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ON UNCERTAINTY PRINCIPLES IN THE FINITE DIMENSIONAL

SETTING

SAIFALLAH GHOBBER AND PHILIPPE JAMING

Abstract. The aim of this paper is to prove an uncertainty principle for the representation
of a vector in two bases. Our result extends previously known “qualitative” uncertainty
principles into more quantitative estimates. We then show how to transfer this result to the
discrete version of the Short Time Fourier Transform.

1. Introduction

The aim of this paper is to deal with uncertainty principles in finite dimensional settings.
Usually, an uncertainty principle says that a function and its Fourier transform can not be
both well concentrated. Of course, one needs to give a precise meaning to “well concentrated”
and we refer to [15, 12] for numerous versions of the uncertainty principle for the Fourier
transform in various settings. Our aim here is to present results of that flavour for unitary
operators on Cd and then to apply those results to the discrete short-time Fourier transform.

Before presenting our results, let us first introduce some notation. Let d be an integer and
ℓ2d be Cd equipped with its standard norm denoted ‖a‖ℓ2 or simply ‖a‖2 and the associated
scalar product 〈·, ·〉. More generally, for 0 < p < +∞, the ℓp-“norm” is defined by ‖a‖ℓp =(∑d−1

j=0 |aj|p
)1/p

. For a set E ⊂ {0, . . . , d − 1} we will write Ec for its complementary, |E|
for the number of its elements. Further, for a = (a0, . . . , ad−1) ∈ ℓ2d, we denote ‖a‖ℓ2(E) =
(∑

j∈E |aj |2
) 1

2

. Finally, the support of a is defined as suppa = {j : aj 6= 0} and we set

‖a‖ℓ0 = |suppa|.
Our aim here is to deal with finite dimensional analogues of the uncertainty principle where

concentration is measured in the following sense:

Definition.

Let T : ℓ2d → ℓ2d be a linear operator, S,Σ ⊂ {0, . . . , d− 1}. Then (S,Σ) is said to be a
— weak annihilating pair (for T ) if suppa ⊂ S and suppTa ⊂ Σ implies that a = 0;
— strong annihilating pair (for T ) if there exists a constant C(S,Σ) such that for every

a ∈ ℓ2n

(1.1) ‖a‖ℓ2 ≤ C(S,Σ)
(
‖a‖ℓ2(Sc) + ‖Ta‖ℓ2(Σc)

)
.

Of course, any strong annihilating pair is also a weak one. The corresponding notion for the
Fourier transform has been extensively studied, and we refer to [15, 12] for more references.
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The advantage of the second notion over the first one is that it states that if the coordinates
of a outside S and those of Ta outside Σ are small, then a itself is small.

It follows from a standard compactness argument (that we reproduce after Formula (2.5)
below) that, in a finite dimensional setting, both notions are equivalent. However, this
argument does not give any information on C(S,Σ). It is our aim here to modify an argument
from [10] to obtain quantitative information on this constant in terms of S and Σ. We will
restrict our attention to the case where T is invertible. Such an operator can be seen as a
change of basis and we are thus looking for uncertainty principles of the following form: “A
finite dimensional vector can not have coordinates concentrated in two different bases”. Such
uncertainty principles have been known for some time. The first occurrence in the case of T
being the discrete Fourier transform seems to be [22] and was rediscovered in [10]. Further
results in that case can be found in [25, 23]. For more general changes of basis, we refer to
[9, 11, 13].

Before going on with the results of this paper, let us mention its close connection with the
Uniform Uncertainty Principle introduced by E. Candès and T. Tao in their seminal papers
on compressed sensing [4, 5, 6, 7]:

Definition.

Let T : ℓ2d → ℓ2d be a unitary operator. Let s ≤ d be an integer and Ω ⊂ {0, . . . , d − 1}.
Then (T,Ω, s) is said to have the Uniform Uncertainty Principle (also called the Restricted
Isometry Property) if there exists δs ∈ (0, 1) such that, for every S ⊂ {0, . . . , d − 1} with
|S| = s and for every a ∈ ℓ2d with suppa ⊂ S

(1.2) (1 − δs)‖a‖2
2 ≤ ‖Ta‖2

ℓ2(Ω).

We will call δs the Restricted Isometry Constant of (T,Ω, s).

Note that, as T is unitary,

(1.3) ‖Ta‖2
ℓ2(Ω) = ‖Ta‖2

2 − ‖Ta‖2
ℓ2(Ωc) ≤ ‖a‖2

2 ≤ (1 + δs)‖a‖2
2.

This inequality is sometimes included in the definition of the Uniform Uncertainty Principle
and needed if T is not unitary.

The purpose of this property was to show that, one may recover a from the knowledge of
Ta, under the restriction of a to be sufficiently sparse, that is |suppa| to be sufficiently small.
Moreover, a may be reconstructed by ℓ1-minimization. Let us mention how a recent result
due to E. Candès [3] adapts in our case:

Theorem 1.1 (Candès [3]).
T : ℓ2d → ℓ2d be a unitary operator, let s ≤ d−1

2 be an integer and and Ω ⊂ {0, . . . , d − 1}
and ε > 0. Assume that (T,Ω, 2s) satisfies the Uniform Uncertainty Principle with restricted
isometry constant δ2s satisfying δ2s <

√
2 − 1 = (

√
2 + 1)−1.

