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Abstract—The design of streaming (e.g. multimedia or network
packet processing) applications must consider several dptiza-
tions such as the mimimization of the whole surface of the
memory needed on a Chip. The minimum throughput of the
output is usually fixed. In this paper, we present an original
methodology to solve this problem.

The application is modelled using a Marked Timed Weighted
Event Graphs (in short MTWEG), which is a subclass of Petri
nets. Transitions correspond to specific treatments and thplaces
model buffers for data transfers. It is assumed that transitons
are periodically fired with a fixed throughput.

The problem is first mathematically modelled using an Intege
Linear Program. We then study for a unique buffer the optimum
throughput according to the capacity. A first polynomial simple
algorithm computing the minimum surface for a fixed throughput
is derived when there is no circuit in the initial MTWEG,
which corresponds to a wide class of applications. We prove
in this case that the capacities of every buffer may be optinzied
independently.

For general MTWEG, the problem is NP-Hard and an original
polynomial 2-approximation algorithm is presented. For practical
applications, the solution computed is very close to the ophum.

Index Terms—Timed Weighted Event Graphs, Synchronous
Dataflow, Buffer minimization, Streaming applications.

I. INTRODUCTION AND RELATED WORK
Due to consumers expectations, embedded systems

single chip and satisfies high quality requirements, thdeluf
minimization problem with throughput constraints is crlci
for the design of embedded system.

Nevertheless, in this paper, we consider Marked Timed
Weighted Event Graph (in short MTWEG) which is a sub-
class of Petri net. In this model, transitions correspond to
treatments of fixed processing times. Each placenodels
a buffer and has exactly one input arc and one output arc
weighted respectively by(p) andv(p). These values denote
the number of tokens that has to be addedrés.removed
from) placep. If u(p) = v(p) = 1 for every place, we get a
Marked Time (non Weighted) Event Graph (in short MTEG).

MTWEG and SDF are clearly equivalent formalisms. How-
ever, the Petri net model has been considerably expandbd wit
many theoretical results from various scientific commsiti
providing a unified model with many results and algorithmic
tools.

The determination of the liveness and the computation of the
optimal throughput of a MTEG are two fundamental questions
which are polynomially solved from a long time [2], [3], [4].
The minimization of a weighted sum of the initial markings fo
a minimum given throughput of a MTEG is iN P, and many
authors developed efficient heuristics and exact methods to
solve it (see. as example [5], [6], [7]). TheéV P-completeness
@lr¢his problem was proved recently in [8].

becoming increasingly complex. For instance, many of neobil The existence of a polynomial algorithm for the liveness
phones available on the market can take and display photasd the computation of the throughput of a MTWEG is a
download and play multimedia contents, and naturally allodifficult question. Up to now, the time complexity of all
to hold a telephone conversation. Most of these applicatiothe algorithms developed to answer these two fundamental
consist in data stream processing and can be splitted imgfioestions is exponential in the worst case [9], [10]. The
a set of components or tasks performing specific treatmegtmnsequence is that the optimization problems on MTWEG
infinitely often and a set of buffers for data exchangeare possibly notinV P: the evaluation of the feasible solutions
Currently, the synchronous dataflow paradigm [1] remains not possible in polynomial time, which limits dramatigal
the most widely used in this specific area. In this modeahe existence of efficient algorithms. For example, Sau#} [1
an application is modelled by a directed graph where eadeveloped an algorithm to minimize the sum of the initial
node (esp. arc), called actor, models a componenésp. markings for a given throughput which evaluate a feasible
a buffer). In this producer/consumer paradigm, each actsolution using an exponential algorithm. The evaluati@pst
activation requires to consume data in its input buffergeAf of this algorithm limits significantly the size of the instas.

