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Abstract. Thanks to recent advances in virtualization technologies, it is
now possible to benefit from the flexibility brought by virtual machines
at little cost in terms of CPU performance. However on HPC clusters
some overheads remain which prevent widespread usage of virtualization.
In this article, we tackle the issue of inter-VM MPI communications
when VMs are located on the same physical machine. To achieve this we
introduce a virtual device which provides a simple message passing API
to the guest OS. This interface can then be used to implement an efficient
MPI library for virtual machines. The use of a virtual device makes our
solution easily portable across multiple guest operating systems since it
only requires a small driver to be written for this device.
We present an implementation based on Linux, the KVM hypervisor and
Qemu as its userspace device emulator. Our implementation achieves
near native performance in terms of MPI latency and bandwidth.

1 Introduction

Thanks to their excellent isolation and fault tolerance capabilities, virtual ma-
chines (VM) have been widely embraced as a way to consolidate network servers
and ease their administration. However, virtual machines have not yet been
adopted in the context of high performance computing (HPC), mostly because
they were incurring a substantial overhead. Recently, advances in hardware and
software virtualization support on commodity computers have addressed some
of these performance issues. This has led to many studies of how HPC could
take advantage of VMs [1].

First, HPC clusters too would greatly benefit from the ease of management
brought by virtual machines. Checkpoint/restart and live migration capabilities
could provide fault tolerance and load balancing transparently to applications.
Moreover, VMs give cluster users a greater control of their software environment
without involving system administrators.

Second, it should be possible to use VMs to improve the performance of
HPC applications. Using a minimal hypervisor and guest operating system can
decrease system noise and therefore greatly increase performance of some com-
munication operations [2]. More generally, virtualization allows the use of spe-
cialized guest OSes with scheduling or memory management policies tuned for
a specific application class.



Nonetheless, whatever VMs are used for, their integration within HPC en-
vironments must have a negligible performance overhead to be successful. Since
MPI (Message Passing Interface) is the most widely spread communication in-
terface for compute clusters, designing efficient MPI implementations in the con-
text of virtual machines is critical.

Some high performance Network Interface Cards can be made accessible di-
rectly from within VMs, thus providing near native communication performance
when VMs are hosted on different physical machines [3]. However, implementing
fast communication between virtual machines over shared memory is also crucial
considering the emergence of multicore cluster nodes.

Indeed, to execute MPI applications, it is desirable to use monoprocessor
VMs and one MPI task per virtual machine: it allows finer-grained load bal-
ancing by VM migration and multiprocessor VMs exhibit additional overheads
due to interferences between host and guest schedulers [4,5]. Thus, one major
challenge is to implement efficient message passing between processes running
inside separate VMs on shared memory architectures.

In this paper, we present a new mechanism to perform efficient message
passing between processes running inside separate VMs on shared memory ar-
chitectures. The main idea is to provide a virtual message passing device that
exposes a simple yet powerful interface to the guest MPI library. Our approach
enables portability of the guest MPI implementation across multiple virtualiza-
tion platforms, so that all the complex code dealing with optimizing memory
transfers on specific architectures can be reused.

2 Fast MPI communication over shared-memory

architectures

In recent years, shared memory processing machines have become increasingly
prevalent and complex. On the one hand, the advent of multi-core chips has dra-
matically increased the number of cores that can be fitted onto a single moth-
erboard. Intel announcement of an 80 core chip prototype shows that this trend
is only going to intensify in the future. On the other hand the increase in the
number of sockets per motherboard has led to the introduction of NUMA effects
which have to be taken into account. As a result, many research efforts have
been devoted to achieving efficient data transfers over these new architectures.

In this section, we give an insight on how to perform such data transfers both
in a native context, that is between processes running on top of a regular oper-
ating system, and in a virtualized environment (i.e. between processes belonging
to separate virtual machines).

2.1 Message passing on native operating systems

On a native operating system, data exchanges between processes can be per-
formed in many different ways, depending on the size of messages. Nonethe-
less, all solutions rely only on two primitive mechanisms: using a two step copy



through pre-allocated shared buffers or using a direct memory-to-memory trans-
fer.