Then, for every a ∈ ℓ2d with |supp a| ≤ s, for every e ∈ ℓ2d with ‖e‖2 < ε, the solution a of

min{‖ã‖ℓ1 : ã ∈ C
d,
∥∥T ã−

(
Ta+ e

)∥∥
2
≤ ε}

satisfies

‖a− a‖2 ≤ 2
1 + (

√
2 − 1)δ2s

1 − (
√

2 + 1)δ2s

s−1/2‖a− a∗s‖2 +
4

1 − (
√

2 + 1)δ2s

ǫ
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where a∗s is a vector that minimizes ‖a− as‖2 among all vectors as such that |suppas| ≤ s.
In particular, if a has support of size s (thus a = a∗s) and ε = 0, then a = a.

In [3] the operator T is real, that is, it maps Rd → Rd. In order to adapt the result to
complex operators, a stronger condition on δ2s needs to be imposed. On the other hand,
we can take δs = 0 in (1.3), which allows for some gain, so that we are back to the same
condition as in [3]. This follows from straight forward adaptations of the proofs in [3].

Let us now mention how the Uniform Uncertainty Principle (UUP) is linked to the notion
of annihilating pairs. If (T,Ω, s) has the UUP with constant δs then, for every S of cardinality
s, (S,Ωc) is an annihilating pair. More precisely, a standard computation (see (2.7) where
we reproduce the simple argument) shows that

‖a‖2 ≤
(

1 +
1√

1 − δs

)(
‖a‖ℓ2(Sc) + ‖Ta‖ℓ2(Ω)

)
≤ 2√

1 − δs

(
‖a‖ℓ2(Sc) + ‖Ta‖ℓ2(Ω)

)
.

Conversely, assume that Σ is such that, for every S such that |S| = s, (S,Σ) is a strong
annihilating pair for T . Let C(Σ) = sup|S|=sC(S,Σ), then (T,Σc, s) satisfies the Uniform

Uncertainty Principle with δs = 1 − C(Σ)−1.

Finally, we will apply our results to the discrete short-time Fourier transform. Let us
describe these results in a slightly simplified setting. Let d be an integer, f, g ∈ ℓ2d, the
short-time Fourier transform of f with window g is defined by

Vgf(j, k) =
1√
d

d−1∑

ℓ=0

f(ℓ)g(ℓ− j)e2iπkℓ/d.

We refer to e.g. [17, 16, 21] for various applications of the discrete short-time Fourier trans-
form in signal processing. Our aim is to show that this transform satisfies an uncertainty
principle. To do so, we adapt a method that was originally developed in [19, 20] and im-
proved in [8, 14], that allows to transfer a result about strong annihilating pairs for the
discrete Fourier transform into a similar result for its short-time version. A typical result will
then be the following:

Theorem 1.2. Let Σ be a subset of {0, . . . , d− 1}2 with |Σ| < d. then

‖f‖2‖g‖2 ≤ 2
√

2

1 − |Σ|/d


 ∑

(j,k)/∈Σ

|Vgf(j, k)|2



1/2

.

This article is organized as follows: in the next section, we prove results about strong
annihilating pairs for a change of basis. The following section deals with applications to the
short-time Fourier transform. We devote the last section to a short conclusion.

2. The Uncertainty Principle for expansions in two bases.

2.1. Further notations on Hilbert spaces.

Let Φ = {Φj}j=0,...,d−1 be a basis of Cd that is normalized i.e. ‖Φj‖2 = 1 for all j. If

a ∈ Cd, then we may write a =

d−1∑

i=0

aiΦi. We will denote by ‖a‖ℓp(Φ) = ‖(a0, . . . , ad−1)‖ℓp and
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suppΦ a = {i : ai 6= 0}. We also define ‖a‖ℓ2(Φ,E) in the obvious way when E is a subset of

{0, . . . , d− 1}. When no confusion can arise, we simply write ‖a‖ℓ2(E).

Next, we will denote by Φ∗ = {Φ∗
j}j=1,...,d the dual basis of Φ, that is the basis defined by

〈Φj,Φ
∗
k〉 = δj,k where δj,k is the Kronecker symbol, δj,k =

{
0 if j 6= k

1 if j = k
. Every a ∈ Cd can

then be written as

a =
d−1∑

j=0

〈
a,Φ∗

j

〉
Φj.

Moreover, there exist two positive numbers α(Φ) and β(Φ), called the lower and upper Riesz
bounds of Φ such that

(2.4) α(Φ)‖a‖2 ≤




d−1∑

j=0

|
〈
a,Φ∗

j

〉
|2



1/2

≤ β(Φ)‖a‖2.

If Φ and Ψ are two normalized bases of Cd, we will define their coherence by

M(Φ, ψ) = max
0≤j,k≤d−1

|〈Φj,Ψk〉|.

Obviously M(Φ,Ψ) ≤ 1 and, if Φ and Ψ are orthonormal bases, then M(Φ,Ψ) ≥ 1√
d
. Let

us recall that if M(Φ,Ψ) = 1√
d
, then Φ and Ψ are said to be unbiased. A typical example of

a pair of unbiased bases is the standard basis and the Fourier basis of Cd, see Section 3.1.

Let us recall that the Hilbert-Schmidt norm of a linear operator is the ℓ2d norm of its matrix
in an orthonormal basis Φ:

‖U‖HS =




d−1∑

i,j=0

|〈UΦi,Φj〉|2



1

2

.

