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Abstract—The design of streaming (e.g. multimedia or network
packet processing) applications must consider several optimiza-
tions such as the mimimization of the whole surface of the
memory needed on a Chip. The minimum throughput of the
output is usually fixed. In this paper, we present an original
methodology to solve this problem.

The application is modelled using a Marked Timed Weighted
Event Graphs (in short MTWEG), which is a subclass of Petri
nets. Transitions correspond to specific treatments and theplaces
model buffers for data transfers. It is assumed that transitions
are periodically fired with a fixed throughput.

The problem is first mathematically modelled using an Integer
Linear Program. We then study for a unique buffer the optimum
throughput according to the capacity. A first polynomial simple
algorithm computing the minimum surface for a fixed throughput
is derived when there is no circuit in the initial MTWEG,
which corresponds to a wide class of applications. We prove
in this case that the capacities of every buffer may be optimized
independently.

For general MTWEG, the problem is NP-Hard and an original
polynomial 2-approximation algorithm is presented. For practical
applications, the solution computed is very close to the optimum.

Index Terms—Timed Weighted Event Graphs, Synchronous
Dataflow, Buffer minimization, Streaming applications.

I. I NTRODUCTION AND RELATED WORK

Due to consumers expectations, embedded systems are
becoming increasingly complex. For instance, many of mobile
phones available on the market can take and display photos,
download and play multimedia contents, and naturally allow
to hold a telephone conversation. Most of these applications
consist in data stream processing and can be splitted into
a set of components or tasks performing specific treatments
infinitely often and a set of buffers for data exchanges.
Currently, the synchronous dataflow paradigm [1] remains
the most widely used in this specific area. In this model,
an application is modelled by a directed graph where each
node (resp. arc), called actor, models a component (resp.
a buffer). In this producer/consumer paradigm, each actor
activation requires to consume data in its input buffers. After
a deterministic time, the actor will write data in its output
buffers. In the Synchronous DataFlow model (in short SDF),
the actors production/consumption rates are known at compile
time. As the whole application has to be integrated on a

single chip and satisfies high quality requirements, the buffer
minimization problem with throughput constraints is crucial
for the design of embedded system.

Nevertheless, in this paper, we consider Marked Timed
Weighted Event Graph (in short MTWEG) which is a sub-
class of Petri net. In this model, transitions correspond to
treatments of fixed processing times. Each placep models
a buffer and has exactly one input arc and one output arc
weighted respectively byu(p) andv(p). These values denote
the number of tokens that has to be added to (resp. removed
from) placep. If u(p) = v(p) = 1 for every place, we get a
Marked Time (non Weighted) Event Graph (in short MTEG).

MTWEG and SDF are clearly equivalent formalisms. How-
ever, the Petri net model has been considerably expanded with
many theoretical results from various scientific communities,
providing a unified model with many results and algorithmic
tools.

The determination of the liveness and the computation of the
optimal throughput of a MTEG are two fundamental questions
which are polynomially solved from a long time [2], [3], [4].
The minimization of a weighted sum of the initial markings for
a minimum given throughput of a MTEG is inNP , and many
authors developed efficient heuristics and exact methods to
solve it (see. as example [5], [6], [7]). TheNP -completeness
of this problem was proved recently in [8].

The existence of a polynomial algorithm for the liveness
and the computation of the throughput of a MTWEG is a
difficult question. Up to now, the time complexity of all
the algorithms developed to answer these two fundamental
questions is exponential in the worst case [9], [10]. The
consequence is that the optimization problems on MTWEG
are possibly not inNP : the evaluation of the feasible solutions
is not possible in polynomial time, which limits dramatically
the existence of efficient algorithms. For example, Sauer [11]
developed an algorithm to minimize the sum of the initial
markings for a given throughput which evaluate a feasible
solution using an exponential algorithm. The evaluation step
of this algorithm limits significantly the size of the instances.

Another way to circumvent this problem is to reduce the
set of feasible solutions. Benabidet al. [12] developed a
polynomial time algorithm for the computation of a periodic
firing of the transitions. This result can be regarded as a
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generalization of Reiter’s result for MTEG [13]. In the caseof
MTWEG, the existence of a periodic firing of the transitions
is clearly more restrictive than the liveness. On the same
way, the throughput of a periodic firing is obtained by firing
the transitions as soon as possible. However, optimization
problems, such as the minimization of the initial markings
are now inNP and efficient algorithms may be developed
(even if the problem inNP -complete).