a deterministic time, the actor will write data in its output Another way to circumvent this problem is to reduce the
buffers. In the Synchronous DataFlow model (in short SDR3et of feasible solutions. Benabiet al. [12] developed a
the actors production/consumption rates are known at demppolynomial time algorithm for the computation of a periodic
time. As the whole application has to be integrated on faing of the transitions. This result can be regarded as a



generalization of Reiter’s result for MTEG [13]. In the caxfe

MTWEG, the existence of a periodic firing of the transitions u(p) @ v(p) I .
is clearly more restrictive than the liveness. On the same /
way, the throughput of a periodic firing is obtained by firing

the transitions as soon as possible. However, optimizatie. 1. A placep = (t;,t;) of a MTWEG.

problems, such as the minimization of the initial markings

are now in NP and efficient algorithms may be developed

(even if the problem inV P-complete). We also suppose that a processing tifig) is associated
The minimization of the buffer capacities under a throughy every transitiory;. If ¢; is fired at timer, v(p) tokens are
put constraint was also investigated by several authorsgusiemoved from every place € P~ (t;). At time 7 + £(t;),
SDF model. The main drawback of all these approaches,jg,) tokens are added to every plage € P+(t;). The
that their complexity times depend on the numerical valugsstantaneaous marking of a plagec P at timer > 0 is
of the instance, and leads, in the worst case, to exponentignoted byl (r,p). Clearly, M (0, p) = Mo(p).
time algorithms. Adéet al. [14] and Murthy [15] have both A place p = (ti,t;) has a bounded capacitf(p) > 0
characterized the lowest capacity of a given buffer. Mutihg if the number of t’oliens stored ip can not exceed”(p):
also showed that the minimization problem of buffer capacigﬁ >0, M(r,p) < F(p). A MTWEG G = (T, P, My, 1, F)

of dataflow graph wit_h a given initial buff,ers state is NPis said to be a bounded capacity graph if the capacity of
Cor_nple_te. To cope W't_h _th's pro?"?m: At al. [16], [1_7] every placep € P is bounded byF'(p). It is proved in [23]
devise interesting heuristics to minimize the buffers sibé every placey = (:,¢;) with bounded capacity may be
a SDF graph such that there exists a valid schedule. In [18lh5ceq by a couple Z(;fjplaceépl = (it pe = (t 1))
[19], several buffer minimization problems with throughpuyanoted by(p1, p2). with the initial markinb]JV[;(pl) _ Jéf’o(p)
constraint are modelled using an Integer Linear Program), Mo(p2) = F(p) — Mo(p). So, in this paper, we only

However, the number of constraints relies on the numericgl qiqer symmetric MTWEG: every plage = (t;,;) is
. - 1y by

values of consumption/production rates of the instancereMo, < ciated with a backward plape= (t;, t;) modelling the

repently, in [20], [21] au_thors have dealed with this prable limited capacity. Note that a symmetric MTWEG is strongly
with throughput constraint based on a state space exmoratbonnected: for every couple of vertices y) € (PUT)?, there

with model checking techniques. Lastly, Wigg@sal. [22]  gyistq a path irg from  to y. In addition, to every couple of

developed a heuristic that aims to build a periodic firings ‘Hlaces(np’)c modelling a buffer is associated a non negative
the transitions that minimizes the buffer capacities of &SD by unit of capacity denoted Iyp) = 0(p').

Th_e aim of this paper_is_ tp d_evelop simple and efficient For any couple of integeréa, b) € N2, ged(a, b) denotes
algorithms to solve the minimization of the overall numbér %he greatest common divisor afandb
initial tokens in a Timed Weighted Event Graph for a periodic '
firing with a given period. Section 2 is dedicated to basic
definitions and the description of our problem. In Section

3, we show the modelling of a car radio using a MTWEQ: Schedules

In Section 4, we show that our problem can be formulated| ¢t ¢ he 2 MTWEG. A schedule is a function 7' x N* —
using an Integer Linear Program. The single buffer case@% which associates, with any tuple;,q) € T x N*, the
fully studied in Section 5 and a polynomial time algorithmya ing time of theyth firing of ¢;. There is a strong relation-

is derived for an important sub-case of MTWEG. Section &, petween a schedule and the corresponding instantaneou
is devoted to the presentation of a simple 2-approximatigfiarking. Indeed, a schedule is feasible if the number ofriske

algorithm. Section 7 presents the resolution of the example every placep = (t;,;) remains non negative at each time

using our algorithm. Section 8 is our conclusion. instant.