As is well known, this definition does not depend on the orthonormal basis and it controls
the norm of U : ℓ2d → ℓ2d :

‖U‖ℓ2
d
→ℓ2

d
:= max

a∈Cd : ‖a‖2=1
‖Ua‖2 ≤ ‖U‖HS .

2.2. The strong version of Elad and Bruckstein’s Uncertainty Principle.

Let us start by giving a simple proof of a result of Elad and Bruckstein [11].

Lemma 2.1.

Let Φ and Ψ be two normalized bases of Cd. Then, for every a ∈ Cd \ {0},

‖a‖ℓ0(Φ)‖a‖ℓ0(Ψ) ≥
1

(
min

{
β(Φ)
α(Ψ)M(Φ,Ψ∗), β(Ψ)

α(Φ)M(Φ∗,Ψ)
})2 .
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In particular,

‖a‖ℓ0(Φ) + ‖a‖ℓ0(Ψ) ≥
2

min
{

β(Φ)
α(Ψ)M(Φ,Ψ∗), β(Ψ)

α(Φ)M(Φ∗,Ψ)
} .

Proof. The second statement immediately follows from the first one. The proof mimics the
proof given in [25] for the Fourier basis. For a 6= 0 and j = 0, . . . , d− 1,

|
〈
a,Ψ∗

j

〉
| =

∣∣∣∣∣
d−1∑

k=0

〈a,Φ∗
k〉
〈
Φk,Ψ

∗
j

〉
∣∣∣∣∣ ≤ max

j,k=0,...,d−1

∣∣〈Φk,Ψ
∗
j

〉∣∣
d−1∑

k=0

|〈a,Φ∗
k〉|

≤ M(Φ,Ψ∗)|suppΦ a|1/2

(
d−1∑

k=0

|〈a,Φ∗
k〉|2
)1/2

≤ β(Φ)M(Φ,Ψ∗)‖a‖1/2
ℓ0(Φ)

‖a‖ℓ2

≤ β(Φ)

α(Ψ)
M(Φ,Ψ∗)‖a‖1/2

ℓ0(Φ)

(
d−1∑

k=0

|〈a,Ψ∗
k〉|2
)1/2

≤ β(Φ)

α(Ψ)
M(Φ,Ψ∗)‖a‖1/2

ℓ0(Φ)
‖a‖1/2

ℓ0(Ψ)
max

k=0,...,d−1
|〈a,Ψ∗

k〉|.

It follows that

‖a‖ℓ0(Φ)‖a‖ℓ0(Ψ) ≥
(
β(Φ)

α(Ψ)
M(Φ,Ψ∗)

)−2

.

Exchanging the roles of Φ and Ψ, we obtain the result. �

Let us just note that if Φ and Ψ are two unbiased orthonormal bases, then the result reads
|suppΦ a||suppΨ a| ≥ d. An other formulation would be the following:

Let S and Σ are two subsets of {1, . . . , d} with |S||Σ| < d. If suppΦ a ⊂ S and suppΨ a ⊂ Σ
then a = 0.

In other words, if we denote by F the (unitary) operator that is defined by FΦi = Ψi,
then (S,Σ) is an annihilating pair for F . When Φ is the standard basis and Ψ the Fourier
basis, this result stems back to Matolcsi-Szücks [22] and Donoho-Stark [10]. It follows that
(S,Σ) is also a strong annihilating pair, i.e. there exists a constant C = C(S,Σ,Φ,Ψ) such
that, for every a ∈ Kd,

(2.5) ‖a‖2 ≤ C
(
‖a‖ℓ2(Φ,Sc) + ‖a‖ℓ2(Ψ,Σc)

)
.

Indeed, by homogeneity it is enough to prove (2.5) when ‖a‖2 = 1. But the unit sphere

Sd = {a ∈ Cd : ‖a‖2 = 1} of Cd is compact and the map a → ‖a‖ℓ2(Φ,Sc) + ‖a‖ℓ2(Ψ,Σc) is

continuous, thus its minimum D over Sd is reached in some a0. If this minimum were 0, then
suppΦ a0 ⊂ S and suppΨ a0 ⊂ Σ thus a0 = 0 which would contradict ‖a0‖2 = 1. Thus D > 0
and (2.5) is satisfied with C = D−1. However, this does not allow to obtain an estimate on
the constant C. We will overcome this in the next theorem.
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Theorem 2.2.

Let d be an integer. Let Φ and Ψ be two orthonormal bases of Cd and S,Σ be two subsets of

{0, . . . , d− 1}. Assume that |S||Σ| < 1

M(Φ,Ψ)2
. Then, for every a ∈ Cd,

‖a‖2 ≤
(

1 +
1

1 −M(Φ,Ψ)(|S||Σ|)1/2

)(
‖a‖ℓ2(Φ,Sc) + ‖a‖ℓ2(Ψ,Σc)

)
.

Remark :
For comparison with the previous lemma, recall that as Φ,Ψ are orthonormal they are equal
to their dual bases.

Proof. Let U be the change of basis from Ψ to Φ, that is the linear operator defined by
UΨi = Φi. We will still denote by U its matrix in the basis Φi, so that U = [Ui,j ]1≤i,j≤d is
given by Ui,j = 〈Φj,Ψi〉. As U is unitary, U∗Φi = Ψi.

