|

a20+a21
≤ 1. (see Figure 3) We have then obtained at high tempera-

ture a multiplier coefficient between the annealed bounds (lower bounds) of
the critical curves in the cases of i.i.d disorder and first-order autoregressive
disorder.
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5.3.2 Low temperature limit

For large values of β, what happens depends on the sign of ρ1. If it is positive
then

hannc (β) = − logK(1) − (1 + 2
ρ1

σ2
)
σ2β2

2
+ o+∞(1)

so the asymptotic curve is (up to a rescaling of the temperature) the annealed
critical curve of a model with i.i.d disorder, whose law of interarrival times
is K ′(n) = K(1)1{n=1}

If ρ1 is negative, then

hannc (β) = − log (1 −K(1) −K(∞)) −
σ2β2

2
+ o+∞(1)

Here, the asymptotic curve is exactly the annealed critical curve of a model
with i.i.d disorder, and whose law of interarrival times is defined by K ′(n) =
K(n)1{n>1}.

5.4 Calculation of Λd

In this subsection, we will point out that we can obtain Theorem 5.1 by
directly calculating Λd (see Section 4.2.2). We denote by τ̂ = (τ̂n)n≥0 the

(recurrent) renewal process with interarrival time distribution K(·)
1−K(∞)

(and

τ̂0 = 0).

Since

Var

(
N∑

n=1

ωτ̂n

)
=

N∑

k,l=1

Cov(ωτ̂k , ωτ̂l)

= σ2N + 2ρ1

N∑

n=1

1{τ̂n+1−τ̂n=1}

we have

EEµ

(
exp

(
β

N∑

n=1

ωτ̂n

))
= e

σ2β2

2
N

E

(
exp(ρ1β

2

N∑

n=1

1{τ̂n+1−τ̂n=1})

)

= e
σ2β2

2
N
(
E(exp(ρ1β

21{τ̂1=1}))
)N

because the random sequence (τ̂n+1 − τ̂n)n≥0 is i.i.d.
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0

h

β

a0a1 = 0

a0a1 > 0

a0a1 < 0

hc(0)

1

Figure 3: The annealed critical curve at a neighbourhood of β = 0, when
ωn = a0εn + a1εn−1
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Since E(exp(ρ1β
21{τ̂1=1})) = 1 + K(1)

1−K(∞)
(eρ1β

2
− 1), we finally get

Λd(β) =
β2σ2

2
+ log

(
1 +

K(1)

1 −K(∞)
(eρ1β

2

− 1)

)

which, combined with Theorem 4.3, yields the result of Theorem 5.1.

We will use the technique consisting of calculating Λd in the next section
as well.

6 Annealed bound for a second-order autore-

gressive gaussian process

We continue the study of pinning polymers with correlated sequences of
bases, by increasing the range of correlations from one to two, which will
make another difficulty arise.

With the same definition of ε = (εn)n∈Z we define now:

ωn = a0εn + a1εn−1 + a2εn−2

with (optional)
a2

0 + a2
1 + a2

2 = 1

so that ω is a stationary sequence of standard centered gaussian variables
with correlation function given by

ρn := Cov(ω0, ωn) =






a0a1 + a1a2 if n = 1
a0a2 if n = 2
0 if n > 2

6.1 Statement of the result

The following result gives the precise value of Λd in this case. As a con-
sequence of Theorem 4.3, it yields the annealed bound, which is hannc (β) =
hc(0) − Λd(β).
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Theorem 6.1. If ω is defined as above, then Λd(β) exists and is finite for
all nonnegative β. Moreover,

Λd(β) =
β2

2
+ logφ(β) + log

1 +
√

1 − ψ(β)
φ(β)2

2

where

φ(β) = 1 +
K(1)

1 −K(∞)
(e(ρ1+ρ2)β2

− 1) +
K(2)

1 −K(∞)
(eρ2β

2

− 1)

ψ(β) = 4
K(1)

1 −K(∞)

(
1 −

K(1)

1 −K(∞)

)
eρ1β

2

(eρ2β
2

− 1)

×

(
1 +

K(2)

1 −K(∞) −K(1)
(eρ2β

2

− 1)

)

Before starting the proof, we justify the calculation of Λd (which was not
the first technique we applied in the previous model - ρ1 6= 0 and ρ2 = 0).

