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Stéphane Clain∗,a, David Rochetteb
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Abstract

Gas flow in porous media with a nonconstant porosity function provides a
nonconservative Euler system. We propose a new class of schemes for such
a system for the one-dimensional situations based on nonconservative fluxes
preserving the steady-state solutions. We derive a second-order scheme us-
ing a splitting of the porosity function into a discontinuous and a regular
part where the regular part is treated as a source term while the discon-
tinuous part is treated with the nonconservative fluxes. We then present a
classification of all the configurations for the Riemann problem solutions. In
particularly, we carefully study the resonant situations when two eigenval-
ues are superposed. Based on the classification, we deal with the inverse
Riemann problem and present algorithms to compute the exact solutions.
We finally propose new Sod problems to test the schemes for the resonant
situations where numerical simulations are performed to compare with the
theoretical solutions. The schemes accuracy (first- and second-order) is eval-
uated comparing with a nontrivial steady-state solution with the numerical
approximation and convergence curves are established.
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1. Introduction

Compressible fluid flows in porous media arise in many natural phenom-
ena, for example the dust gas in volcanic eruption (Pelanti & Leveque, 2006).
In industrial processes, porous media are also widely used for filtration or
protection purposes. For example, grids (assimilated as a porous media) are
employed to reduce gas velocity and absorb energy during an explosion in
electrical switchgears consecutive to an electrical accident (Rochette et al.,
2008). Based on the space-average methods, the representative elementary
volume concept (Bear & Bachmat, 1990), the mathematical modelling derives
from the Euler equations homogenization where a new force P∂xφ appears
to take the porosity variation into account leading to a so-called noncon-
servative problem. The homogenizated Euler system is completed with the
trivial equation ∂tφ = 0 to provide an augmented nonconservative hyperbolic
problem of the form

∂tU + ∂xF (U) = G(U)∂xφ. (1)

Other problems, where a nonconservative term appears, cast in this gen-
eral system as multiphase and multifluid flow problems (Saurel & Abgrall,
1999) where the phase fraction α replaces the porosity, compressible gas flow
in duct (Andrianov & Warnecke, 2004) where the variational cross section
identifies to the porosity and shallow-water (Vázquez-Cendón, 1999) where
the variational bed elevation and breadth is similar to the porosity.

It is well-known that the nonconservative term induced by the porosity
variation leads to mathematical and numerical difficulties. On one hand, the
nonconservative term gives rise to the product of a distribution with a dis-
continuous function in presence of shocks and the classical Rankine-Hugoniot
condition does not hold any longer. On the other hand, the nonconservative
term is responsible of specifics steady-state situations which have to be pre-
served by the numerical scheme leading to the so-called well-balanced prop-
erty. An other difficulty is linked to the relative positions of the eigenvalues
since the problem is not strictly hyperbolic. In particular, the eigenvalue de-
riving from the nonconservative term can be superposed with the eigenvalues
of the Euler system leading to the resonant situation. It results a complex
composition of shocks inside the interface defined by the characteristic field
curves corresponding to the two superposed eigenvalues.
Dal Maso et al. (1995) introduce a general framework to define the noncon-
servative product A(U)∂xU for any variation bounded function U = U(x)
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where A(U) is a n×n matrix, continuous with respect to U . Such a product
is obtained using a path function ψ = ψ(s, U−, U+) defined in the phase
space linking any admissible state U− to any admissible state U+ and the
Rankine-Hugoniot condition at a shock of velocity σ writes (see also Le Floch
(1989))

∫ 1

0

A(φ(s, U−, U+)∂sψ(s, U−, U+) ds = σ(U+ − U−).

If A(U) corresponds to the jacobian matrix of a flux function F then we
recover the classical Rankine-Hugoniot condition and we have

∫ 1

0

A(φ(s, U−, U+)∂sψ(s, U−, U+) ds = F (U+) − F (U−).

independently of the choice of the path ψ. In the particular situation of
system (1), the nonconservative part G(U)∂xφ is relevant if the function φ is
not constant.

In a precursor work, Toumi (1992) proposes a Roe-like scheme for con-
servative system introducing the Roe average matrix between two states UL

and UR

A(UL, UR)(UL − UR) =

∫ 1

0

A(UL + s(UR − UL))(UR − UL) ds

where A(U) = ∂UF (U) is the jacobian matrix of the flux F . An extension of
the Toumi formula for nonconservative system has been proposed by Gosse
(2000) and Gosse (2001) for the Euler system and Parés & Castro (2004)
for the shallow-water problem where A(U) is constituted of the jacobian
matrix of F (U) and the nonconservative contribution G(U). Such methods
where the jacobian matrix and the nonconservative flux are combined (the
Q-methods (Castro et al., 2001)) are employed in numerous applications
like shallow-water (Vázquez-Cendón, 1999) or porous media (Rochette et
al., 2005; Rochette & Clain, 2006). Extensions to higher order scheme have
been proposed using a ENO-WENO reconstruction or the MUSCL technique
(Gallardo et al., 2006; Gascón & Corberán, 2001; Vukovic & Sopta, 2002).