For a set E ⊂ {1, . . . , d} let PE be the projection PEa =
∑

j∈E 〈a,Φj〉Φj. A direct

computation then shows that ‖a‖ℓ2(Φ,Sc) = ‖PSca‖2 while

‖a‖ℓ2(Ψ,E) =


∑

j∈E

|〈a,Ψj〉|2



1/2

=


∑

j∈E

|〈a,U∗Φj〉|2



1/2

=


∑

j∈E

|〈Ua,Φj〉|2



1/2

=




d∑

j=1

|〈PEUa,Φj〉|2



1/2

= ‖PEUa‖2.

Assume first that a ∈ Cd is such that suppΦ a ⊂ S. Then

‖PΣUa‖2 = ‖PΣUPSa‖2 ≤ ‖PΣUPS‖ℓ2→ℓ2‖a‖ℓ2(Φ,S).

It follows that

‖a‖ℓ2(Ψ,Σc) = ‖PΣcUa‖2 ≥ ‖Ua‖2 − ‖PΣUa‖2 = ‖a‖2 − ‖PΣUPS‖ℓ2→ℓ2‖a‖ℓ2(Φ,S)

=
(
1 − ‖PΣUPS‖ℓ2→ℓ2

)
‖a‖ℓ2(Φ,S).(2.6)

The last equality comes from the assumption suppΦ x ⊂ S which implies ‖a‖2 = ‖a‖ℓ2(Φ,S).

Note that, if we are able to prove that ‖PΣUPS‖ℓ2→ℓ2 < 1, then this inequality im-
plies that (S,Σ) is an annihilating pair. The following computation allows to estimate
the constant C(S,Σ) appearing in the definition of a strong annihilating pair: write D =(
1 − ‖PΣUPS‖ℓ2→ℓ2

)−1
then, for a ∈ Cd,

‖a‖2 = ‖PSa‖2 + ‖PSca‖2 ≤ D‖PΣcUPSa‖2 + ‖PSca‖2

= D‖PΣcU(a− PSca)‖2 + ‖PSca‖2

≤ D‖PΣcUa‖2 +D‖UPSca‖2 + ‖PSca‖2(2.7)

since ‖PΣcx‖2 ≤ ‖x‖2 for every x ∈ Cd. Now, as U is unitary, we get

‖a‖2 ≤ D‖PΣUa‖2 +
(
1 +D

)
‖PSca‖2



ON UNCERTAINTY PRINCIPLES IN THE FINITE DIMENSIONAL SETTING 7

which immediately gives an estimate of the desired form with

C(S,Σ,Φ,Ψ) = 1 +
(
1 − ‖PΣUPS‖ℓ2→ℓ2

)−1
.

It remains to give an upper bound on ‖PΣUPS‖ℓ2→ℓ2:

‖PΣUPS‖ℓ2→ℓ2 ≤ ‖PΣUPS‖HS =




d∑

i=1

d∑

j=1

|〈Φi, PΣUPSΦj〉|2



1/2

=


∑

i∈Σ

∑

j∈S

|〈Φi, UΦj〉|2



1/2

≤ M(Φ,Ψ)(|S||Σ|)1/2(2.8)

which completes the proof of the theorem. �

Remark :
Let Φ = {Φj}j=0,...,d−1 and Ψ = {Ψj}j=0,...,d−1 be two orthonormal bases of Cd and let U be
the operator defined by UΨj = Φj for j = 0, . . . , d− 1.

It follows from (2.8) and (2.6) that, if s|Σ| < 1

M(Φ,Ψ)2
then (U, s,Σc) satisfy the uniform

uncertainty principle with restriced isometry constant δs ≤M(Φ,Ψ)2s|Σ|. As a consequence,

Theorem 1.1 applies as soon as s|Σ| ≤
√

2−1
2 M(Φ,Ψ)−2. Writing Ω = Σc, we may deduce from

this that, if s ≤
√

2 − 1

2(d− |Ω|)|M(Φ,Ψ)2
, then any a such that ‖a‖ℓ0(Φ) ≤ s can be recovered as

the unique solution of

min{‖ã‖ℓ1 : 〈ã,Ψj〉 = 〈a,Ψj〉 for every j ∈ Ω}.
Earlier results in that spirit may be found in [9, 11, 13].

Definition.

Let C > 0 and α > 1/2. We will say that a ∈ Cd is (C,α)-compressible in the basis Φ if the

j-th biggest coefficient |〈a,Φ〉|∗(j) of a in the basis Φ satisfies |〈a,Φ〉|∗(j) ≤
√

2α − 1
C

jα
‖a‖.

In order to illustrate our main theorem, let us show that a vector can not be too compress-
ible in two different bases. We will restrict to a simple enough case, the proof being easy to
adapt to more general settings:

Corollary 2.3.

Let Φ and Ψ be two unbiased orthonormal bases of Cd. Let d ≥ 9, C > 0 and α > 1/2 be

such that C <
(
√
d− 3)α−

1

2

4
√
d

. Then the only vector a that is (C,α)-compressible in both bases

is 0.

Proof. Let a 6= 0 and assume that a is (C,α)-compressible in both bases. Without loss of
generality, we may assume that ‖a‖2 = 1.
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Let σ = σΦ be a permutation such that
(
|〈a,Φσ(j)〉|

)
1≤j≤d

is non-increasing. For k =

0, . . . , d − 1 define Sk = {σφ(0), . . . , σΦ(k)}, the set of the k + 1 biggest coefficients of a in
the basis Φ. Then

‖a‖2
ℓ2(Φ,Sc

k
) =

∑

j /∈Sk

|〈a,Φj〉|2 =

d−1∑

j=k+1

|〈a,Φσ(j)〉|2

≤ (2α− 1)C2
d−1∑

j=k+1

j−2α ≤ (2α− 1)C2

∫ +∞

k

dx

x2α
=

C2

k2α−1
.