First let’s compute Var
(∑N

n=1 ωn1{n∈τ}

)
.

Var

(
N∑

n=1

ωn1{n∈τ}

)
=

N∑

k,l=1

Cov(ωk, ωl)1{k∈τ}1{l∈τ}

=

N∑

n=1

1{n∈τ} + 2ρ1

N−1∑

n=1

1{n∈τ}1{n+1∈τ}

+ 2ρ2

N−2∑

n=1

1{n∈τ}1{n+2∈τ}

We could introduce a new homogeneous model, as in Section 5.1, with an-
other parameter in front of a new pinning term

∑N−2
n=1 1{n∈τ}1{n+2∈τ}. How-

ever, it seems difficult in this case to obtain an expression of the partition
function similar to (6).

6.2 Proof of Theorem 6.1

In the sequel, we assume that τ is recurrent, otherwise we would replace the
interarrival time distribution K(·) by K(·)

1−K(∞)
at the end of the proof (see

Section 4.2.2 for explanations). We begin by a lemma:
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Lemma 6.1. Let (Zn)0≤n≤N be (N +1) i.i.d Bernoulli variables with param-
eter p, and λ any real. Then,

lim
N→+∞

1

N
log E

(
eλ

PN−1
n=0 ZnZn+1

)
= log ̺(λ, p)

where

̺(λ, p) =
1 + p(eλ − 1)

2

(
1 +

√
1 −

4p(1 − p)(eλ − 1)

(1 + p(eλ − 1))2

)

This lemma is inspired from the calculation of the free energy of the Ising
model, in which the spins Zn have their values in {−1, 1} instead of {0, 1},
and p = 1

2
. The proof uses a transfer matrix method (see [7], p.107).

Proof. The result clearly holds in the degenerate cases p ∈ {0, 1}. We now
assume p /∈ {0, 1}. We begin by writing the partition function more explic-
itly:

E

(
eλ

PN−1
n=0 ZnZn+1

)
=

∑

z0,··· ,zN∈{0,1}

(
N−1∏

n=0

eλznzn+1

)(
N∏

n=0

P(Zn = zn)

)

and we define a matrix Q by Q(zn, zn+1) = eλznzn+1P(Zn = zn) so that the
partition function writes

E

(
eλ

PN−1
n=0 ZnZn+1

)

=
∑

zN∈{0,1}




∑

z0,··· ,zN−1∈{0,1}

Q(z0, z1) × · · · ×Q(zN−1, zN )



P(ZN = zN )

=
∑

z0,zN∈{0,1}

QN(z0, zN)P(ZN = zN )

Because of our assumption on p, the entries of the matrix

Q =

(
1 − p 1 − p
p peλ

)

are positive, so by the Perron-Frobenius theorem,

1

N
log

∑

z0,zN∈{0,1}

QN (z0, zN )P(ZN = zN) −→ log ̺(λ, p)

where ̺(λ, p) is the Perron-Frobenius eigenvalue of Q given in the lemma.
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We can now prove Theorem 6.1.

Proof. We will first integrate on the disorder the annealed partition function:

EEµ

(
exp

(
β

N∑

n=1

ωτn

))
(12)

Since, for a fixed realization of the renewal process,

Varµ

(
N∑

n=1

ωτn

)
=

N∑

k,l=1

Covµ(ωτk , ωτl)

= N + 2
∑

k<l

Covµ(ωτk , ωτl)