The minimization of the buffer capacities under a through-
put constraint was also investigated by several authors using
SDF model. The main drawback of all these approaches is
that their complexity times depend on the numerical values
of the instance, and leads, in the worst case, to exponential-
time algorithms. Adéet al. [14] and Murthy [15] have both
characterized the lowest capacity of a given buffer. Murthyhas
also showed that the minimization problem of buffer capacity
of dataflow graph with a given initial buffers state is NP-
Complete. To cope with this problem, Adéet al. [16], [17]
devise interesting heuristics to minimize the buffers sizes of
a SDF graph such that there exists a valid schedule. In [18],
[19], several buffer minimization problems with throughput
constraint are modelled using an Integer Linear Program.
However, the number of constraints relies on the numerical
values of consumption/production rates of the instance. More
recently, in [20], [21] authors have dealed with this problem
with throughput constraint based on a state space exploration
with model checking techniques. Lastly, Wiggerset al. [22]
developed a heuristic that aims to build a periodic firings of
the transitions that minimizes the buffer capacities of a SDF.

The aim of this paper is to develop simple and efficient
algorithms to solve the minimization of the overall number of
initial tokens in a Timed Weighted Event Graph for a periodic
firing with a given period. Section 2 is dedicated to basic
definitions and the description of our problem. In Section
3, we show the modelling of a car radio using a MTWEG.
In Section 4, we show that our problem can be formulated
using an Integer Linear Program. The single buffer case is
fully studied in Section 5 and a polynomial time algorithm
is derived for an important sub-case of MTWEG. Section 6
is devoted to the presentation of a simple 2-approximation
algorithm. Section 7 presents the resolution of the example
using our algorithm. Section 8 is our conclusion.

II. M ODEL AND NOTATIONS

A Marked Timed Weighted Event GraphG = (T, P, l, M0)
is defined by a set of placesP = {p1, . . . , pm} and a set
of transitions T = {t1, . . . , tn}. Every placep ∈ P is
defined between two transitionsti and tj and is denoted
by p = (ti, tj). Each placep ∈ P is initially marked by
M0(p) ∈ N tokens and is associated with two strictly positive
integersu(p) andv(p) called the marking functions (see.figure
1).

For any transitionti ∈ T , we setP+(ti) = {p = (ti, tj) ∈
P, tj ∈ T } andP−(ti) = {p = (tj , ti) ∈ P, tj ∈ T }.

It is assumed that two successive firings of the same
transition cannot overlap: this is modeled by a self-loop place
p = (ti, ti), ∀ti ∈ T with u(p) = v(p) = 1 andM0(p) = 1.
For a sake of simplicity, these loops are not pictured.

ti tj

p

M0(p)
u(p) v(p)

Fig. 1. A placep = (ti, tj) of a MTWEG.

We also suppose that a processing timeℓ(ti) is associated
to every transitionti. If ti is fired at timeτ , v(p) tokens are
removed from every placep ∈ P−(ti). At time τ + ℓ(ti),
u(p) tokens are added to every placep ∈ P+(ti). The
instantaneaous marking of a placep ∈ P at time τ ≥ 0 is
denoted byM(τ, p). Clearly,M(0, p) = M0(p).

A place p = (ti, tj) has a bounded capacityF (p) > 0
if the number of tokens stored inp can not exceedF (p):
∀τ ≥ 0, M(τ, p) ≤ F (p). A MTWEG G = (T, P, M0, l, F )
is said to be a bounded capacity graph if the capacity of
every placep ∈ P is bounded byF (p). It is proved in [23]
that every placep = (ti, tj) with bounded capacity may be
replaced by a couple of places(p1 = (ti, tj), p2 = (tj , ti))
denoted by(p1, p2)c with the initial markingM0(p1) = M0(p)
and M0(p2) = F (p) − M0(p). So, in this paper, we only
consider symmetric MTWEG: every placep = (ti, tj) is
associated with a backward placep′ = (tj , ti) modelling the
limited capacity. Note that a symmetric MTWEG is strongly
connected: for every couple of vertices(x, y) ∈ (P∪T )2, there
exists a path inG from x to y. In addition, to every couple of
places(p, p′)c modelling a buffer is associated a non negative
cost by unit of capacity denoted byθ(p) = θ(p′).

For any couple of integers(a, b) ∈ N2, gcd(a, b) denotes
the greatest common divisor ofa andb.

A. Schedules

Let G be a MTWEG. A schedule is a functions : T ×N⋆ →
Q+ which associates, with any tuple(ti, q) ∈ T × N⋆, the
starting time of theqth firing of ti. There is a strong relation-
ship between a schedule and the corresponding instantaneous
marking. Indeed, a schedule is feasible if the number of tokens
of every placep = (ti, tj) remains non negative at each time
instant.