It follows that ‖a‖ℓ2(Φ,Sc
k
) ≤ C

kα−
1
2

. In a similar way, we get ‖a‖ℓ2(Ψ,Σc
k
) ≤ C

kα−
1
2

where Σk is

the set of the k + 1 biggest coefficients of a in the basis Ψ.
Let us now apply Theorem 2.2 with S = Sk and Σ = Σk. Then, as long as k + 1 <

√
d,

1 ≤ 2

1 − k+1√
d

× 2C

kα− 1

2

. In other words, C ≥ 1

4

(
1 − k + 1√

d

)
kα− 1

2 .

Assume now that d ≥ 9 and chose k = [
√
d] − 2 (where [x] is the largest integer less than

x) so that k <
√
d− 1. It follows that

C ≥ 1

4

(
1 − [

√
d] − 1√
d

)
([
√
d] − 2)α−

1

2 ≥ (
√
d− 3)α−

1

2

4
√
d

which completes the proof. �

Remark :
— This corollary may be seen as a discrete analogue of Hardy’s Uncertainty Principle which
states that an L2(R) function and its Fourier transform can not both decrease too fast (see
[15, 12]).
— The above proof also works if the bases are not unbiased, in which case the condition on
C has to be replaced by

C <
M(Φ,Ψ)

4

(
1

M(Φ,Ψ)
− 3

)α−1/2

.

— Let Φ be an orthonormal basis of Cd and a ∈ Cd with ‖a‖ = 1 and 0 ≤ p < 2. From
Bienaymé-Tchebichev, we get that, for λ ≥ 0,

|{j : |〈a,Φj〉| ≥ λ}| ≤ ‖x‖p
ℓp(Φ)λ

−p.

Applying this to λ = |〈a,Φ〉|∗(k) we get

k ≤ |{j : |〈a,Φj〉| ≥ |〈a,Φ〉|∗(k)}| ≤ ‖a‖p
ℓp(Φ)(|〈a,Φ〉|∗(k))−p

thus

|〈a,Φ〉|∗(k) ≤
‖a‖ℓp(Φ)

k1/p
=

√
2

p
− 1

(√
p

p− 2
‖a‖ℓp(Φ)

)
k−1/p.

It follows that a is

(√
p

2 − p
‖a‖ℓp(Φ),

1

p

)
-compressible in Φ.

This shows that a vector can not have coefficients in two bases with too small ℓp-norm.
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2.3. Results on annihilating pairs using probability techniques.

So far, we have only used deterministic techniques, which lead to rather weak results. In
this section, we will recall some results that may be obtained using probability methods.

First, let us describe a model of random subsets of cardinality k. Let k ≤ d be an integer
and let δ0, . . . , δd−1 be d independent random variables take take the value 1 with probability
k/n and 0 with probability 1 − k/n. We then define the random subset of cardinality k,
Ω ⊂ {0, . . . , d − 1} by Ω = {i : δi = 1}. The term “of cardinality k” is justified by the fact

that the average cardinality of Ω is k (which is immediate once one write 1Ω =
∑d−1

j=0 δj1j).

Moreover, one has the following standard estimate (see e.g. [1, Theorems A.1.12 and A.1.13]
or [18]):

P

[
|Ω − k| ≥ k

2

]
≤ 2e−k/10.

Then Rudelson-Vershynin [24], (improving a result of Candès-Tao) proved the following the-
orem:

Theorem 2.4 (Rudelson-Vershynin [24]).
There exist two absolute constants C, c such that the following holds: let Φ = {Φ0, . . . ,Φd−1}
and Ψ = {Ψ0, . . . ,Ψd−1} be two unbiased orthonormal bases of Cd and let T : ℓ2d → ℓ2d be
defined by Tψj = Φj for j = 0, . . . , d− 1.

Let 0 < η < 1, t > 1 be real numbers and s ≤ d be an integer. Let k be an integer such
that

(2.9) k ≃ (Cts log d) log(Cts log d) log2 s.

Then, with probability at least 1 − 7e−c(1−η)t, a random set Ω of cardinality k satisfies

k −
√
tk ≤ |Ω| ≤ k +

√
tk

and (T,Ω, s) satisfies the Uniform Uncertainty Principle with Restricted Isometry Constant
δs ≤ 1 − η. In particular, for any S ⊂ {0, . . . , d} with |S| ≤ s, for every a ∈ ℓ2d,

(2.10) ‖a‖ℓ2 ≤ 2√
η

(
‖a‖ℓ2(Φ,Sc) + ‖a‖ℓ2(Ψ,Ω)

)
.

The parameter η is not present in their statement, but it can be obtained by straightforward
modification of their proof.

Taking s =
d

log5 d
, t =

log d

2C
we obtain k ≃ d/2. Thus, with probability ≥ 1 − 5d−κ(1−η)

(κ some universal constant) Ω has cardinal |Ω| = d/2 +O(d1/2 log1/2 d) and every set S with
cardinal |S| ≤ d

log5 d
and Ωc form a strong annihilating pair in the sense of (2.10).