= N + 2ρ1

N−1∑

n=1

1{τn+1−τn=1}

+ 2ρ2

N−1∑

n=1

1{τn+1−τn=2} + 2ρ2

N−2∑

n=1

1{τn+2−τn=2}

so if we denote τn+1 − τn by Tn, we have

Varµ

(
N∑

n=1

ωτn

)
= N+2

N−1∑

n=1

(ρ11{Tn=1}+ρ21{Tn=2})+2ρ2

N−2∑

n=1

1{Tn=1}1{Tn+1=1}

and if we set
Xn := ρ11{Tn=1} + ρ21{Tn=2}

which are i.i.d random variables, we have

EEµ

(
exp

(
β

N∑

n=1

ωτn

))
= e

β2

2
N

E

(
eβ

2{
PN−1

n=1 Xn+ρ2
PN−2

n=1 1{Tn=1}1{Tn+1=1}}
)

In Section 5.4, it was easy to conclude at this point of the proof using the
independency of the Tn’s. Here the term

∑N−2
n=0 1{Tn=1}1{Tn+1=1} prevents us

from doing so. We will isolate this term via a change of measure and use
Lemma 6.1. We have

ΛN :=
1

N
log EEµ

(
exp

(
β

N∑

n=1

ωτn

))

=
β2

2
+

1

N
log E

(
eβ

2
PN−1

n=1 Xn+ρ2β2
PN−2

n=1 1{Tn=1}1{Tn+1=1}

)

=
β2

2
+

1

N
log E

(
eβ

2
PN−1

n=1 Xn

)
+

1

N
log ẼN

(
eρ2β

2
PN−2

n=1 1{Tn=1}1{Tn+1=1}

)
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where the new measure P̃N is defined by

dP̃N

dP
=

eβ
2

PN−1
n=1 Xn

E

(
eβ

2
PN−1

n=1 Xn

)

The second term in the expression of ΛN above is easy to calculate because
the Xn’s are i.i.d, so it is equal to:

log E(eβ
2X1) = log

(
1 −K(1) −K(2) + eρ1β

2

K(1) + eρ2β
2

K(2)
)

= log
(
1 +K(1)(eρ1β

2

− 1) +K(2)(eρ2β
2

− 1)
)

We now need to precise the law of the interarrival times (Tn)1≤n≤N−1 under
the measure P̃N . Using the independency of the interarrival times (under the
initial measure) we have:

P̃N(T1 = t1, T2 = t2, · · · , TN−1 = tN−1)

=
1

E

(
eβ

2
PN−1

n=1 Xn

)E

(
1{T1=t1}1{T2=t2} · · ·1{TN−1=tN−1}e

β2
PN−1

n=1 Xn

)

=

N−1∏

n=1

E

(
1{Tn=tn}e

β2(ρ11{Tn=1}+ρ21{Tn=2})
)

E(eβ2X1)

=

N−1∏

n=1

K̃(tn)

where

K̃(t) :=
K(t) +K(1)(eρ1β

2
− 1)1{t=1} +K(2)(eρ2β

2
− 1)1{t=2}

E(eβ2X1)

so that, under P̃N , the Tn’s (1 ≤ n ≤ N − 1) are i.i.d with law K̃(·) (it is
worth noticing that it does not depend on N). Furthermore, the variables
Zn := 1{Tn=1} (for the same set of index) are i.i.d Bernoulli random variables

with parameter K̃(1). All we have to do is now to apply Lemma 6.1 with
λ := ρ2β

2 and p := K̃(1).

6.3 Limits at low and high temperatures

We now give an asymptotic study of our result.
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6.3.1 High temperature limit

A linearization of log ̺(λ, p) for λ→ 0 yields

log ̺(λ, p) = p2λ+ o0(λ)

Now recall that

Λd(β) = log

(
1 +

K(1)

1 −K(∞)
(eρ1β

2

− 1) +
K(2)

1 −K(∞)
(eρ2β

2

− 1)

)

+ log ̺(ρ2β
2, K̃(1)) +

β2

2

Since K̃(1) →β→0 K(1), a linearization gives

Λd(β) ∼0

{
1 + 2

(
K(1)

1 −K(∞)
ρ1 +

(
K(2)