It has been proved in [24] that the initial marking
M0(p) of any place p = (ti, tj) may be replaced by
⌊

M0(p)

gcd(u(p), v(p))

⌋

gcd(u(p), v(p)) without any influence on

s. Thus, we assume that the initial markingM0(p) of every
placep = (ti, tj) ∈ P is a multiple ofgcd(u(p), v(p)).

The throughput of a transitionti for a schedules is defined
as

λs(ti) = lim
q→∞

q

s(ti, q)
.

A schedules is periodic if there exists a vectorw =
(w1, . . . , wn) ∈ Q+n such that, for any couple(ti, q) ∈
T × N⋆, s(ti, q) = s(ti, 1) + (q − 1)wi. wi is then the period

of the transitionti andλs(ti) =
1

wi

its throughput.
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III. EXAMPLE

A. Description

Let us consider a car-radio application described in [25].
The inputs of such systems are basically a MP3-reader and
a cell phone. The output is a mixed sound from these two
streams. Without any additional treatment, the output is rein-
troduced in the system through the cell phone, causing an
echo effect. In order to obtain a pure speech in the cell phone,
an additional input stream, corresponding to a microphone is
added.

Figure 2 presents the streams and the main treatments. The
first stream entrance, modelled byt7 is the MP3 reader.t10
corresponds to the entrance of the additional microphone.t9
is the output.t3 is the audio echo cancellation task.t1 mixes
the two input streams.t5 produces a pure speech from the
streamst3 and the cell phone.

t7 t1 t9

t5

t10

t3

MP3
Reader

Out To
Speaker

Cell
Phone

Micro-
phone

Signal to eliminate

Fig. 2. Block diagram of a car-radio application

Figure 3 shows the modelling of the whole application
by a MTWEG G. Transitionst2, t4, t6 and t8 are simple
rate converters. Places model intermediate buffers of limited
capacity between the components.

The cost in such signal processing application may be inter-
preted by the size of samples exchanged between processes.
Since in our case they exchange samples of the same size, we
setθ(p) = 1 for every placesp ∈ P .

B. The normalization step

A MTWEG is said to be normalized if all adjacent marking
functions of every transitionti ∈ T are equal to a single value
denoted byZi, i.e. ∀p ∈ P+(ti), u(p) = Zi and∀p ∈ P−(ti),
v(p) = Zi. Note that the number of tokens remains constant
in every circuit of a normalized graph. This simple important
property eases the study of the liveness and the computation
of periodic schedules (see.as example Theorem 1 below). We
briefly recall here how every live symmetric MTWEG may be
transformed into a normalized graph.

Let us first define the weight (or gain [26]) of every pathµ

of a MTWEGG by

W (µ) =
∏

p∈P∩µ

u(p)

v(p)
.

t7

1152

t8

480
441

t9

1

p7

p′7

p9

p′9

p8

p′8

p10

p′10

t10

1 1

1 1

1 1

441

80

441

80

80

80

1

1

80
1

p1

p′1

p2p′2p5 p′5

p6

p′6

p3

p′3

p4

p′4

t1

t2

t3

t4

t5

t6

Fig. 3. A MTWEGG modelling a car-radio application

Rougthly speaking, for any circuitc of a MTWEG, W (c)
can be viewed as the production rate of tokens onc. So, if
W (c) < 1 for a given circuit, the number of tokens on this
circuit decreases after a finite firing sequence and therefore it
leads to a deadlock situation [9], [10].

In the sequel, a MTWEGG is said to be unitary if every
circuit of G has a weight exactly equal to1.

Every symmetric MTWEGG considered in our study is
unitary: if it is not, there exists at least one circuitc of G
such thatW (c) > 1. So, the reverse circuitc′ of c verifies

W (c′) =
1

W (c)
< 1 and thus,G is not live and no feasible

schedule exists.

It is stated in [24] that any unitary MTWEG can be poly-
nomially transformed into an equivalent normalized MTWEG,
i.e. with the same feasible schedules. It is firstly proved
that, for any valueα ∈ Q+⋆, the markings functions and
the initial markings of any placep ∈ P may be replaced
simultaneously by respectivelyαu(p), αv(p) and αM0(p)
without any influence on the schedules. Then, it is shown that
positive integer valuesα(p), p ∈ P such that,∀ti ∈ T , there
exists an integerZi with, ∀p ∈ P+(ti), α(p)u(p) = Zi and
∀p ∈ P−(ti), α(p)v(p) = Zi may be computed in polynomial
time. ValuesZi, ti ∈ T replace marking functions as said
before.