Shared memory buffers: Many MPI implementations set up shared memory
buffers between processes at startup thanks to standard mechanisms provided
by the OS (e.g. mmap, system V shared memory segments). Communication
can then take place entirely in userspace by writing to and reading from these
buffers. Several communication protocols have been proposed. In MVAPICH2 [6]
all processes have dedicated receive buffers for each peer process: no synchro-
nization is required between concurrent sends to a single process, but n

2 buffers
are required and the cost of polling for new messages dramatically increases with
the number of processes. To alleviate these issues, Nemesis, one of MPICH2 com-
munication channels [7], uses only one receive buffer per process. This requires
less memory and ensures constant time polling with respect to the number of
processes. However concurrent senders have to be synchronized, which can be
done efficiently using lockless queues.

Buffer based communication makes an efficient usage of the shared caches
found in multi-core chips because the buffers can be made small enough so
that they fit in the cache. As a result, when communicating between two cores
sharing a cache, the extra message copy induces very little overhead (Fig. 1).
Moreover, high NUMA locality can be achieved by binding each process to a
core and allocating their memory buffers on the closest memory node. Such
implementations thus offer very low latencies. However, bandwidth usage is not
optimal for large messages, especially when processes are executed on cores which
do not share a cache level.

Direct transfer: To avoid the extra copy induced by the use of a shared buffer,
some MPI implementations aim at directly copying data between send and re-
ceive buffers and thus ensure maximum bandwidth usage for large messages.
However, this requires that the copy be performed in a memory context where
both send and receive buffers are mapped. That for, a first approach is to per-
form the copy within the operating system’s kernel [8]. This requires a dedicated
kernel module which makes this solution less portable. Moreover each commu-
nication will incur system call or even page pinning costs that restrict usage of
this technique to sufficiently large messages. For smaller messages, shared buffer
based communication has to be used. Another approach is to use threads in-
stead of processes to execute MPI tasks [9]. This allows a portable, userspace
only implementation but requires that the application code be thread-safe. For
example, it may not use global variables.

2.2 Message passing between virtual machines on the same host

The issues raised when trying to provide shared memory message passing be-
tween VMs are actually quite similar to those involved in the native case. Indeed,
similarly to processes in an OS, VMs do not share the same virtual address space.
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Fig. 1. Performance impact of using a shared buffer: if communicating cores share their
cache (a), the additional copy does not lead to a cache miss and therefore causes little
overhead compared to a direct copy. On the other hand, if caches are separate (b),
significant memory bandwidth is wasted.

Therefore, one of two things is necessary to allow communications between two
VMs:

– Having a pool of shared physical pages mapped in both communicating VMs
virtual address spaces, so that the VMs can communicate directly using
any shared memory buffer message passing technique seen earlier with no
additional overhead. This approach has been studied using Xen page sharing
capability to provide fast socket [10] and MPI [3] communication.

– Requesting a more privileged access to the memory of both VMs to perform
the message transfers. This avoids unnecessary copies to a shared buffer but
requires a costly transition to the hypervisor.

This is once again a tradeoff between latency and bandwidth. To provide
optimal performance, the most appropriate technique has to be picked dynam-
ically depending on the size of the message to transmit. Additionally, VM iso-
lation must be taken into consideration. A VM should not be able to read or
corrupt another VM’s memory through our communication interface, except for
the specific communications buffers to which it has been granted access.

3 Designing a virtual message passing device

As we pointed out in section 2, two communication channels have to be provided
to allow high speed MPI data transfers between VMs running on the same host:
a low latency channel based on shared buffers accessible directly from guests’
userspaces and a high bandwidth channel based on direct copies performed by
the hypervisor.

To address the challenge of providing these two channels to guest OSes in
a portable way, we introduce a virtual communication device which exposes a
low-level, MPI-friendly interface.

Indeed, traditional operating systems expect to sit directly on top of hardware
and to interact with it through various interfaces. Therefore, they already provide
ways to deal with these interfaces and to export them to applications. As a
result, to introduce guest OS support for a new device one usually only has to



write a small kernel module or device driver. Moreover, most hypervisors already
emulate several devices to provide basic functionality to VMs (network, block
device, etc.) Thus, it is possible to emulate a new device without modifying the
core of the hypervisor. A virtual device is therefore an easy and portable way to
introduce an interface between hypervisors and guest operating systems.

An overview of the usage of these communication channels is provided in
Figure 2. We now describe the key features of the device.
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Fig. 2. Overview of the virtual message passing device: shared memory buffers which
can be mapped in userspace are provided for low latency communications (a,b,c). Send
and receive requests can be posted so that the device performs direct memory copies
between VMs (1,2,3,4)

Ports: All communication endpoints on a physical machine are uniquely identi-
fied by a port number. This allows several communication channels to be opened
on each virtual machine to cater for most use cases. Several MPI processes on a
single VM might typically want to use the device for communication with MPI
processes running in other VMs. Using port numbers instead of VM identifiers
allows to handle these cases seamlessly. A VM must open a port before it is able
to issue requests originating from it and only one VM can have a given port
opened at a time.