1 −K(∞)
+

(
K(1)

1 −K(∞)

)2
)
ρ2

)}
β2

2

It actually writes more simply

Λd(β) ∼0 {1 + 2 (P(1 ∈ τ̂ )ρ1 + P(2 ∈ τ̂ )ρ2)}
β2

2

so
hannc (β) − hc(0)

hann,iidc (β) − hc(0)
∼0 1 + 2 (P(1 ∈ τ̂)ρ1 + P(2 ∈ τ̂)ρ2)

Conjecture: In the general case of a q-order gaussian autoregressive
process, defined by

ωn = a0εn + a1εn−1 + · · · + aqεn−q,

we have
hannc (β) − hc(0)

hann,iidc (β) − hc(0)
∼β→0+ 1 + 2

q∑

k=1

P(k ∈ τ̂ )ρk.

To prove this result, we have to establish the existence of Λd for q > 2. The
explicit computation seems difficult, because for each p ∈ {1, · · · , q}, the
effect of ρp involves all the possible ways for the renewal process to be in n
and n + p, for n ∈ {1, · · · , N − p}. As we have seen, this can be done for
small orders (q = 1 or 2) but it becomes quite challenging for q > 2.
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6.3.2 Low temperature limit

If we look at the expression of φ(β) in Theorem 6.1, we see that the asym-
potic behaviour at low temperature (β → +∞) depends on the value of
max(0, ρ2, ρ1 + ρ2). Thus we define:

A1 = {ρ1 > 0, ρ2 > −ρ1}

A2 = {ρ2 < 0, ρ2 < −ρ1}

A3 = {ρ1 < 0, ρ2 > 0}

If (ρ1, ρ2) ∈ A1 then

hannc (β) = − logK(1) − (1 + 2(ρ1 + ρ2))
β2

2
+ o+∞(1)

If (ρ1, ρ2) ∈ A2 then

hannc (β) = − log (1 −K(∞) −K(1) −K(2)) −
β2

2
+ o+∞(1)

and if (ρ1, ρ2) ∈ A3,

hannc (β) = − logK(2) − (1 + 2ρ2)
β2

2
+ o+∞(1)

We now have to precise what happens on the boundaries (notice that
we already know what happens on the boundary between A2 and A3). If
ρ1 + ρ2 = 0 and ρ2 < 0 then

hannc (β) = − log (1 −K(∞) −K(2)) −
β2

2
+ o+∞(1)

and if ρ1 = 0 and ρ2 > 0 then

hannc (β) = − log (K(1) +K(2)) − (1 + 2ρ2)
β2

2
+ o+∞(1)

What all these different asymptotic behaviours have in common is that
they write, up to a rescaling, as the annealed critical curve of an i.i.d dis-
ordered model, with a certain interarrival time law K ′(·). (as usual, K ′

can be a sub-probability ) For example, if (ρ1, ρ2) is in A1 then the rescal-
ing coefficient is

√
1 + 2(ρ1 + ρ2) and the limit interarrival time distribution

is K ′(n) := K(1)1{n=1}, or if (ρ1, ρ2) is in A2, there is no rescaling and
K ′(n) = K(n)1{n>2}.
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7 Annealed bound for super mixing disorder

In this section, we will prove the existence of Λd when the ωn’s satisfy a very
strong condition of mixing, called η-weak dependence, with hyperexponential
mixing rate.

In what follows, we will assume that ω is an integrable (with mean 0) and
stationary random sequence such that β0 = sup{β ≥ 0|Λ(β) <∞} > 0.

7.1 Statement of the result

We will begin by some definitions.

First, we introduce the dependence coefficients:

ε(k) = sup
| Covµ(f(ωi1, ..., ωiu), g(ωj1, ..., ωjv)) |

ψ(f, g)

where
ψ(f, g) := uLip(f)‖g‖∞ + v Lip(g)‖f‖∞

and the supremum is taken over the indices such that

i1 < ... < iu ≤ iu + k ≤ j1 < ... < jv

and all the functions f : R
u 7→ R and g : R

v 7→ R that are bounded and
lipschitz. The coefficient ε(k) measures the correlation between functions
depending on the past (f(ωi1, ..., ωiu)) and others depending on the future
(g(ωj1, ..., ωjv)), where past and future are separated by a gap greater than k.
These coefficients were developed by several authors, see [6] for a reference.