The MTWEG depicted by Figure 3 is clearly not normal-
ized. Moreover, since it is symmetric, we may have, for every
couple of places(pi, p

′
i)c with i ∈ {1, . . . , 10}, α(pi) = α(p′i).

For our example, this yields to define the following system of
equations:
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





























































Z1 = α(p1) = α(p6) = α(p8) = α(p9)
Z2 = 441α(p1) = 80α(p2)
Z3 = 80α(p2) = 80α(p3) = 80α(p10)
Z4 = α(p3) = α(p4)
Z5 = α(p4) = α(p5)
Z6 = 80α(p5) = 441α(p6)
Z7 = 1152α(p7)
Z8 = 480α(p7) = 441α(p8)
Z9 = α(p9)
Z10 = α(p10)

The minimal solution is given by(α(p1), . . . , α(p10)) =
(80 441 441 441 441 80 73.5 80 80 441)
and corresponds to the new marking functions
Z = (80 35280 35280 441 441 35280 84672 35280 80 441).

Remark 1. Normalization affects the cost of places. Indeed,
for every couple of places(p, p′)c in the initial graph, initial
markings were multiplied byα(p) during the normalization
step. So, to get the real overall capacity cost for this new
normalized graph we have to divide the costθ(p) by α(p).

For our example, we get (θ(p1), . . . , θ(p10)) =
(

1

80

1

441

1

441

1

441

1

441

1

80

1

73.5

1

80

1

80

1

441

)

.

C. Evaluation of the processing times

For our example, the throughput for the output transitiont9

must be equal to44.1kHz that is to sayℓ(t9) = w9 =
1

44.1
ms.

The following theorem, proved by [12], will provide an upper
bound on the processing times of the other transitions.

Theorem 1. LetG be a normalized MTWEG. For any feasible
periodic schedules of G, there existsK ∈ Q⋆+ such that,
for any couple of transitions(ti, tj) ∈ T 2,

wi

Zi

=
wj

Zj

= K.

Moreover,s is feasible iff, for any placep = (ti, tj) ∈ P ,

s(tj , 1) − s(ti, 1) ≥ ℓ(ti) + K(Zj − M0(p) − gcdi,j).

wheregcdi,j = gcd(Zi, Zj).

By Theorem 1, we derive thatK =
w9

Z9
= 2.83× 10−4ms.

The processing time of transitiont3 is fixed for physical
considerations toℓ(t3) = 9.091ms. Fo the other transitions,
the processing time must be at most equal towi, thus we set
ℓ(ti) = wi. These values are reported in Table I.

IV. FORMULATION USING AN INTEGERL INEAR PROGRAM

Let G be a normalized symmetric MTWEG andK ∈ Q+ a
fixed value for the period. As seen before, a couple of places
(p, p′)c models a buffer of (unknown) minimum capacity
F (p, p′) = M0(p)+M0(p

′). Moreover, data stored in a buffer
have all the same size depending on the buffer and denoted
by θ(p). The general problem considered is to find an initial
markingM0(p), p ∈ P such that:

1) The weighted capacity, proportional to the whole surface
of the buffers

∑

p∈P θ(p)F (p, p′) =
∑

p∈P θ(p)M0(p)
is minimum.

2) There exists a periodic schedule with a period at most
equal to K.

The problem may be formulated by the following Integer
Linear ProgramΠ(K):

min
(

∑

p∈P θ(p)M0(p)
)

subject to






















∀p = (ti, tj) ∈ P, s(tj , 1) − s(ti, 1) ≥ ℓ(ti)+
K (Zj − M0(p) − gcdi,j)

∀p = (ti, tj) ∈ P, M0(p) = ki,j · gcdi,j

∀p = (ti, tj) ∈ P ki,j ∈ N

∀ti ∈ T, s(ti, 1) ≥ 0

The first inequality expresses the necessary and sufficient
condition associated with a placep on the first starting times of
a feasible periodic schedule following Theorem 1. The second
equality comes from the restriction ofM0(p), p = (ti, tj) ∈ P

to multiples ofgcdi,j = gcd(Zi, Zj).
Let us note that, if the initial markingM0(p), p ∈ P is fixed,

the corresponding optimum period may be easily computed:
for any placep = (ti, tj) ∈ P , let us denote by

H(p) = M0(p) + gcdi,j − Zj and L(p) = ℓ(ti).

For a circuitc, H(c) =
∑

p∈c H(p) andL(c) =
∑

p∈c L(p).
Theorem 2 expresses necessary and sufficient condition for the
existence of a periodic schedule deduced easily from Bellman-
Ford algorithm [27].