Shared memory: The virtual device possesses onboard memory which corre-
sponds to a shared memory buffer that can be used to communicate between
VMs. More specifically, this memory is divided into blocks of equal size and each
port is attributed a block. The actual communication protocol is unspecified and
shall be implemented in the guest’s userspace by the communication library (e.g.
MPI library). This way, communications can be performed entirely in userspace
and don’t incur latency overheads due to context switching.

DMA transfers: The virtual device can process DMA copy operations between
arbitrary memory locations on all the VMs that use it. There are 2 types of



requests: receive and send which both apply to an origin and a target port.
They take two additional arguments:

– A list of pointers and sizes which describe a possibly scattered memory buffer
to send to or receive from.

– A completion register which is a pointer to an integer in the VM’s memory.
Completion and failure of a request can be inferred by reading the specified
integer. This allows to poll directly from the guest’s userspace, thus reducing
the number of transitions to the guest kernel and to the hypervisor.

The semantics of these operations are similar to MPI Irecv and MPI Isend se-
mantics. In particular, they ensure that a VM can only write to an other VM’s
memory when and where it is authorized to do so.

Note that this interface is similar to those of high performance network cards
which offer buffered and rendez-vous communication channels. This ensures that
existing MPI libraries can be ported easily to support this virtual messaging de-
vice. While our solution still requires more porting work than a solution offering
binary compatibility with the socket interface [10] it is also more efficient, if only
because it doesn’t incur the system call overhead induced by sockets.

4 Implementation

In this section we provide details on our preliminary implementation of this
virtual device using Linux as both guest and host OS and the Kernel Virtual
Machine hypervisor. We start by providing a brief overview of KVM and then
proceed to describe the implementation of our device from the guest and host
point of view.

4.1 The Kernel Virtual Machine

KVM is a Linux kernel module which allows Linux to act as an hypervisor thanks
to hardware virtualization capabilities of newer commodity processors. It is thus
capable of virtualizing unmodified guest OSes but also supports paravirtual-
ization to optimize performance critical operations. It provides paravirtualized
block and network devices and a paravirtualized MMU interface.

Using KVM, VMs are standard Linux processes which can be managed and
monitored easily. A userspace component is used to perform various initializa-
tion tasks, among which allocating a VM’s memory using standard allocation
functions and launching it by performing an ioctl call on the KVM module (see
Figure 3). This component is then asked to emulate the VM’s devices: whenever
the guest OS tries to access the emulated device, the corresponding instruction
traps into the KVM module which forwards it to the userspace component so
that the expected result may be emulated. A slightly modified version of QEMU
is provided as KVM’s default userspace component as it is capable of emulating
many devices.
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As a result, it is interesting to note that in this model, implementing the
emulation of a new virtual device does not introduce additional code into the
host kernel. Everything is performed inside QEMU which is a userspace process.

4.2 Guest implementation

A Linux driver has been implemented to allow Linux guests to handle our device.
In the following paragraphs, we describe how this driver accesses the device and
how it exposes the virtual device’s functions to userspace applications.

Accessing the device: To maximize portability, our device is accessed through
the recently introduced VirtIO interface. This interface abstracts the hypervisor
specific virtual device handling instructions into an hypervisor agnostic inter-
face. As a result, as shown in Figure 4, the same drivers can be used to handle
several hypervisors’ implementations of a given device. Only one hypervisor spe-
cific driver is needed to implement the interface itself. The VirtIO interface is
based on buffer descriptors, which are lists of pointers and sizes packed in an
array. Operations include inserting these descriptors into a queue, signalling the
hypervisor and checking if a buffer descriptor has been used.

In our virtual device, each open port is associated with a VirtIO queue
through which DMA requests can be sent by queuing buffer descriptors. The
first pointer/size pair of the buffer descriptor points to a header containing the
parameters of the request: whether it is a send or a receive, its buffer size, its
destination port and its completion register. The following pointer/size pairs
describe the buffer to send or receive.

However there is no VirtIO interface for directly sharing memory between
guests. Therefore the shared memory is exposed to guests as the onboard memory
of a PCI device.



