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Abstract—In some engineering applications, such as chaotic exhibit the required features. However, most of the papers
encryption, chaotic maps have to exhibit required statistical and dealing with synchronisation and observer synthesis densi

spectral properties close' to th.ose of randqm .signals. However, precisely these kinds of maps, highly inefficient in the eant
most of the papers dealing with synchronization and observer . . !
| of chaotic encryption.

synthesis consider maps exhibiting poor statistical and spectra 8 . . .
properties. Moreover, most of the time these properties, hower Unlike these models, Lozi [10] introduced in 2008 a new
essential for the chaotic encryption, are simply neglected. Unlike ultra weakly coupled maps system to generate pseudo-random
these papers, in our work we present the analysis of a new ultra sjgnals which exhibits very good statistical properties.uEe
weakly coupled maps system introduced by Lozi. The model is s system for secure communication, it must exhibit good

a deterministic one, but exhibits spectral properties (spectrum, . .
correlation and autocorrelation) close to those of random signals, spectral features and have to be observable. So the aimsof thi

and successfully passed all the statistical tests for closenesd@per is to identify and to design an observer for the weakly
to random signals (NIST). Two different observers have been coupled map system.

designed. The convergence rate has been discussed in the case This paper is organised as follow : after briefly presenting
of affine maps, and the conditions to decrease the convergencey,. system under investigation, sections three and fosepte
rate by a factor of 16 have been presented, based on the locally - . e .
linear behaviour of the weakly coupled map. Fhe issues on_parametgr identifiability and system obs_érvab
ity. Sections five and six propose and compare two different
observers. Finally, a concluding section ends the paper.
I. INTRODUCTION

HAQOS has recently received a growing interest in various II. SYSTEM DEFINITION
fields of science and engineering, and in particular, in : :
o 9 9 P .. The N-th order function¥' can be written as :
secure communications. Pecora and Carroll were the first
who synchronised chaotic systems [1]. Several chaoticteryp

graphic schemes have been proposed since [2], [3] and can be X(n+1) = F(X(n))

classified in three main categories : chaotic masking, @haot with X (n) = (z1(n), z2(n), ..., zx(n))
modulation and chaotic shift keying.
In the cryptographic application, the chaotic generatostmu X(n+1)=F(X(n))=AAX(n))

exhibit appropriate features close to those of the pseudo-
random generators. These adapted properties have been stu\g
ied more precisely in [4], [5], [6]. 1—(N—-1)a €1 €1
Further researchers have then looked for finding apprepriat €2 I—(N—=1e ... €2
systems testing different architectures : traditional otitca “* =
maps (for example, the logistic map, theebn map [7],
the generalised &hon map) piece-wise linear map, cascaded
map [8] or coupled map lattice. In order to evaluate the andA is the tent function applied to every the components
features of the system, statistical tests developed fatamn of X € [-1;1]V :
number generators (RNG) can also be applied to chaotic maps,

here A is a NxN matrix defined by:

EN EN 1—(N—1)€N

in order to gather evidence that the map ﬁglgzgi
generates "good” chaotic signals, i.e. having a considerab AX(n) = 2

degree of randomness. To address this particular problem, :

different statistical tests for the systematic evaluatidrthe Alzn(n))

randomness of cryptographic random number generators cag. o L . .
b . . . ince the function is piece-wise linear, it can be rewritten
e applied, among which the most popular NIST (Natlon‘alnder a matrix form, by rewriting the tent function :
Institute of Standards and Technology) tests. e 9 '
It appears that most of the maps classically used for chaotic Az) = 20 +1 ifx<0
encryption do not pass successfully these tests, and don’t T —22+1 else
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or using the generic form : Both ; andxs appear in the last. Butz; z»2} is the state
of the chaotic system, which has the property to visit thelerho

A@) =sz+1 state spacg—1;1]2. In other words, to a given parameter
with : . combination{ey, ez, €1, €2, 510, 520, 11, 521, 510, 520, 511, 821 }
s :{ 2 ifz<0 can be associated an infinity of statés;;z.}. One can
—2 else consider then the independent variablés | (n)) et A(za(n)).
For the second order, the general systéns then governed In this case, one obtains the following system of equations :
by : (€1 - 61)(1 - 61)811 — €1€2521 + €1€2591
( z1(n+1) ) .y ( z1(n) >+< 1 ) — (61— €)1 - €)1 =0
332(77/ + 1) " -732(77/) 1 €1 [—(€1 — 61)811 — (1 — 62)821 + (1 — €2)§21} =0
where A,, is : One solution of the second equation is;:= 0. ¢, is one
A (1 —€1)s10 €1590 of the system parameters, and this solution corresponds to
n= < €510 (1 —€2)820 > a decoupled system. Therefore, this particular case is to be