Definition 7.1. If the sequence (ε(k))k≥0 tends to 0, then ω is said to be
η-weakly dependent.

Remark 7.1. Examples of such processes are finite-order regressive pro-
cesses, Bernoulli shifts with independent or η-weakly dependent innovation
process, and Markov chains. (see [6])

If we want the free energy to be well defined, we have to make sure that
this condition of weak dependence implies ergodicity. In fact we will show
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that it implies mixing in the sense of [4] (which in turn implies ergodicity),
that is for any (centered) functions f and g in L2,

lim
n→+∞

Eµ(f(ω0)g(ωn)) = 0 (13)

From Definition 7.1, (13) is satisfied for lipschitz bounded functions. We will
then use an argument of density. Let fǫ and gǫ be two centered functions
in C∞

c , the space of infinitely differentiable functions with compact support,
(which are therefore bounded and lipschitz) such that ‖f − fǫ‖2 ≤ ǫ and
‖g − gǫ‖2 ≤ ǫ. We write

Eµ(f(ω0)g(ωn)) =Eµ((f(ω0) − fǫ(ω0))g(ωn)) + Eµ(fǫ(ω0)gǫ(ωn))

+ Eµ(f(ω0)(g(ωn) − gǫ(ωn)))

+ Eµ((fǫ(ω0) − f(ω0))(g(ωn) − gǫ(ωn)))

and so by Cauchy-Schwarz,

| Eµ(f(ω0)g(ωn)) |≤ ǫ‖g‖2 + ψ(fǫ, gǫ)ε(n) + ǫ‖f‖2 + ǫ2

We then conclude by choosing n large enough.

Until the end of the section, we will make additional assumptions on our
model:

• The ωn’s are bounded, i.e there exists a constant M such that

∀n ≥ 0, | ωn |≤M a.s

• The ωn’s are η-weakly dependent with dependence coefficients

ε(n) = O(θn(logn)γ

) (14)

where 0 < θ < 1 and γ > 1.

We also define for all j ≤ k :

Skj :=
∑

j≤l≤k

ωτ̂l

where τ̂ is the renewal process defined in Section 4.2.2.

Theorem 7.1. Under the previous assumptions on the disorder ω, Λd(β) =
limN→∞

1
N

log EEµ

(
exp(βSN1 )

)
exists and is finite.
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7.2 Proof of Theorem 7.1

The proof of the first point of Theorem 7.1 is based on a result on approx-
imate subadditive functions, which is due to Hammersley (see [10]). The
combination of hyperexponential mixing sequences and Hammersley Theo-
rem has already been used in [2] to obtain a large deviation principle and in
[5] in the context of ruin probability.

We will also note τ instead of τ̂ .

Lemma 7.1. Assume h : N → R be such that for all n, m ≥ 1,

h(n +m) ≤ h(n) + h(m) + ∆(m+ n),

with ∆ a non decreasing sequence satisfying :

∞∑

r=1

∆(r)

r(r + 1)
<∞.

Then, λ = limn→∞
h(n)
n

exists and is finite. Moreover, for all m ≥ 1,

λ ≤
h(m)

m
−

∆(m)

m
+ 4

∞∑

r=2m

∆(r)

r(r + 1)

We begin by a technical lemma

Lemma 7.2. For every n ∈ N
∗ and every β > 0 there exists a bounded

Lipschitz function φβn : x = (x1, . . . , xn) 7→ φβn(x1, . . . , xn) which coincides
with x 7→ exp (β

∑n

i=1 xi) on the subset
⋂n

i=1{| xi |≤M}. Moreover,

‖φβn‖∞ = enβM

and
Lipφβn = βenβM

Proof. For n = 1, we define

φβ1 (x) :=






e−βM if x < −M
eβx if −M ≤ x ≤M
eβM if x > M

This function is bounded by eβM and its Lipschitz coefficient is bounded
above by the left derivative at x = M , which is βeβM . Now if we consider
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|φβ
1 (M−ε)−φβ

1 (M)|

ǫ
as ǫ tends to 0, we see that the Lipschitz coefficient is exactly

βeβM .