Theorem 2 ([12]). There exists a periodic schedule iff, for
every circuitc of G, H(c) > 0.

The minimum feasible valueKopt of K is then:

Kopt = max
c∈C(G)

L(c)

H(c)
(1)

whereC(G) denotes the set of circuits ofG.

V. STUDY OF A BUFFER

A. Relationship between the optimum period and the capacity
of a buffer

Let us consider a buffer modelled by a MTWEGG with a
couple of transitions(t1, t2) and a couple of places(p1, p2) ∈
P 2 with p1 = (t1, t2) and p2 = (t2, t1). We study here the
relationship between the minimum periodK of a periodic
schedule and the capacityF (p1, p2) = M0(p1) + M0(p2) of
the corresponding buffer.

First lemma expresses a lower bound on the capacity:

Lemma 1. The minimum capacity for the existence of a
periodic schedule isFmin(p1, p1) = Z1 + Z2 − gcd1,2.

Proof: G has three elementary circuitsc1 = (t1, t1), c2 =
(t2, t2) and c3 = (t1, t2, t1). By Theorem 2, there exists a
periodic schedule ifH(c1) = Z1 > 0, H(c1) = Z2 > 0
andH(c3) = F (p1, p2) + 2gcd1,2 − (Z1 + Z2) > 0. The last
inequality is equivalent toF (p1, p2) ≥ (Z1+Z2)−gcd1,2 since
initial marking M0(p1) and M0(p2) are multiples ofgcd1,2.

One can note thatFmin(p1, p2) does not depend on the
computation times of transitions(t1, t2). Moreover, this value
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TABLE I
PROCESSING TIMESℓ(ti), ti ∈ T IN MILLISECONDS

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
ℓ 2.3×10−2 10 9.091 0.125 0.125 10 24 10 2.3×10−2 0.125

is also equal to the lowest capacity of a given buffer ([14],
[15]).

Let us suppose now thatF (p1, p2) ≥ Fmin(p1, p2). From
equation 1 in the previous section, the optimum value of the
period for a fixed capacityF (p1, p2) is

Kopt = max

{

ℓ(t1)

Z1
,
ℓ(t2)

Z2
,

ℓ(t1) + ℓ(t2)

F (p1, p2) + 2gcd1,2 − (Z1 + Z2)

}

Without loss of generality, we may assume that
ℓ(t1)

Z1
≥

ℓ(t2)

Z2
and thus

Kopt = max

{

ℓ(t1)

Z1
,

ℓ(t1) + ℓ(t2)

F (p1, p2) + 2gcd1,2 − (Z1 + Z2)

}

.

From a certain value ofF (p1, p2), Kopt remains equal to
ℓ(t1)

Z1
. The following lemma characterizes this bound:

Lemma 2. The maximum value of capacity isFmax(p1, p2) =
⌈

ℓ(t2)
ℓ(t1)

· Z1

gcd1,2

⌉

gcd1,2 + 2Z1 + Z2 − 2gcd1,2.

Proof:
Fmax(p1, p2) is the minimum value forF (p1, p2) such as

ℓ(t1)

Z1
≥

ℓ(t1) + ℓ(t2)

F (p1, p2) + 2gcd1,2 − (Z1 + Z2)

Thus, we get

F (p1, p2) ≥

(

ℓ(t2)

ℓ(t1)
+ 2

)

Z1 + Z2 − 2gcd1,2.

Now, sinceFmax(p1, p2) is divisible bygcd1,2,

Fmax(p1, p2) =

⌈

ℓ(t2)

ℓ(t1)
·

Z1

gcd1,2

⌉

gcd1,2+2Z1+Z2−2gcd1,2.

Hence, the lemma.
The following theorem studies the determination of the

optimum period forF (p1, p2) between these two bounds:

Theorem 3. The function F (p1, p2) −→ Kopt is
strictly decreasing and strictly convex forF (p1, p2) ∈
{Fmin(p1, p2), F

min(p1, p2) + gcd1,2, . . . , F
max(p1, p2) −

gcd1,2, F
max(p1, p2)}.

Proof: M0(p1) and M0(p2) are divisible bygcd1,2, so
F (p1, p2) = M0(p1) + M0(p2) is. Now, for F (p1, p2) ∈
{Fmin(p1, p2), F

min
p1p2

+ gcd1,2, . . . , F
max(p1, p2) −

gcd1,2, F
max(p1, p2)}, the corresponding value ofKopt

is
ℓ(t1) + ℓ(t2)

F (p1, p2) + 2gcd1,2 − (Z1 + Z2)
which is strictly

decreasing and strictly convex. Hence the result.
This last theorem provides a good rule of thumb for the

designer: “The more you increase buffer capacity, the less it
increases the throughput.”