An other question that one may ask is the following. Given a set Σ, does there exist a
“large” set S such that (S,Σ) is an annihilating pair? In order to answer this question, let
us recall that Bourgain-Tzafriri [2] proved the following:

Theorem 2.5 (Bourgain-Tzafriri, [2]).
If T : ℓ2n → ℓ2n is such that ‖Tei‖2 = 1 for i = 0, . . . , n − 1 (where the ei’s stand for the
standard basis of ℓ2n), then there exists a set σ ⊂ {0, . . . , n − 1} with |σ| ≥ n

240‖T‖2

ℓ2→ℓ2

such

that, for every a = (aj)j=0,...,n−1 with support in σ such that ‖Ta‖ ≥ 1
12‖a‖.
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The values of the numerical constants where given in [18].
We may apply this theorem in the following way: consider two mutually unbiased or-

thonormal bases Φ = {φj} and Ψ = {ψj} of ℓ2d and let S,Ω ⊂ {0, . . . , d− 1} be two sets with
|S| = |Ω| = n and enumerate them: S = {j0, . . . , jn−1} and Ω = {ω0, . . . , ωn−1}. Let T be

the operator defined by Tφjk
=

√
d

n
ψωk

for k = 0, . . . , n− 1. Then T satisfies the hypothesis

of Bourgain-Tzafriri’s Theorem and ‖T‖2 ≤ d

n
. Thus there exists σ ⊂ S with |σ| ≥ n2/240d

such that, for every a ∈ ℓ2n with support in σ,

‖a‖ℓ2(Ψ,Ω) ≥
1

12

√
n

d
‖a‖ℓ2(σ).

From which we immediately deduce the following (where Σ = Ωc):

Proposition 2.6.

Let Φ and Ψ be two mutually unbiased bases of ℓ2d and let S,Σ ⊂ {0, . . . , d − 1} be two sets

with |S|+ |Σ| = d. Then there exists σ ⊂ S such that |σ| ≥ (d− |Σ|)2
240d

and, for every a ∈ ℓ2d,

(2.11) ‖a‖ℓ2
≤ 13√

1 − |Σ|/d
(
‖a‖ℓ2(Φ,σc) + ‖a‖ℓ2(Ψ,Σc)

)
.

Of course, this proposition only makes sense when |Σ| ≤ d−
√

240d otherwise there is no
guarantee to have σ 6= ∅. We may thus rewrite (2.11) as

‖a‖ℓ2
≤ 4d1/4

(
‖a‖ℓ2(Φ,σc) + ‖a‖ℓ2(Ψ,Σc)

)
.

3. The uncertainty principle for the discrete short-time Fourier transform

3.1. Finite Abelian groups.

In this section, we recall some notations on the Fourier transform on finite Abelian groups.
Results stated here may be found in [26] and (with slightly modified notations) in [21].

Throughout the remaining of this paper, we will denote by G a finite Abelian group for
which the group law will be denoted additively. The identity element of G is denoted by
0. The dual group of characters Ĝ of G is the set of homomorphisms ξ ∈ Ĝ which map
G into the multiplicative group S1 = {z ∈ C : |z| = 1}. The set Ĝ is an Abelian group
under pointwise multiplication and, as is customary, we shall write this commutative group
operation additively. Note that G is isomorphic to Ĝ, in particular |G| = |Ĝ|. Further,

Pontryagin duality implies that
̂̂
G can be canonically identified with G, a fact which is

emphasized by writing 〈ξ, x〉 = ξ(x). Note that, as group operations are written additively,

〈−ξ, x〉 = 〈ξ,−x〉 = 〈ξ, x〉.

The Fourier transform FGf = f̂ ∈ CĜ of f ∈ CG is given by

f̂(ξ) =
1

|G|1/2

∑

x∈G

f(x)〈ξ, x〉, ξ ∈ Ĝ.
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The transform is unitary : ‖f̂‖2 = ‖f‖2 and the inversion formula for the Fourier transform

allows us to reconstruct the original function from its Fourier transform. Namely, for f ∈ Ĝ
we have

f(x) = F bG[f̂ ](x) =
1

|G|1/2

∑

ξ∈Ĝ

f̂(ξ)〈ξ, x〉, x ∈ G.

Moreover, as the normalized characters {|G|−1/2ξ}ξ∈Ĝ form an orthonormal basis of CG that

is unbiased with the standard basis we can reformulate Theorem 2.2 as follows:

Strong Uncertainty Principle on Finite Abelian Groups.

Let G be a finite Abelian group and let S ⊂ G and Σ ⊂ Ĝ be such that |S||Σ| < |G|. Then,
for every f ∈ CG,

‖f‖2 ≤ 2

1 − (|S||Σ|/|G|)1/2



(∑

x/∈S

|f(x)|2
)1/2

+


∑

ξ /∈Σ

|f̂(ξ)|2



1/2

 .(3.12)

The corresponding “weak” Uncertainty Principle appeared for the first time in [22] and has
been re-discovered several times, including [10]. Note also that one may improve this results
by chosing the sets S,Σ randomly ([28] for the cyclic groups) or when better information on
the group is taken into account ([23, 25] for weak versions of this theorem, a proper estimate
of the constants appearing in the corresponding strong versions remaining open).