It has been proved in [24] that the initial marking

M, of an lacep = (#;,t;) may be replaced b
A Marked Timed Weighted Event Gragh= (T, P,, M) o) y B P (£, ) y P y

Mo(p) . .
i i = ———— | gcd(u(p),v without any influence on
is defined by a set of placeB = {pi,...,pn} and a set chd(u(p),v(p)) ged(u(p), v(p)) y

of transitionsT' = {t,,...,t,}. Every placep € P is ¢ Thus, we assume that the initial markiddo(p) of every
defined between two transitions and ¢; and is denoted pjacep = (t;,t;) € P is a multiple ofged(u(p), v(p)).

by p = (ti,t;). Each placep € P is initially marked by  1he throughput of a transitioh for a schedule is defined
Moy (p) € N tokens and is associated with two strictly positiveg
integersu(p) andv(p) called the marking functionséefigure q
1). A%(t;) = lim )
For any transitiont; € T, we setP ' (t;) = {p = (t;,t;) € ! »d
Pty eTyandP(t;) = {p= (t;, ;) € Pt € T}, A schedules is periodic if there exists a vectow =
It is assumed that two successive firings of the sarrag}l ..,wn) € Q" such that, for any couplét;,q) €
transition cannot overlap: this is modeled by a self-locgepl ><7N* ’S(Z, q) = s(t;, 1) + (g — 1)w w is then thg period

p = (ti,t;), Vt; € T with u(p) = v(p) = 1 and My(p) = 1 . s ,
For a sake of simplicity, these loops are not pictured. of the transitiont; andA*(t;) = w, ® throughput.

Il. MODEL AND NOTATIONS




I1l. EXAMPLE tr i3 to
A. Description

Let us consider a car-radio application described in [25]"
The inputs of such systems are basically a MP3-reader and p7}
a cell phone. The output is a mixed sound from these two
streams. Without any additional treatment, the output iis-re
troduced in the system through the cell phone, causing an
echo effect. In order to obtain a pure speech in the cell phone
an additional input stream, corresponding to a microphsne i
added.

Figure 2 presents the streams and the main treatments. The
first stream entrance, modelled by is the MP3 readert;(
corresponds to the entrance of the additional microphane. Ps
is the outputis is the audio echo cancellation tagk.mixes
the two input streamsts; produces a pure speech from the
streamst; and the cell phone.

t1o
MP3 °—>f7_‘ IZ' @—Q Out To Fig. 3. A MTWEG G modelling a car-radio application
Reader -H Speaker
?
Cell "
Phone

I
I

I

: Rougthly speaking, for any circuit of a MTWEG, W (c)
I can be viewed as the production rate of tokenscoiso, if
I
I
I
I
I

W(e) < 1 for a given circuit, the number of tokens on this
circuit decreases after a finite firing sequence and thezefor
leads to a deadlock situation [9], [10].

In the sequel, a MTWEG/ is said to be unitary if every

Fig. 2. Block di f -radi licati L .
9 ock diagram of & carradio application circuit of G has a weight exactly equal to

Figure 3 shows the .modelling of the whole application Every symmetric MTWEGG considered in our study is
by a MTWEG §. Transitionsts, 14, t¢ and i are simple ynitary: if it is not, there exists at least one circditof G
rate converters. Places model intermediate buffers oftdithi ,cp, thatV(c) > 1. So, the reverse circuit’ of ¢ verifies
capacity between the components.

The cost in such signal processing application may be int
preted by the size of samples exchanged between processeledule exists.