For n ≥ 2, notice that the function x = (x1, . . . , xn) 7→ eβ
Pn

i=1 xi is con-
stant on the hyperplanes Pa = {x ∈ R

n,
∑n

i=1 xi = a} (which are all normal
to the vector (1, . . . , 1)). The hyperplanes P−nM and PnM determine a par-
tition of R

n in three regions on which we define

φβn(x1, . . . , xn) :=






e−βnM if
∑n

i=1 xi < −nM
eβ

Pn
i=1 xi if −nM ≤

∑n

i=1 xi ≤ nM
eβnM if

∑n

i=1 xi > nM

It is clearly bounded by eβnM . Let us compute its Lipschitz coefficient, and
consider two points y and z. We denote by y′ the normal projection of z on
the hyperplane { x ∈ R

n,
∑n

i=1 xi =
∑n

i=1 yi} so that

| φβn(y) − φβn(z) |∑n

i=1 | yi − zi |
≤

| φβn(y
′) − φβn(z) |∑n

i=1 | y
′
i − zi |

≤ βeβnM

from what we know on the case n = 1. Again, to prove that it is exactly the
Lipschitz coefficient, take y on PnM , yε its normal projection on PnM−ε, and
make ε tend to 0.

We follow with

Lemma 7.3. For all β ≥ 0, any n,m ≥ 1 and r ∈ {1, . . . ,max(n,m)},

Eµ

(
eβS

n+m
1

)
≤ Eµ

(
eβS

n
1
)

Eµ

(
eβS

n+m
n+1

) (
e2βrM + (n+m)ε(r)βe2β(n+m)M

)

P- almost surely.

The proof of this result was inspired by [5].

Proof. First observe that if j < k then

e−β(k−j+1)M ≤ Eµ(e
βSk

j ) ≤ eβ(k−j+1)M .

34



First suppose that m ≥ n and fix an integer 0 < r ≤ m. We have

Eµ(e
βSn+m

1 ) = Eµ(e
βSn

1 eβS
n+r
n+1eβS

n+m
n+r+1)

≤ eβrM
(

Eµ(e
βSn

1 )Eµ(e
βSn+m

n+r+1) + Covµ

(
eβS

n
1 , eβS

n+m
n+r+1

))

(τn+r+1−τn≥r)

≤ eβrM
(

Eµ(e
βSn

1 )Eµ(e
βSn+m

n+r+1) + (n+m)ε(r)βeβnMeβ(m−r)M
)

≤ e2βrMEµ(e
βSn

1 )Eµ(e
βSn+m

n+1 ) + (n+m)ε(r)βe2β(n+m)M
Eµ(e

βSn
1 )Eµ(e

βSn+m
n+1 )

≤ Eµ(e
βSn

1 )Eµ(e
βSn+m

n+1 )
(
e2βrM + (n +m)ε(r)βe2β(n+m)M

)
.

In the third line we have used the definition of the dependence coefficients
and the technical lemma 7.2. By applying the same technique it is clear that
the result holds if n > m (take r in {1, . . . , n}).

Now we can prove Theorem 7.1.