For any x ∈ G, we define the translation operator Tx as the unitary operator on CG given
by Txf(y) = f(y − x), y ∈ G. Similarly, we define the modulation operator Mξ. for ξ ∈ Ĝ as
the unitary operator defined by Mξf = f · ξ, where here and in the following f ·g denotes the

pointwise product of f, g ∈ CG. Since M̂ξf = Tξ f̂ , we refer to Mξ also as a frequency shift

operator. Note also that T̂xf = M−xf̂

We denote by π(λ) = MξTx, λ = (x, ξ) ∈ G × Ĝ the time-frequency shift operators. Note

that these are unitary operators. The short-time Fourier transformation V G
g : CG → CG×Ĝ

with respect to the window g ∈ CG \ {0} is given by

V G
g f(x, ξ) =

1

|G|1/2
〈f, π(x, ξ)g〉 =

1

|G|1/2

∑

y∈G

f(y)g(y − x) 〈ξ, y〉 = FG[f · Txg](ξ)

where f ∈ CG. The inversion formula for the short-time Fourier transform is

f(y) =
1

|G|1/2‖g‖2
2

∑

(x,ξ)∈G×Ĝ

V G
g f(x, ξ)g(y − x)〈ξ, y〉.

Further, ‖Vg‖2 = ‖f‖2‖g‖2, in particular Vgf = 0 if and only if either f = 0 or g = 0.
Finally, let us note that a simple computation shows that

(3.13) V G
π(b,v)gπ(a, u)f(x, ξ) = 〈u− v − ξ, a〉〈v, x〉V G

g f(x− a+ b, ξ − u+ v).
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3.2. The symmetry lemma.

Let us first note that the short-time Fourier transform on Ĝ is defined by

V Ĝ
γ ϕ(ξ, x) =

1

|Ĝ|1/2
〈ϕ,MxTξγ〉 =

1

|Ĝ|1/2

∑

η∈Ĝ

ϕ(η)γ(η − ξ) η(x).

This is linked to V G in the following way:

V G
g f(x, ξ) =

1

|G|1/2
〈f, π(x, ξ)g〉 =

1

|G|1/2

〈
FGf,FG[MξTxg]

〉

=
1

|Ĝ|1/2

〈
FGf, TξM−xFGg

〉
=

〈ξ, x〉
|Ĝ|1/2

〈
FGf,M−xTξFGg

〉
,

so that

(3.14) V G
g f(x, ξ) = 〈ξ, x〉V Ĝ

ĝ f̂(ξ,−x).

Lemma 3.1. Let f, g, h, k ∈ CG. Then, for every u ∈ G and every η ∈ Ĝ,

FG×Ĝ[V G
g f V G

h k](η, u) = V G
k f(−u, η)V G

h g(−u, η).

Proof. First note that

FG×Ĝ[V G
g f V G

h k](η, u) =
1

|G|1/2|Ĝ|1/2

∑

x∈G

∑

ξ∈Ĝ

V G
g f(x, ξ)V G

h k(x, ξ) 〈η, x〉 〈ξ, u〉

=
1

|G|1/2|Ĝ|1/2

∑

x∈G

∑

ξ∈Ĝ

V G
g f(x, ξ)V Ĝ

ĥ
k̂(ξ,−x) 〈η, x〉 〈ξ, u− x〉

with (3.14). Using the definition of the short-time Fourier transform, this is further equal to

1

|Ĝ||G|
∑

x∈G

∑

ξ∈Ĝ

∑

y∈G

∑

ζ∈Ĝ

f(y)g(y − x) 〈ξ, y〉 k̂(ζ)ĥ(ζ − ξ)〈ζ,−x〉 〈η, x〉 〈ξ, u+ x〉

=
1

|Ĝ||G|
∑

x∈G

∑

ξ∈Ĝ

∑

y∈G

∑

ζ∈Ĝ

f(y)g(y − x) k̂(ζ)ĥ(ζ − ξ) 〈η + ζ, x〉 〈ξ, u− x+ y〉(3.15)

We will now invert the orders of summation. First

1

|Ĝ|1/2

∑

ξ∈Ĝ

ĥ(ζ − ξ)〈ξ, u− x+ y〉 =
1

|Ĝ|1/2

∑

ξ∈Ĝ

ĥ(ξ + ζ)〈ξ, u− x+ y〉

=
1

|Ĝ|1/2

∑

ξ∈Ĝ

M̂−ζh(ξ)〈ξ, u− x+ y〉 = [M−ζh](u − x+ y)

= 〈ζ, x〉〈−ζ, u+ y〉h(u− x+ y).
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Then

1

|Ĝ|1/2|G|1/2

∑

x∈G

g(y − x) 〈ζ + η, x〉
∑

ξ∈Ĝ

ĥ(ζ − ξ)〈ξ, u− x+ y〉

=
〈ζ, u+ y〉
|G|1/2

∑

x∈G

g(y − x) 〈η, x〉h(u− x+ y)

=
〈ζ, u+ y〉
|G|1/2

∑

z∈G

g(z)h(z + u)〈η, z〉 〈η, y〉

= 〈ζ, u〉 〈η + ζ, y〉V G
h g(−u, η).