Since in our case they exchange samples of the same size, we . )
setf(p) = 1 for every placep € P. It is stated in [24] that any unitary MTWEG can be poly-

nomially transformed into an equivalent normalized MTWEG,
i.e. with the same feasible schedules. It is firstly proved
that, for any valuea € Q™*, the markings functions and
A MTWERG is said to be normalized if all adjacent markinghe initial markings of any place € P may be replaced
functions of every transition; € T" are equal to a single valuesimultaneously by respectivelyiu(p), av(p) and aMy(p)
denoted byZ;, i.e.Vp € P*(t;), u(p) = Z; andV¥p € P~ (t;), without any influence on the schedules. Then, it is shown that
v(p) = Z;. Note that the number of tokens remains constapbsitive integer values(p), p € P such thatyt; € T, there
in every circuit of a normalized graph. This simple impottarexists an intege¥; with, Vp € P*(t;), a(p)u(p) = Z; and
property eases the study of the liveness and the computatigne P~ (¢;), a(p)v(p) = Z; may be computed in polynomial
of periodic schedulessée.as example Theorem 1 below). Wetime. ValuesZ;, t; € T replace marking functions as said
briefly recall here how every live symmetric MTWEG may béefore.
transformed into a normalized graph.

Let us first define the weight (or gain [26]) of every path ~ The MTWEG depicted by Figure 3 is clearly not normal-
of a MTWEG G by ized. Moreover, since it is symmetric, we may have, for every

couple of placesp;, p}). withi € {1,...,10}, a(p;) = a(p}).
W(p) = H w For our example, this yields to define the following system of
pEPMU v(p) equations:

é/}{(c’) = ﬁ < 1 and thus,g is not live and no feasible

B. The normalization step



2) There exists a periodic schedule with a period at most

Zy = a(p1) = o(ps) = alps) = a(po) equal to K.
Zy = 441la(pr) = 80a(p2) The problem may be formulated by the following Integer
Zs = 80a(p2) = 80a(ps) = 80a(p1o) Linear Progranil(K):
Z = « =«
7 agjg _ agg min (3,cp 0(p)Mo(p))  subject to
Zg = 80a(ps) = 441a(ps) Vp = (ti,t;) € P, s(tj, 1) — s(ti, 1) > £(t:)+
Zr = 1152a(p7) K(Z; — Mo(p) — gedi )
Zs = 480a(p7) = 441a(ps) Vp = (ti,t;) € P, Mo(p) = ki j - ged; j
Zy = 0‘(1’9) Vp = (t’ivtj) epP ki,j eN
Zig = a(plo) Vi, €T, S(ti, 1) >0
The minimal solution is given by(a(p1),...,a(po)) = The first inequality expresses the necessary and sufficient

(80 441 441 441 441 80 73.5 80 80 441) condition associated with a plagen the first starting times of
and corresponds to the new marking functiond feasible periodic schedule following Theorem 1. The sdcon
Z = (80 35280 35280 441 441 35280 84672 35280 80 441). equality comes from the restriction 8fy(p), p = (i, t;) € P

o to multiples ofged; ; = ged(Z;, Z;).
Remark 1. Normalization aﬁectg the cps_t_ of pIaces: I.n.deed, Let us note that, if the initial marking/, (p), p € P is fixed,
for every couple of place§, p’). in the initial graph, initial e corresponding optimum period may be easily computed:

markings were multiplied by (p) during the normalization ¢, any placep = (:,t;) € P, let us denote by
step. So, to get the real overall capacity cost for this new Y

normalized graph we have to divide the cégp) by a(p). H(p) = Mo(p) + gedi; — Z; and  L(p) = £(t;).

.,0(p1o)) = Foracircuite, H(c) =3 . H(p) and L(.c).: ZpEc_Ijl(p)‘
Theorem 2 expresses necessary and sufficient conditiohdor t
existence of a periodic schedule deduced easily from Balima
Ford algorithm [27].

For our example, we get(f(p1),..
1 1 1 1 1 1 1 1 1 1
80 441 441 441 441 80 73.5 80 80 441 )"

C. Evaluation of the processing times Theorem 2 ([12]). There exists a periodic schedule iff, for

For our example, the throughput for the output transition every circuitc of G, H(c) > 0.

must be equal td4.1kHz that is to say(t9) = w9y = ——ms. The minimum feasible valu& "t of K is then:

The following theorem, proved by [12], will provide an upper L(¢)

bound on the processing times of the other transitions. K°Pt = mdaé) () (1)
ce

Theorem 1. LetG be a normalized MTWEG. For any feasibl
periodic schedules of G, there existsiK er“f %Jph that,
for any couple of transitionst;, ;) € T2, 71 = 73 =K.
Moreover,s is feasible iff, for any place = (;fi,tj) é P,

s(tj,1) = s(ti, 1) > £(t:) + K(Z; — Mo(p) — gedi ;).

e{NhereC(g) denotes the set of circuits of.