Let Kmin(p1, p2) (resp.Kmax(p1, p2) ) denotes the value
of Kopt for a buffer capacity equal toFmin(p1, p2) (resp.
Fmax(p1, p2) ).

For example, let us consider the couple of places(p7, p7)c

from Figure 3. As seen before, normalized values for the
adjacent transitionst7 and t8 are respectivelyZ7 = 84672
and Z8 = 35280 and gcd7,8 = 7056. We get the bounds
Fmin(p7, p

′
7) = 16gcd7,8, Kmin(p7, p

′
7) = 4.82 × 10−3ms,

Fmax(p7, p
′
7) = 32gcd7,8 and Kmax(p7, p

′
7) = 2.83 ×

10−4ms. Figure 4 presents the variation ofKopt according
to F (p7, p

′
7).

Kopt(p7, p
′
7)

F (p7p
′
7)

×

×

×
×

× × × × × × × × × × × × × × × ×

4.82×10−3

2.41×10−3

1.61×10−3

2.83×10−4

16
g
cd

7
,8

17
g
cd

7
,8

18
g
cd

7
,8

19
g
cd

7
,8

31
g
cd

7
,8

32
g
cd

7
,8

Fig. 4. Kopt according to F (p
7
, p′

7
) = M0(p7) + M0(p′7).

F min(p7, p′
7
) = 16gcd7,8, Kmin(p7, p′

7
) = 4.82 × 10−3ms,

F max(p7, p′
7
) = 32gcd7,8 andKmax(p7, p′

7
) = 2.83 × 10−4ms.

Conversely, for any fixed value K ∈
[Kmin(p1, p2), K

max(p1, p2)], the optimum value of capacity

is FK(p1, p2) =
(⌈

ℓ(t1)+ℓ(t2)
K·gcd1,2

⌉

− 2
)

gcd1,2 + (Z1 + Z2).
Thus, the complexity to obtain the optimum capacity for
a unique buffer is the computation ofgcd1,2 which is
O(log(max{Zi, Zj})).

B. Consequence for a symmetric MWTEG without circuits of
more than two transitions

Let us suppose thatG is a symmetric MWTEG without
any circuit of more than two transitions,i.e. the only circuits
come from the buffer limitation. The undirected graphG =
(T, E), for which every couple of places(p, p′)c ∈ P 2 with
p = (ti, tj) and p′ = (tj , ti) is replaced by a unique edge
(ti, tj) ∈ E, is a tree. This limitation on the structure ofG
was extensively studied by many authors and corresponds to
most of the applications (see.as example [22], [20], [21]).
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Starting from the Integer Linear ProgramΠ(K) defined
previously, we observe that there exists a periodic schedule
of periodK iff

1) K ≥ max
ti∈T

ℓ(ti)
Zi

and,

2) for every circuitc = (ti, tj , ti) corresponding to a buffer,
L(c) − KH(c) ≤ 0.

The important point is that an optimum initial marking may be
obtained by minimizing separately the capacity of each buffer.

For any fixed periodK ≥ max
ti∈T

ℓ(ti)
Zi

, an optimum marking

of placesp ∈ P is defined as follows. Let(p, p′)c be a couple
of places corresponding to a buffer:

1) If K ≤ Kmax(p, p′), then the capacity of the corre-
sponding buffer must be equal toFK(p, p′). So, we set
M0(p) = FK(p, p′) andM0(p

′) = 0;
2) Else,K > Kmax(p, p′) and this period may be achieved

by the minimum capacityFmin(p, p′). We set then
M0(p) = Fmin(p, p′) andM0(p

′) = 0.
This solution is clearly minimum for every buffer. So, it
minimizes the overall weighted capacity ofG. The complexity
time of this algorithm isO(m log( max

i∈{1,...,n}
Zi)).

C. Example

The example depicted by Figure 3 does not verify the
previous assumption. However, we may consider as ex-
ample the subgraphG′ limited to the transitionsT ′ =
{t1, t5, t6, t7, t8, t9} corresponding to the mixing of the sounds
coming from the MP3 reader and the cell phone to the
output. The corresponding undirected graph defined asG′ =
(T ′, {{t7, t8}, {t5, t6}, {t6, t1}, {t8, t1}, {t1, t9}}) is clearly a
tree.