Userspace interface: Our Linux driver exposes the virtual device as a char-
acter device and uses file descriptors to define ports. A port is acquired with the
open system call, which returns the corresponding file descriptor and released
with close. Ioctl calls are used to issue DMA requests because they require
custom arguments such as the destination port and completion register. Mmap

allows to map the shared memory of the device in userspace.

4.3 Host implementation

The host is in charge of emulating the virtual device. It has to implement memory
sharing and DMA copies between VMs. Using KVM, everything can be imple-
mented inside the VMs’ corresponding QEMU processes as described below.

Memory sharing between QEMU instances: Since each VM’s device em-
ulation is performed by its own QEMU process these processes need to share
memory to communicate: DMA requests passed through VirtIO queues must
be shared so that send and receives may be matched and each QEMU instance
needs to be able to access any VM’s memory to perform the copies between send
and receive buffers. Moreover, a shared memory buffer must be allocated and
mapped as the onboard memory of a PCI device to expose it to guests.

Our QEMU instances are slightly modified so that they allocate all of this
memory from a shared memory pool. This is currently achieved by allocating
this memory pool in one process with mmap and the MAP SHARED flag before
creating the QEMU instances for the VMs. These instances are then created by
forking this initial process.

One limitation of this implementation is that it cannot support a varying
number of communicating VMs. However we plan to support this by allocating
each QEMU instance’s memory separately using a file backed mmap. QEMU
instances would then be able to access each other’s memories by mapping these
files into their respective address spaces. Another possibility would be to run
VM instances inside threads of a single process but this would require to make
QEMU thread-safe.

DMA transfers: Whenever a guest signals that it has queued DMA requests
through the VirtIO interface, the corresponding QEMU instance will dequeue
and process these requests. Receives are stored in a per port queue which is
shared among QEMU instances and for each send, the corresponding receive
queue is searched for a matching receive. If one is found, a copy is performed
between the send and receive buffers and the completion registers are updated.

5 Evaluation

To evaluate our virtual device implementation, we have developed a minimal
MPI library which provides MPI Irecv, MPI Isend and MPI Wait communica-
tion primitives. It should be noted that most other MPI calls can be implemented
on top of these basic functions.



Small messages (≤ 32 KB) are transmitted over the shared buffers provided
by the virtual device. This 32KB limit has been determined empirically. Each
MPI task receives messages in the shared memory block of the virtual port it
has been attributed. This memory block is used as a producer/consumer circular
buffer and is protected by a lock to prevent concurrent writes.

For larger messages, we use a rendez-vous protocol. The sender sends the
message header to the shared buffer of the receiver. In turn, when the receiver
finds a matching receive, it posts a DMA receive request to the virtual device.
It then sends an acknowledgment to the sender which can post a DMA send
request.

We evaluate the performance of our implementation on a pingpong bench-
mark. We measure the latency and bandwidth achieved between two host pro-
cesses communicating using MPICH2 and between two processes on two VMs
using our virtual device and minimal MPI implementation (VMPI). The ma-
chine used for this test has two quad-core Xeon E5345 (2.33Ghz) processors and
4GB of RAM. Processes or VMs are bound to different processors. Results are
shown in Figure 5.
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Fig. 5. Results

Nemesis uses lockless data structures and minimizes the number of instruc-
tions on the critical path which explains its better performance in small message
latency compared to our naive MPI implementation. By implementing Nemesis’
communication algorithm in our MPI library we should be able to attain similar
performance. The bandwidth graph shows that as long as we use the virtual
device’s shared buffers for communication (up to 32 KB), there are little differ-
ence between the native and virtualized case. For larger messages, the ability to
perform direct copies between send and receive buffers allows us to outperform
Nemesis even when messages don’t fit in the cache. This result outlines an in-
teresting property of virtualization: it can be used to implement optimizations
that cannot be performed natively without introducing privileged code.



6 Conclusion and Future Work

In this paper, we presented the design and implementation of a virtual device
for efficient message passing between VMs which share the same host. Our eval-
uation shows that it achieves near native performance in MPI pingpong tests
and can outperform native userspace MPI implementations without introducing
privileged code on the host.

In the future, we intend to integrate support for our device as a channel in an
existing MPI implementation so as to provide the whole MPI interface. This will
allow a more thorough evaluation of our solution on real HPC applications. We
also plan to extend our virtual device so that it supports additional features such
as live migration. This will require a callback mechanism to allow the MPI library
to suspend and resume communications appropriately when tasks are migrated.
On an other note, we plan to experiment with specialized VM scheduling policies
that take communications and NUMA effects into account to reduce overheads
when there are more VMs than available cores.
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