In the problems mentioned above, it appears that the nonconservative
term corresponds to a linearly degenerate simple wave and the Riemann
invariant is employed in place to the Rankine-Hugoniot condition. In partic-
ular, the Riemann problem resolution can be performed using in one hand
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the classical simple waves associated to the eigenvalues of the conservative
part and in the other hand the Riemann invariants associated to the noncon-
servative term. Based on this strategy, the Riemann problem resolution for
the scalar hyperbolic equation with source term has been done by Noussair
(2000). The shallow-water problem with variable bed has been done by Al-
crudo & Benkhaldoun (2001), Chinnayya & Le Roux (1999), Chinnayya et
al. (2004) and Noussair (2001). The Riemann problem for the compressible
duct flow has been considered by Andrianov (2003) and Andrianov & War-
necke (2004) (see also Le Floch & Thanh (2003) for the isentropic case). The
Riemann problem for the two-phase flow has been studied by Schwendeman
(2006) and Deledicque & Papalexandris (2007). We also mention the work
of Goatin & Le Floch (2004) where the authors study the resonant situation
in a general framework.

The delicate point is the construction of the simple wave associated to the
nonconservative term. For a given left state, there exists zero, one or two right
states such that the Riemann invariants are preserved (see Goatin & Le Floch
(2004) for the general case). In the situation when two solutions are possible,
we usually have a subsonic (subcritical) flow and a supersonic (supercritical)
flow thus a new criterion (the continuation criterion Chinnayya et al. (2004)
or the admissible criterion Goatin & Le Floch (2004); Isaacson & Temple
(1992)) is required to select a solution. Moreover, the particular situation
where two eigenvalues merge gives rise to a complex situation where three
or more states coexist in the interface at the same moment. A complete
description is proposed by Chinnayya & Le Roux (1999), Chinnayya et al.
(2004) for the shallow-water case while Le Floch & Thanh (2003) give the
solution of the Euler system with isentropic flow problem for the resonant
situation. Up to our knowledge, there is not a complete description of the
admissible configurations for the Riemann problem for the Euler system.

From a numerical point of view, an important step has been done with
the introduction by Bermúdez & Vázquez (1994) of the conservative prop-
erty: the C−property while Greenberg & Leroux (1996) propose a similar
notion : the well-balanced condition, for the scalar hyperbolic problem with
a source term. We find also the same idea in Saurel & Abgrall (1999) for
the two-phase flow problem where the authors propose a numerical noncon-
servative contribution which preserve the pressure and the velocity of the
steady-state solutions. All these conditions tend to the following criterion :
the Riemann invariants associated to the nonconservative term have to be
numerically preserved. A particular case is the fluid at rest where the steady-
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state configuration has to be maintained numerically. Parés & Castro (2004)
propose a general definition of well-balanced scheme with order k based on
the scheme capacity to preserve the Riemann invariant up to and order ∆xk

where ∆x is the characteristic length of the mesh.

In this paper, we propose a new class of scheme based on the criterion of
well-balanced scheme introduced by Parés & Castro (2004). The basic idea
is to employ a generic numerical flux to solve the conservative part and we
construct the nonconservative flux such that the well-balanced criterion is
satisfied. To this end, we propose the notion of intermediate state we use to
construct the numerical methods and we apply the technique to the classical
Rusanov flux. A second-order scheme based on a MUSCL resconstruction is
proposed where the porosity is decomposed into regular and discontinuous
functions. The regular contribution is treated as a classical source term while
the discontinuous contribution is taken into account with the nonconservative
flux.
To test the method, we have considered the Riemann problem and we present
an new approach based on the configuration identification where we propose
a classification of the Riemann problem solutions. Indeed, the main difficulty
with the nonconservative problems is the nonstrictly hyperbolicity character
of the system and eigenvalues can cross or merge. We develop a technique
where we describe all the admissible configurations which can appear and
we use the classification to solve the inverse Riemann problem introduced
by Andrianov & Warnecke (2004). In particularly we are able to compute
complex situations including the resonant cases and prove that rarefaction
can only reach the sonic point from the lower porosity side. New Sod tube
tests corresponding to particular difficult situations are proposed to check the
solvers. Numerical tests have been performed to compare the approximated
solution with the exact solution computed with the inverse Riemann problem
algorithm. Other simulations of a nontrivial steady-state solution are also
proposed to measured the method accuracy.