The rest of the paper only consider the second order syste%.dUded' One obtains then the new system of equations :

(€1 —€1)(1 — €1)s11 — €1€2821 + €1€2801
Il1. | DENTIFIABILITY — (& —€1)(1 —&)821 =0
The purpose of this section is to determine if the coder can —(€1 —e1)s11 — (1 —€2)s21 + (1 — &2)521 = 0
generate two identical outputs from two different encrypti The resolution leads to the following result:
keys. In terms of system theory, it means that the system
generates two identical outputs for two different parametev(s;i, sa1,821) € {—2;2}3,

combinations. If this is the case, the base of the varying So1 = 821 = {é,62} ={e1,€e}
parameters has to be modified, and the parameter redunsglancie S11 =821 = —891 = e =0etés+ex—€=0
removed. To do so, the two outputs have to be equalized and | —s11 =591 = —821 = e =0¢€tés+ea+é1 =0

their impact on the parameters has to be investigated.
The presented study concerns the second order syste
without the scaling. Let consider two second order syste

nowing that the solutiors; = 0 is impossible, then the
owing conclusion can be drawn :

systems governed by the same law : g(n) = y(n)
gln+1) = yn+1) c e

pn+1) = (1-a)A@i(n) +aAlwa(n) in+2) = ymyz) ~ 0=t
za(n+1) = (1 —e)A(z2(n)) + eaA(z1(n)) e # 0

yn) = 2(n) Finally, there are no redundant parameters and the whole set
. . . . A of parameter combinations can be used as a set of encryption
Ziln+1) = (1—=&)A@Z1(n)) + é1A(22(n)) K ;
N . . AN eys of the coder, there are no parameters different from the
Fan+1) = (1—é&)A(@2(n)) + &M (31 (n) y P

N one used for the encryption which could allow to decrypt the
gn) = a1(n) message. P P
Considering the same outputs(§(n)), = (y(n))n, is it
possible that the parameters would be different? The system

IV. OBSERVABILITY
piece-wise linear, so let; € {—2;2} be defined by\ (z;(n+

7)) =1+ s;. An affine system can be written as :
=2 ifai(n+4)>0 z(n+1)=F(z(n)) = Ax(n)+ B
ST 2 else y(n) = Ca(n)
R . A second order affine system is observable if its obsentgbili
g(n) = y(n) = 21(n) = z1(n) matrix is a full-rank one :
g(n) = y(n) o-( ¢
gin+1) = yn+1) “\ca

Here, the system is piece-wise affine, therefore the obkirva
ity matrix shall be different according to the region to whic

g(n Z_ﬁqg i ZEZ)JF 1) belong the system state. It is equal to :
gn+2) = yn+2) o 1 0
[(61 —€1)(1 — €1)811 — €1€2821 + €1€2591 = < _ >
_ (& —a)d = &)3a]A(zi(n)) 200 —e)sio 2esio
=e1[—(€1 —€1)s11 — (1 — €2)s921 which is full-rank sincee; > 0. Therefore, the system is

+ (1 — é2)821]A(z2(n)) observable.
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V. LINEAR LUENBERGEROBSERVER start from the same region, then statistically three itenst
The system is piece-wise affine. Considering it as such, thE¢ necessary before the trajectories converge. When the
present section identifies a piece-wise linear observee TFYStem falls consecutively into two different configuratp
second order system can be rewritten using the affine fofRf €quation which governs the error becomes :

on the four domains where it is defined : e(n+2) = (A1 + K1C)(As + K2C)e(n)
{ x((Z)Jr_l)C;(i)(x(n) )=Azn)+B Let P;, P, be two transformation matrices which triangularise
yin) = respectively the matricegd; + K;C) and (42 + K>C), and
( ) let D, D5 be the two triangularised matrices. It comes :
. 1—€1)s10 €1520 . 1 B B
zlnt1)= < €2510 (1 — €2)s20 ) wm) + ( 1 ) e(n+2)=PD1P 1P2D2P2 le(n)
yn)=(1 0)a(n) As soon asP, # P,, the errore does not cancel in two
The associated Luenberger system is : iterations.
. . . Now, the proper bases of the matrice$ + KC) are the
#(n+1) = A(n) + B + K(Ci(n) — y(n)) same for the domains of definitiofi(n) € [-1;0]*> and