Proof. First notice that by stationarity of the ωn’s and the independence of
(τn+l − τn)l≥1 from τn we have:

E

(
Eµ(e

βSn+m
n+1 )|τ1, . . . , τn

)
= E

(
Eµ(e

β
Pm

k=1 ω(τk+n−τn)+τn )|τ1, . . . , τn
)

= E(Eµ(e
βSm

1 ))

so that if we integrate (with respect to the renewal process) the formula in
Lemma 7.3, we obtain (for every r ∈ {1, . . . , m}):

EEµ

(
eβS

n+m
1

)
≤ EEµ

(
eβS

n
1
)

EEµ

(
eβS

m
1
) (
e2βrM + (n +m)ε(r)βe2β(n+m)M

)

(15)

Now let’s set for n,m ≥ 1, with a view to applying Lemma 7.1:

h(n) := log E(Eµ(e
βSn

1 ))

and

r(n,m) :=

⌈
n +m

2(1 + log(n+m)κ)

⌉
(≤ max(n,m))

for some κ such that 1 < κ < γ.

Using (14), we have for k large:

log

(
eβM

k
1+log(k)κ + kε

(
k

2(1 + log(k)κ)

)
βe2βkM

)
∼Mβ

k

log(k)κ
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past future

τn+m
0

Sn

n

τn τn+r

τn+r − τn

1

Figure 4: We consider a polymer of size n + m and introduce a gap of size
r which will separate the past history of the polymer and its future, so that
we can use the dependence coefficients. The size of the gap depends on n
and m, and must be chosen in such a way that the approximate subadditive
theorem can be applied.
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so there exists a constant C > 0 such that

log

(
eβM

k
1+log(k)κ + kε

(
k

2(1 + log(k)κ)

)
βe2βkM

)
≤ CMβ

k

log(k)κ

and we set for k ≥ 2, ∆(k) := CMβ k
log(k)κ , which is non-decreasing. We

conclude by taking the logarithm in (15) and by applying Lemma 7.1.

8 Causal shifts with independent inputs

In this section we are interested in another kind of disorder for which we are
able to give an annealed bound. As it is called in [6], ω = (ωn)n≥0 will be a
causal shift with independent inputs defined by

ωn = H((ζn−i)i∈N)

where H : R
N 7→ R is a measurable function and ζ = (ζn)n∈Z is i.i.d. We also

define
dn :=‖ sup

u

| H((ζn−i)i∈N) −H(ζn, ..., ζ1, u0, u−1, ...) |‖∞

and assume that
∑

n≥1 dn < ∞. Notice that the sequence (dn)n≥1 is de-
creasing. Indeed, for every sequence u indexed by Z \ N

∗, we have almost
surely

| H((ζn+1−i)i≥0) −H(ζn+1, . . . , ζ1, u0, u−1, . . .) |

≤ sup
v

| H((ζn+1−i)i≥0) −H(ζn+1, . . . , ζ2, v0, v−1, . . .) |

so that by taking the supremum in u and using the stationarity of ζ , we
obtain dn+1 ≤ dn.

Since the ζn’s are i.i.d, ω is stationary. As for ergodicity, it comes as a
consequence of θ-weak dependence, which is the same as η-weak dependence
in Definition 7.1, except the coefficients ψ(f, g) are given by

ψ(f, g) := v Lip(g)‖f‖∞

and the supremum is taken over bounded functions f and Lipschitz functions
g. Indeed, ω is θ-weakly dependent with coefficients ε(n) = dn (see [5]).
Therefore, the only assumptions we need to make on ω is integrability (with
mean 0) and β0 = sup{β ≥ 0|Λ(β) <∞} > 0.

37



Theorem 8.1. Under the previous assumptions on ω and if 0 ≤ β < β0,
then we have

hc(β) ≥ hc(0) − Λ̃(β)

where Λ̃(β) = Λ(β) + 2βd1.

Remark 8.1. This result is consistent with the i.i.d case. Indeed, saying
that the ωn’s are independent is the same as saying that the function H only
depends on its first variable, and therefore d1 = 0.

The idea of the proof was given in [5].

Proof. First let’s fix an arbitrary sequence u = (u0, u−1, . . . , u−n)n≥0 and
write

ıN∑

n=1

βωτn =

ıN∑

n=1

βH(ζτn−j, j ≥ 0)

=

ıN∑

n=1

βH(ζτn, . . . , ζτn−1+1, u0, u−1, . . .)