V. STUDY OF A BUFFER
A. Relationship between the optimum period and the capacity

of a buffer
whereged; ; = ged(Z;, Z;). Let us consider a buffer modelled by a MTWEGwith a
By Theorem 1, we derive that = -2 — 2.83 x 10~4ms. COuple of transitiongty, ¢2) and a couple of place@:, p2) €

P? with p; = (t1,t2) andps = (t2,t1). We study here the
relationship between the minimum peridd of a periodic
schedule and the capacify(pi, p2) = Mo(p1) + Mo(p2) of
the corresponding buffer.

First lemma expresses a lower bound on the capacity:

The processing time of transitior iS fixed for physical
considerations td(t3) = 9.091ms. Fo the other transitions,
the processing time must be at most equaluto thus we set
£(t;) = w;. These values are reported in Table I.

IV. FORMULATION USING AN INTEGERLINEAR PROGRAM Lemma 1. The minimum capacity for the existence of a

Let G be a normalized symmetric MTWEG arid € Q+ a  Periodic schedule ig™ (p1, p1) = Z1 + Za — gedy 2.
fixed value for the period. As seen before, a couple of places Proof: G has three elementary circuits = (t1,t1), co =
(p,p’)c models a buffer of (unknown) minimum capacity(t,,t,) and ¢s = (t1,t2,¢1). By Theorem 2, there exists a
F(p,p") = Mo(p) + Mo(p'). Moreover, data stored in a bufferperiodic schedule ifff (c;) = Z; > 0, H(cy) = Zy > 0
have all the same size depending on the buffer and denomH(%) = F(p1,p2) + 2gcdy o — (Z1 + Za) > 0. The last
by 6(p). The general problem considered is to find an initiahequa|ity is equivalent td(py, pa) > (Z1+Z2)—ged, o Since
marking Moy(p), p € P such that: initial marking My (p;) and My(p2) are multiples ofged, .
1) The weighted capacity, proportional to the whole surface ]
of the buffersy_ p 0(p)F(p,p’) = >_,cp 0(p)Mo(p) One can note thaf™"(p;, p;) does not depend on the
is minimum. computation times of transitions,, t2). Moreover, this value



TABLE |
PROCESSING TIMES(t;), t; € T IN MILLISECONDS

t1 t2 t3 ta ts te | t7 | s tg t10
¢ | 2.3x10°2 10 | 9.091] 0.125| 0.125| 10 | 24 | 10 | 2.3x10~2 | 0.125

is also equal to the lowest capacity of a given buffer ([14], Let K™ (py,p2) (resp. K™% (py, p2) ) denotes the value
[15]). of K°Pt for a buffer capacity equal t&™" (p,p2) (resp.
Let us suppose now thdt(py, p2) > F™"(py,pa). From  F™%(py po) ).
equation 1 in the previous section, the optimum value of the For example, let us consider the couple of plages pr).
period for a fixed capacity'(p1, p2) is from Figure 3. As seen before, normalized values for the
adjacent transitiong; andts are respectivelyZ; = 84672
Kert = max{é(tl), E(tz), () + Eta) }and Zg = 35280 and gedr s = 7056. We get the bounds
Z Zy " F(p1,p2) + 2gcdy 2 — (Z1+ Z3) Fmin(p7’p/7) = 16gcdy g, Kmin(p77p/7) = 4.82 x 10~ 3ms,
Fmaz(pe ph) = 32gcdrs and K™% (p7,ph) = 2.83 x
10~*ms. Figure 4 presents the variation @f°r* according
to F(pr,p7).