Optimum values of capacity for this subgraph were cal-
culated forK = 2.83 × 10−4ms and different processing
time of t8. Values of the other transitions are fixed following
Table I to ℓ(t1) = l(t9) = 2.3 × 10−2ms, ℓ(t6) = 10ms and
ℓ(t7) = 24ms. Table II summarizes minimum capacities for
different values ofℓ(t8).

Note that the processing time ofℓ(t8) only influences
adjacent buffers corresponding to couples of places(p7, p

′
7)c

and(p8, p
′
8)c. Their capacity decreases whenℓ(t8) decreases.

This point can be proved easily from the Integer Linear System
Π(K). It was also noticed experimentally by [22].

TABLE II
OPTIMAL INITIAL MARKINGS OF THE SUBGRAPHG′ FOR DIFFERENT

PROCESSING TIME OFt8 .

ℓ(t8) = 10 7.5 5 2.5
θ(p6)F (p

6
, p′

6
) 882 882 882 882

θ(p7)F (p
7
, p′

7
) 3072 2976 2880 2784

θ(p8)F (p
8
, p′

8
) 882 772 662 552

θ(p9)F (p
9
, p′

9
) 2 2 2 2

Sum 4838 4632 4426 4220

VI. A N APPROXIMATION ALGORITHM FOR THE GENERAL

CASE

We suppose here thatK ≥ max
ti∈T

ℓ(ti)

Zi

is a fixed value. Let

us consider the Linear ProgramΠ⋆(K) obtained fromΠ(K)

by replacing the conditionki,j ∈ N by ki,j ∈ Q+.
The idea of our approximation algorithm for the general

case is to compute first polynomially an optimum solution
M⋆

0 (p) ∈ Q, p ∈ P of Π⋆(K). A feasible solutionM0(p) of
Π(K) is then deduced using a rounding algorithm.

Lemma 3. Let (p, p′)c be a couple of place withp = (ti, tj)
and p′ = (tj , ti). Let also the value

F ⋆
K(p, p′) =

ℓ(ti) + ℓ(tj)

K
− 2gcdi,j + (Zi + Zj).

Every feasible solutionM⋆
0 of Π⋆(K) verifies M⋆

0 (p) +
M⋆

0 (p′) ≥ F ⋆
K(p, p′).

Proof: Let the circuitc = (ti, p, tj , p
′, ti) corresponding

to a buffer. Then,L(c)−KH(c) = ℓ(ti)+ℓ(tj)−K(Zi+Zj−
M⋆

0 (p)−M⋆
0 (p′)−2gcdi,j). SinceM⋆

0 is feasible forΠ⋆(K),
we get L(c) − KH(c) ≤ 0 and thusM⋆

0 (p) + M⋆
0 (p′) ≥

ℓ(ti) + ℓ(tj)

K
− 2gcdi,j + (Zi + Zj), the result.

The following theorem characterizes an optimum feasible
solution ofΠ⋆(K):

Theorem 4. Let M⋆
0 (p), p ∈ P defined as, for every couple of

place(p, p′)c, M⋆
0 (p) = M⋆

0 (p′) = 1
2F ⋆

K(p, p′). Then,M⋆
0 (p),

p ∈ P is an optimum solution ofΠ⋆(K).

Proof: M⋆
0 is a feasible solution if, for every cir-

cuit c = (t1, p1, t2, p2, . . . , tk, pk, tk+1) with t1 = tk+1,
L(c)−KH(c) =

∑k
i=1 ℓ(ti)+K(

∑k
i=1 Zi−

∑k
i=1 M⋆

0 (pi)−
∑k

i=1 gcdi,i+1) ≤ 0. By definition ofM⋆
0 (pi), we have

−M⋆
0 (pi)+

1

2

(

ℓ(ti) + ℓ(ti+1)

K
− 2gcdi,i+1 + Zi + Zi+1

)

= 0

By summing these equalities for all places of the circuit, we
get

−
k

∑

i=1

M⋆
0 (pi) +

k
∑

i=1

ℓ(ti)

K
−

k
∑

i=1

gcdi,i+1 +
k

∑

i=1

Zi = 0

m ×K

−K

k
∑

i=1

M⋆
0 (pi) +

k
∑

i=1

ℓ(ti)−K

k
∑

i=1

gcdi,i+1 + K

k
∑

i=1

Zi = 0

and thus
L(c) − KH(c) = 0.

So, M⋆
0 is a feasible solution. Now, from Lemma 3,

M⋆
0 (p) + M⋆

0 (p′) is exactly the lower bound of the capacity
of the buffer(p, p′) and thus

∑

p∈P θ(p)M⋆
0 (p) is optimum.