It follows that

1

|Ĝ||G|1/2

∑

ζ∈Ĝ

k̂(ζ)
∑

x∈G

g(y − x) 〈ζ + η, x〉
∑

ξ∈Ĝ

ĥ(ζ − ξ)〈ξ, u− x+ y〉

=
1

|Ĝ|1/2

∑

ζ∈Ĝ

k̂(ζ)〈ζ, u〉 〈η + ζ, y〉V G
h g(−u, η)

=
〈η, y〉V G

h g(−u, η)
|Ĝ|1/2

∑

ζ∈Ĝ

k̂(ζ)〈ζ, y + u〉

= 〈η, y〉V G
h g(−u, η) k(y + u).

Finally, it remains to take the sum in the y-variable in 3.15 to obtain

FG×Ĝ[V G
g f V

G
h k](η, u) = V G

k f(−u, η)V G
h g(−u, η).

as announced. �

Remark : The short-time Fourier transform can be defined on any locally Abelian group G
and its dual Ĝ as

Vgf(x, ξ) =

∫

G
f(t)g(t− x)〈ξ, t〉 dν(t), (x, ξ) ∈ G× Ĝ

where dνG is the Haar measure on G. All results in this section go through to this more
general context, the inversions of order of integrations being easily justified. In the case
G = Rd, this lemma was given independently in [19, 20].

3.3. The Uncertainty Principle for the short-time Fourier transform.

We will conclude this section with the following theorem that allows to transfer results about
strong annihilating pairs in G× Ĝ to Uncertainty Principles for the short-time Fourier trns-
form.

Theorem 3.2. Let Σ ⊂ G× Ĝ and Σ̃ = {(ξ,−x) : (x, ξ) ∈ Σ} ⊂ ̂G× Ĝ = Ĝ×G. Assume

that (Σ, Σ̃) is strong annihilating pair in G× Ĝ, i.e. that there is a constant C(Σ) such that,
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for every F ∈ CG×Ĝ,

‖F‖2
2 ≤ C(Σ)


 ∑

(x,ξ)/∈Σ

|F (x, ξ)|2 +
∑

(x,ξ)/∈Σ̃

|FG×ĜF (ξ, x)|2



then, for every f, g ∈ CG,

‖f‖2
2‖g‖2

2 ≤ 2C(Σ)
∑

(x,ξ)/∈Σ

|V G
g f(x, ξ)|2.

Proof. We will adapt the proof in the case G = Rd given in [8] to our situation. Let us fix
f, g ∈ CG.

We will only use Lemma 3.1 in a simple form: for a ∈ G, η ∈ Ĝ define the function Fa,η on

G× Ĝ by

Fa,η(x, ξ) = 〈ξ − η, a〉V G
g f(x− a, ξ − η)V G

f g(x, ξ).

Note that Fa,η(x, ξ) = V G
g π(a, η)fV G

π(a,η)f g so that then FG×ĜFa,η(ξ, x) = Fa,η(−x, ξ).
It follows that

‖Fa,η‖2
2 ≤ C(Σ)


 ∑

(x,ξ)/∈Σ

|Fa,η(x, ξ)|2 +
∑

(x,ξ)/∈Σ̃

|Fa,η(−x, ξ)|2



= 2C(Σ)
∑

(x,ξ)/∈Σ

|V G
g f(x− a, ξ − η)|2|V G

f g(x, ξ)|2.

Finally, summing this inequality over (a, η) ∈ G× Ĝ gives

‖f‖4
2‖g‖4

2 ≤ 2C(Σ)‖f‖2
2‖g‖2

2

∑

(x,ξ)/∈Σ

|V G
f g(x, ξ)|2

which completes the proof. �

Combining this result with (3.12) we immediately get the following:

Corollary 3.3. Let Σ ⊂ G× Ĝ with |Σ| < |G|. Then, for every f, g ∈ CG,

‖f‖2
2‖g‖2

2 ≤ 8

(1 − |Σ|/|G|)2
∑

(x,ξ)/∈Σ

|V G
f g(x, ξ)|2.

The corresponding weak annihilating property for Σ was obtained by F. Krahmer, G. E.
Pfander and P. Rashkov [21].

Finally, using the fact that two random events A and B that each occur with probability
≥ 1−α, jointly occur with probability ≥ 1− 2α, we deduce the following from Theorem 2.4:

Theorem 3.4.

There exist two absolute constants C, c such that the following holds: Let 0 < η < 1, t > 1 be
real numbers and s ≤ d be an integer. Let k be an integer such that

k ≃ (Cts log d) log(Cts log d) log2 s.



ON UNCERTAINTY PRINCIPLES IN THE FINITE DIMENSIONAL SETTING 15

Then, with probability at least 1 − 14e−c(1−η)t, a random set Ω of cardinality k satisfies

k −
√
tk ≤ |Ω| ≤ k +

√
tk

and, for any S ⊂ {0, . . . , d} with |S| ≤ s, for every f, g ∈ ℓ2d,

(3.16) ‖f‖ℓ2‖g‖ℓ2 ≤ 2
√

2√
η


 ∑

x/∈S,ξ∈Ω

|V G
f g(x, ξ)|2




1/2

.

It would therefore be nice to have a “quadratic” analogue of Candès’s Theorem 1.1 in order
to obtain reconstruction of f and g from lacunary data {V G

f g(x, ξ), x ∈ Sc, ξ ∈ Ω}.

4. Conclusion

In this paper, we have shown how to obtain quantitative uncertainty principles for the
representation of a vector in two different bases. These estimates are stated in terms of
annihilating pairs and both extend and simplify previously known qualitative results. We
then apply our main theorem to the discrete short time Fourier transform, following the path
of corresponding results in the continuous setting.
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