K is a predefined gain such that the ere6n) tends to zero. £(n) € [0;1]>. On the other hand, the bases are the same
Let consideri(n) andz(n) in the same region of definition. for the domains of definitioni(n) € [0;1] x [-1;0] and
In this case, A = A and therefore, Z(n) € [-1;0] x [0;1]. In the exemple, since the matrices
D, and D, have zero eigenvalues, i, = P,
e(n+1)=(A+ KC)e(n)
e(n+2) = PLD1DyPy te(n) =0
One can identify the values of the gaii which cancel the o )
eigenvalues of the matrixA + KC) as a function of the Flnall)_/, conS|de_r|ng that the two systems are in the same
affine system model. In this case, since the matrix is of scofiomains of definition, they have one chance out of two to
order, (A + KC)? = 0 therefore if the system statesand Synchronise. _ - _
its estimates belong to the same region of the state space Now, if one considers that the transition evolution of the
twice consecutively, then the estimate shall synchroniite wiwo systems is independent in the domain of definition until
the original system. they synchronise, they have statistically one chance out of

Zero eigenvalues lead to the following solutions for théxtéen to fall twice consecutively in the same domains of
definition, which decreases the probability to synchromisa

gamn - given instant to 1/32.
< ) 2(e1 + €2 - 2) ) if #(n) € [—1;0]2 Finally, two synchronisation strategies are possible : the
3(262 —€2—eae—1) ’ classical one considers that the master system starts from
any initial condition and follows the same law during the
< , 2(e2 — €1) ) synchronisation. In this case, the slave system will syomise
(26 -2+ a6 —1) - in average - after 32 iterations and it is governed by the
if Z(n) €[0;1] x [-1;0] equation :
K =
< “2es — 1) Z(n+1)=F(&(n)) + B+ K(Cz(n) —y(n))
—%(262 —€e2+ee—1) On the other hand, one can consider that the observer
if Z(n) € [—1;0] x [0;1] consists of several systems following different laws, each
following its own law whatever the value of its state at the
< , —2(e1 + €2 —2) > if #(n) € [0;1]2 next iterates. A system can then be governed by the law :
—ale-e2-ac—1) S1:d(n+1) = Aii(n) + B + Ky (Ca(n) — y(n))

The zero eigenvalues assure the convergence in two itera-

tions of the affine system if the system states remain in tM@ereAl et K, are derived from the definition of the systems

i i initic . 012
same region of definition. Then the synchronisation may nEﬁlated to the desired domain of definitidr(n) € [-1;0]" for
take place for any states evolution. instance. The observer systems have to cover the whole set of

The error of the linear system evolves following the equ&)_ossible f:oml_)inations of the state evolutions which allow t
tion synchronise, i.e. four observers for a §ecgnd order system.
e(n+1) = (A + KO)e(n) The ad_v_antage to use these systems lies in the_ fact t_hat the
probability that one of the forth systems synchronises with
Since the matriX A+ K C) is nilpotent, if the system remainsoriginal systems rises up to 1/2. Once synchronised, aictdss
in the same domain of definition, observer can allow to follow the trajectory of the stateshaf t
o 2 . original system.
e(n+2) = (A+ KC)e(n) =0 If the classical use of a second order system leads to a
In reality, the system states have a probability of 1/4 tb fabynchronisation in 32 iterations in average, when the gyste
twice consecutively in the same domain of definition. Consi@rder is increased, the synchronisation time increasee-exp
ering that both systems (the original one, and the observegntialy. The simultaneous use of several observers allows
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divide the time for synchronisation by 16 for a second order
system. The drawback is that several observer systems have
to run simultaneously.

VI. ANOTHER OBSERVER
For the second order system, the autonomous system is :

z1(n+1) = (1 —e1)A(z1(n)) + e1A(z2(n))
za(n+1) = (1 — ea)A(z2(n)) + e2A(z1(n))
y(n) = z1(n)
With two measurements at the outpyt it is possible to
reconstruct the signal :

{ w1 (n) = y(n)
w2(n+1) = e2A(y(n)) — Z(y(n+1) — (1 - e1)A(y(n)))

Finally, this reconstructor can identify the original stdibr
all values, which is not the case of the first observer. Altigu
this method can be difficultly be applied to greater order
systems.

VII. CONCLUSION

Most of the papers devoted to observer synthesis considered
maps with poor statistical and spectral properties. Weenrtes
here the synthesis of efficient observers for the system of
weakly coupled map which satisfied all statistical (NIST)
and spectral analysis tests. Two different observers haea b
designed. The convergence rate has been discussed in the cas
of affine maps, and the conditions to decrease the convexgenc
rate by a factor of 16 have been presented, based on theylocall
linear behaviour of the weakly coupled map. The design and
analysis of higher order map observers is currently under
investigation.
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