Without loss of generality, we may assume th-%—ﬂ ) >
1
£(t2)

2

Kopt:max{g(ztl)’p é(tzl)i}%) 7+ 7 } K (pr.p7)
1 (p1,p2) + 2gcdi 2 — (Z1 + Za) ss2x10-3] - x

From a certain value of"(p1, p2), K°P' remains equal to i

—K(Ztl). The following lemma characterizes this bound: ;
1

Lemma 2. The maximum value of capacity#8"** (p1, p2) = 0

BEZ; ‘ chdllyz—‘ gedy o + 2727 + Zo — 2gcd 2. !

and thus

Proof: 24131073} - X
F™(py, py) is the minimum value folF'(py, p2) such as : E\-\
1.61x1073} - - oo X
U)o (t1) + £(t2) N
Zy ~ F(pi,p2) +2gcdi 2 — (Z1 + Z3) . X
Thus, we get Do XX x_
g 2.83%x10—4 xx—x_x‘x-)éx*_x_x_x
é t M T T S T R R R S S S S S S R R
F(p1,p2) > (égtii + 2) 21+ Zy — 2gcdy 2. bf\‘?&«@?ﬁ&«‘? 0&\3’?{@0 F(p7p/7)
00 o P
i mazxr H Nl ~ R0
Now, sinceF"™*(py,py) is divisible by ged; 2, Fig. 4 /Kopt according to F(P7vp’7), — Mo(r) 4 Mo§p’7).
0t 7 F™™(p7,pl) = 16gedrs, K™"™(p7,p,) = 4.82 x 10" °ms,
F%(py,po) = hitzi . dl -‘ gedy o +2714Zo—2gcd; 2. Fm“””(p%pZ) = 32gcdy,g and Kmaﬂ”(pnp’ﬁ =2.83 x 10~ *ms.
1 gcay 2
Hence, the lemma. ] Conversely, for any fixed value K €
T_he following theorem studies the determination of thE<™ (py, py), K™% (py, p2)], the optimum value of capacity
optimum period forF(pi, p2) between these two bounds: s Fy(p;,ps) = % —2) gedi o + (Z1 + Zo).

Theorem 3. The function F(py,p,) — Ke°Pt is Thus, the complexity to obtain the optimum capacity for
strictly decreasing and strictly convex foF(py,p,) € @ unique buffer is the computation ofcd; . which is
{F™"(py,pa), F™™ (p1,p2) + gcdia, ..., F™(p1,p2) — O(log(max{Z;, Z;})).

gedy o, % (p1,p2) }

Proof: My(p1) and My(p2) are divisible byged; 2, SO

F(p1,p2) = Mo(p1) + Mo(pz2) is. Now, for F(pi,p2) € _ _ _
{Fmi"(Plapz)aF;ﬂZ +  gedia, ..., F(prpy)  — Let.us.suppose thaf is a sym_rrjetrlc MWTEG vy|thput
gedy o, F™%(py,py)}, the corresponding value ofiort  any circuit of more than two transitionse. the only circuits
, 0(t) + £(t2) , _ _ come from the buffer limitation. The undirected graph=
S Fonpe) + 29cdia— (Z1 + Z2) which is strictly 7 £y “for which every couple of place®, p'). € P2 with
decreasing and strictly convex. Hence the result. B p = (t,t;) andp’ = (t;,t;) is replaced by a unique edge
This last theorem provides a good rule of thumb for th&;,t;) € E, is a tree. This limitation on the structure f
designer: “The more you increase buffer capacity, the lesswas extensively studied by many authors and corresponds to

increases the throughput.” most of the applicationssée.as example [22], [20], [21]).