+

ıN∑

n=1

β
(
H(ζτn−j, j ≥ 0) −H(ζτn, . . . , ζτn−1+1, u0, u−1, . . .)

)

We define for l ≤ k, Uk
l = H(ζk, . . . , ζl, u0, u−1, . . .). Because of the sta-

tionarity of (ζn)n≥0, we have on one hand that Uk
l only depends on k − l

and on the other that the second term in the last inequality is smaller than∑ıN
n=1 βdτn−τn−1 . Then

1

N
Eµ(logZc

N,β,h,x) ≤
1

N
log E

(
eh

PN
n=1 1n∈τ Eµ

(
exp(

ıN∑

n=1

βωτn)

)
1N∈τ

)

≤
1

N
log E

(
eh

PN
n=1 1n∈τ eβ

PıN
n=1 dτn−τn−1Eµ

(
exp(

ıN∑

n=1

βU τn
τn−1+1)

)
1N∈τ

)

Notice that for every realization of the renewal process τ , the U τn
τn−1+1’s are

independent under the law µ, so that

1

N
Eµ(logZc

N,β,h,x) (16)

≤
1

N
log E

(
eh

PN
n=1 1n∈τ eβ

PıN
n=1 dτn−τn−1

ıN∏

n=1

Eµ(e
βU

τn
τn−1+1)1N∈τ

)
(17)
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and since U τn
τn−1+1 ≤ ωτn + dτn−τn−1

1

N
Eµ(logZc

N,β,h,x) ≤
1

N
log E

(
eh

PN
n=1 1n∈τ e

PıN
n=1 Λ(β)+2βdτn−τn−1 1N∈τ

)

≤
1

N
logZc

N,0,h+Λ(β)+2β supi≥1{di}

because
∑ıN

n=1 dτn−τn−1 ≤ ıNd1. By taking the limit as N → ∞, we obtain

F (β, h) ≤ F (0, h+ Λ(β) + 2βd1)

and Theorem 8.1 follows.

It would be tempting to use this for the case of correlated gaussian dis-
order. Indeed, any gaussian process ω with correlation function ρ = (ρn)n≥0

can be written as
ωn = H((εn−i)i≥0) :=

∑

i≥0

aiεn−i

where the εn’s are i.i.d standard gaussian r.v and the coefficients (ai)i≥0 are
given by the spectral distribution of ω. Unfortunately, the di’s are not finite
in that case (except when ai = 0).

We will now give an example where d1 (or rather an upper bound) can be
computed. The law of ζ0 is N (0, 1) and we define the function s such that
s(x) = 1 if x ≥ 0 and s(x) = −1 otherwise. Let ω be defined by

ωn :=
∑

k≥0

2−(k+1)s(ζn−k) = H(ζn, ζn−1, · · · , ζ0, ζ−1, · · · )

which is well defined since
∑

k≥0 2−(k+1)
E(| s(ζn−k) |) = 1. In fact, the law

of ω0 is explicit. It is the uniform law on the segment [−1, 1], so Λ is defined
on R, and if β > 0

Λ(β) = log

(
eβ − e−β

2β

)

Moreover, the dn’s are summable. Indeed, we have that for all u ∈ R
Z

|H(ζn, ζn−1, · · · , ζ0, ζ−1, · · · ) −H(ζn, ζn−1, · · · , ζ1, u0, u−1, · · · ) |

= |
∑

k≥n

2−(k+1)(s(ζn−k) − s(un−k)) |

≤
∑

k≥n

2−(k+1) | s(ζn−k) − s(un−k) |

≤
∑

k≥n

2−k

= 2−(n−1)
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which implies that dn ≤ 2−(n−1) and in particular, d1 ≤ 1 so Theorem 8.1
gives

hc(β) ≥ hc(0) − log

(
eβ − e−β

2β

)
− 2β
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Henri Poincaré, Vol. 25, n◦1, p. 93-98

41