So, theorem holds.
Our approximation algorithm consists in setting, for every

couple of places(p, p′)c corresponding to a buffer withp =

(ti, tj) andp′ = (tj , ti), M⋆
0 (p) = M⋆

0 (p′) =
1

2
F ⋆

K(p, p′) and

M
App
0 (p) = M

App
0 (p′) =

⌈

M⋆
0 (p)

gcdi,j

⌉

gcdi,j .

M
App
0 (p), p ∈ P is clearly a feasible solution ofΠ(K).

The following lemma provides a lower bound of the overall
capacity:
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Lemma 4. Let (p, p′)c be a couple of place withp = (ti, tj)

and p′ = (tj , ti) and letaK(p, p′) =
⌈

F ⋆
K(p,p′)
gcdi,j

⌉

gcdi,j . Then

AK = 1
2

∑

(p,p′)c∈P 2 θ(p)aK(p, p′) is a lower bound of the
minimum overall weighted capacity for a fixed periodK.

Proof: Any feasible solutionM0(p), p ∈ P of Π(K)
verifiesM0(p) + M0(p

′) ≥ M⋆
0 (p) + M⋆

0 (p′).
From Lemma 3,M⋆

0 (p)+M⋆
0 (p′) ≥ F ⋆

K(p, p′), soM0(p)+
M0(p

′) ≥ F ⋆
K(p, p′). SinceM0(p) + M0(p

′) is divisible by
gcdi,j ,

M0(p) + M0(p
′) ≥ aK(p′, p)

and lemma is proved.
This last theorem bounds the overall capacity obtained by

our algoritm:

Theorem 5.
∑

p∈P

θ(p)MApp
0 (p) ≤ AK +

1

2

∑

(p,p′)c∈P 2,

p=(ti,tj)

θ(p)gcdi,j

Proof: For every couple of places(p, p′)c ∈ P 2 with
p = (ti, tj),

M
App
0 (p) + M

App
0 (p′) = 2

⌈

F ⋆
K(p, p′)

2gcdi,j

⌉

gcdi,j .

Now, since

2

⌈

F ⋆
K(p, p′)

2gcdi,j

⌉

gcdi,j ≤

⌈

F ⋆
K(p, p′)

gcdi,j

⌉

gcdi,j + gcdi,j

= aK(p, p′) + gcdi,j ,

then

∑

p∈P

θ(p)MApp
0 (p) ≤

∑

p∈P

θ(p)aK(p, p′)+
1

2

∑

(p,p′)c∈P 2,

p=(ti,tj)

θ(p)gcdi,j

and theorem holds.
AK and

∑

p=(ti,tj)∈P θ(p)gcdi,j are both lower bounds
of the overall weighted capacity, and thus, we get a2-
approximation algorithm. This worse performance may be
easily achieved for a symmetric Timed (non weighted) Event
Graph.

VII. A PPLICATION TO THE CAR-RADIO

Table III summarizes the values obtained for our example
by the previous approximation algorithm.

We get the lower boundAK = 6348 and the overall capacity
of our solution is equal to6350. It is thus at less than0.04
percent from the optimum. Note that the capacity of most of
the buffers equals the minimum value, thus it is optimum.

In [25], the whole circuit is not considered. However, the
computed capacities for buffer(p3, p

′
3)c is 158, which is not

minimum.

TABLE III
OPTIMAL BUFFERS CAPACITIES FOR THEMTWEG PICTURED BY FIGURE

3

Buffers θ(pi)aK(pi, p
′

i
) θ(pi)F

App
K

(pi, p
′

i
)

(p1, p′
1
)c 882 882

(p2, p′
2
)c 160 160

(p3, p′
3
)c 153 154

(p4, p′
4
)c 2 2

(p5, p′
5
)c 160 160

(p6, p′
6
)c 882 882

(p7, p′
7
)c 3072 3072

(p8, p′
8
)c 882 882

(p9, p′
9
)c 2 2

(p10, p′
10

)c 153 154

Sum 6348 6350

VIII. C ONCLUSION

We presented in this paper an original approach to solve effi-
ciently the minimization of the buffer capacities with through-
put constraints for a class of streaming applications. A simple
mathematical modelization using an Integer Linear Program
was first introduced. An exact polynomial simple algorithm
was deduced from the theoretical study of the influence of the
capacity on the throughput for an important special case of the
MTWEG. A general polynomial approximation algorithm was
also developed for the general case. The solutions obtained
for simple practical examples are very close to the optimum
and beats previous works. This new approach can be easily
implemented to automatized the design of such systems.
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