B. Consequence for a symmetric MWTEG without circuits of
more than two transitions




Starting from the Integer Linear Prograii(%) defined by replacing the conditioi; ; € N by k; ; € Q.
previously, we observe that there exists a periodic scleedul The idea of our approximation algorithm for the general

of period K iff case is to compute first polynomially an optimum solution
1) K > max 2 and, M (p) € Q, p € P of II*(K). A feasible solutionMy(p) of
LEeT *° : II(K) is then deduced using a rounding algorithm
2) for every circuitc = (t;,¢;,t;) corresponding to a buffer, ’
L(c) — KH(c) < 0. Lemma 3. Let (p,p'). be a couple of place with = (t;,t,)

The important point is that an optimum initial marking may bandp’ = (¢;,t,). Let also the value
obtained by_ minimizjng separatel!%/t t)he capaqity of eache_hruff 0t) + £(t;)
For any fixed period > ?12% 7 an optimum marking Fi(p,p)) = TJ
of placesp € P is defined as follows. Letp, p’). be a couple . ) . . . .
of places corresponding to a buffer: Ev*eryl feas:lgle slolutlonM0 of II*(K) verifies Mg (p) +
1) If K < K™(p,p/), then the capacity of the corre-2%0 (') = Fi (p:p").
sponding buffer must be equal 6 (p, p’). So, we set Proof: Let the circuitc = (¢;,p,t;,p’,t;) corresponding
Mo(p) = Fr(p,p") and My(p') = 0; to a buffer. ThenL(c)— K H(c) = €(t;)+L(t;)— K (Zi+ Z; —
2) Else, K > K™**(p, p') and this period may be achieved\/s (p) — M (p') —2gcd; ;). SinceMy is feasible forll*(K),
by the minimum capacity?™"(p,p’). We set then we getL(c) — KH(c) < 0 and thusM{(p) + Mg (p') >
~ Mo(p) = F™ (p,p') and My(p') = 0. ) H U)o, i+ (Zi + Z;), the result. m
This solution is clearly minimum for every buffer. So, it h&sollowing th - h eri " teasibl
minimizes the overall weighted capacity @f The complexity e ovv*lng i eorem characterizes an optimum feasible
time of this algorithm isO(mlog( max Z;)). solution of IT*(K'):

ie{l,...,n}

— 2gcd; ; + (Z; + Zj).

Theorem 4. Let M{(p), p € P defined as, for every couple of

C. Example place(p,p')e, M§(p) = Mg (p') = 3 F5 (p,p'). Then, Mg (p),

The example depicted by Figure 3 does not verify the € P is an optimum solution of* ().

previous assumption. However, we may consider as ex- Proof: M is a feasible solution if, for every cir-
ample the subgraphy’ Iimiteq to the tr_a_nsitionsT’ = cuit ¢ = (t1,p1,t2,D2,- - bk, Py ther1) With & = tgyq,
{t1, t_5, tg, t7, ts, to } corresponding to the mixing of the soundy,(¢) — K H(c) = Zle 0(t;) +K(Zf:1 Z; —Z§:1 Mg (pi) —
coming from the MP3 reader and the cell phone to chlegcdi,iH) < 0. By definition of M (p;), we have
output. The corresponding undirected graph definedras-
t(IEZe“’é{{t%tg}, {ts,te}, {te, 11} {ts, t1}, {t1,to}}) is clearly a _Mg(pi)% (7““) J;f(ti“) —2gedi i + Zi+ Zi+1) —0
Optimum values of capacity for this_subgraph were Ca’_%y summing these equalities for all places of the circuit, we
culated for K = 2.83 x 10~*ms and different processing get
time of tg. Values of the other transitions are fixed following
Table | to/4(ty) = I(tg) = 2.3 x 10~2ms, £(tg) = 10ms and Moo ot <& k
((t7) = 24ms. Table Il summarizes minimum capacities for — ZMO (pi) + Z 7 ZQCdz‘,iH + Zzi =0
different values off(tg). =1 =1 =1 =1
Note that the processing time df(its) only influences T xK
adjacent buffers corresponding to couples of plagesp?).
and (ps, p).. Their capacity decreases whéfts) decreases. k k k k
This point can be proved easily from the Integer Linear Sylste—K Z Mg (pi) + Zg(ti) - KZ gediip1 + K Z Zi=0
II(K). It was also noticed experimentally by [22]. =1 =1 i=1 i=1

and thus
TABLE Il

OPTIMAL INITIAL MARKINGS OF THE SUBGRAPHG’ FOR DIFFERENT L(C) - KH(C) =0.
PROCESSING TIME ORg. ) . .
So, My is a feasible solution. Now, from Lemma 3,

(ts) = 10 | 75 5 2.5 Mg (p) + M§(p') is exactly the lower bound of the capacity
O(po) F'(pg,pg) | 882 | 882 | 882 | 882 of the buffer (p,p’) and thusy" _, 6(p) M (p) is optimum.
9(p7)F(p,,p,) | 3072 | 2976 | 2880 | 2784 So. th hold pE
9(ps)F(pg,pl) | 882 | 772 | 662 | 552 0, theorem holds. _ o _ u
9(po)F(pg,ph) | 2 2 2 2 Our approximation algorithm consists in setting, for every

Sum 4838 | 4632 | 4426 | 4220 couple of placegp,p’). corresponding to a buffer with =

(ti, t;) andp’ = (t;,t;), Mg (p) = M (p) = §F;*<(p,p’) and

*
VI. AN APPROXIMATION ALGORITHM FOR THE GENERAL Mé“PP(p) = Mé“m’(p/) = {MOT@-‘ ged; ;.
CASE gedi,; )
0t . , M™P(p), p € P is clearly a feasible solution ofi(K).
We suppose here th&t > i) is a fixed value. Let g ; ;
PP = max — ' The following lemma provides a lower bound of the overall

i€ i
us consider the Linear Prograf(K’) obtained fromII(K) capacity:



Lemma 4. Let (p,p’). be a couple of place witp = (¢;,;)

andp’ = (t;,t;) and letak (p,p’) = [%”i’jﬂ ged; j. Then
Ax = %Z(M,)Celﬂ O(p)ax (p,p’) is a lower bound of the

minimum overall weighted capacity for a fixed peri&d

Proof: Any feasible solutionMy(p), p € P of II(K)
verifies Mo (p) + Mo(p') > Mg (p) + Mg (p').
From Lemma 3M¢ (p)+ Mg (p') = Fi(p,p'), SO Mo(p)+
My(p') > F¥(p,p’). Since My(p) + Mo(p') is divisible by
gcdi,j,

Mo(p) + Mo(p') > ax (p',p)

TABLE 11l
OPTIMAL BUFFERS CAPACITIES FOR THEMTWEG PICTURED BY FIGURE
3
Buffers 0(pi)ar (pi,p}) | 0(pi) Fie™™ (pi, pl)

(p1,P))e 882 882
(p2,P5)c 160 160
(p3,P5)c 153 154
(p4,p;)c 2 2
(p5,P5)c 160 160
(P, PG ) 882 882
(p7,p7)c 3072 3072
(ps,Pg)e 882 882
! 2 2
Epg pq’) - 153 154
pb1o; plo)c
[ Sum [ 6348 [ 6350

VIIl. CONCLUSION

We presented in this paper an original approach to solve effi-
ciently the minimization of the buffer capacities with thigh-
put constraints for a class of streaming applications. Apsém

and lemma is proved. [ ]
This last theorem bounds the overall capacity obtained by
our algoritm:
Theorem 5.
1
> 0(p) M (p) < A + 5 > 0(p)ged:
peEP (p.p').€P?,

p=(ti,t;)

Proof: For every couple of placeép,p’). € P? with
b= (tia tj)'

F* , /
M) + 217 ) =2 | TR g,

2ngi,j
Now, since
Fi(p,p') Fg(p,p')
o | ZEKAMDLE T d; ; < | 2l d; ; d; ;
{ 29cd;; geds 5 < geds, ged; j + geds
= ak(p,p') + gedi 5,
then

mathematical modelization using an Integer Linear Program
was first introduced. An exact polynomial simple algorithm
was deduced from the theoretical study of the influence of the
capacity on the throughput for an important special casbef t
MTWEG. A general polynomial approximation algorithm was
also developed for the general case. The solutions obtained
for simple practical examples are very close to the optimum
and beats previous works. This new approach can be easily
implemented to automatized the design of such systems.
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