The paper is organized as follows. In section 2, we present the nonconser-
vative Euler system and the properties of the steady-state solutions. Section
3 and 4 are devoted to the nonconservative schemes based on the Rusanov
flux and its extension to the second-order using the MUSCL method and the
porosity splitting principle. In section 5 and 6, we establish a classification
of all the configurations of the Riemann problem, including the resonant par-
ticular situations, and a generic method to compute the exact solutions: the
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Riemann inverse problem. Finally in section 7, we present in a first part a
selection of Sod problems, scanning all the configurations, to test the numer-
ical schemes in comparison with the exact solutions and in a second part, we
evaluate the schemes accuracy in the framework of a steady-state solution
with regular porosity.

2. Nonconservative Euler system

2.1. Notations

We consider the one-dimensional nonconservative Euler system:

∂t




φρ
φρu
φE


+ ∂x




φρu
φρu2 + φP
φu(E + P )


 =




0
P∂xφ

0


 , (2)

where φ stands for the porosity, ρ the gas density, u the velocity, P the
pressure and E the total energy composed of the internal energy e and the
kinetic energy: E = ρ(1

2
u2 + e). In addition, to close the system, we use

perfect gas law P = (γ−1)ρe with γ ∈]1, 3[. Note that the numerical scheme
we shall present also deals with more complex pressure law given by function
P = P̂ (ρ, e) which depends on the density and the internal energy.

The conservative quantities (or conservative state) are represented by
vector U = (φρ, φρu, φE) which belongs to the conservative variable phase
space Ωc ⊂ R

+ × R × R
+ while the physical (primitive) variables vector

V = (φ, ρ, u, P ) belongs to the physical variable phase space Ωp ⊂ R
+ ×

R
+ × R × R

+. We have a one to one mapping (φ, U) → V̂ (φ, U) such that

V (x, t) = V̂ (φ(x), U(x, t)) with inverse function V → (φ, Û(V )) such that

Û(V (x, t)) = U(x, t). In the sequel, we shall drop the hat symbol for the
sake of simplicity.

The flux vector is given by

F (U) =




F ρ(U)
F u(U)
F e(U)


 =




φρu
φρu2 + φP
φu(E + P )


 , (3)

while the nonconservative term writes

G(U) =




Gρ(U)
Gu(U)
Ge(U)


 =




0
P
0


 . (4)
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Since U = U(V ) is a function of V , we adopt the notation Fα(V ) = Fα(U(V ))
and Gα(V ) = Gα(U(V )) with α = ρ, u, e.

2.2. Steady-state solutions

The main challenge for the numerical schemes to solve nonconservative
system is the steady-state solutions preservation. Let us consider a regular
stationary solution U(x) of system (2), we then have

d

dx
F (U(x)) = G(U(x))

dφ

dx
. (5)

Assume that φ = φ(x) is a strictly monotone function on the interval [x−, x+]
with respect to x and ranges between φ− = φ(x−) and φ+ = φ(x+) and we
denote U− = U(x−) and U+ = U(x+). We change the variable x by the

variable φ where we state U(x) = Ũ(φ(x)) = Ũ(φ). Function Ũ(φ) is then
solution of the system

d

dφ
F (Ũ(φ)) = G(Ũ(φ)). (6)

We drop the tilde symbol for the sake of simplicity and we deduce that U
belongs to an integral curve parameterized with φ. For a given U− and φ−,
we have (at least locally) a unique curve W(φ;φ−, U−) = W(φ;V −) solution
of (6) with W(φ−;V −) = U−. Since U+ belongs to the integral curve, we
also have W(φ+;V −) = U+.

The main advantage to use φ as a variable is that relation (6) still holds
even if φ(x) is a discontinuous function of x. The ability to handle the φ
discontinuity is of crucial importance for the Riemann problem. Indeed,
function φ is constant in the open sets x < 0 and x > 0 and the noncon-
servative problem turns to a conservative one as noticed by Andrianov &
Warnecke (2004). The nonconservative part only acts at the interface x = 0
where φ jumps from φ− to φ+. We smooth the φ discontinuity using the
following linear approximation (see Chinnayya et al. (2004) or Greenberg &
Leroux (1996))

φε(x) =





φε(x) = φ−, x < −ε,
φε(x) = ((x− ε)φ− + (x+ ε)φ+)/(2ε), x ∈ [−ε,+ε],
φε(x) = φ+, x > +ε.

Substituting φ by φε, we get a smooth steady-state solution Uε(x) for equa-

tion (5) and an equivalent smooth solution Ũε(φ) for equation (6) for any
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ε > 0. The point is that we can take the limit in relation (6) when ε con-
verges to 0.

In the case of the nonconservative Euler problem, system (6) is equivalent
to the three relations

(a) φρu = D, (b)
d

dφ
(φρu2 + φP ) = P, (c) u2 +

2γ

γ − 1

P

ρ
= H, (7)

where D and H are constants. If u = 0, we get that P and ρ are constant.
Assuming now that u 6= 0 then we eliminate u in the two last equations and
equation (7-b) provides

−
D2

(φρ)3

d

dφ
(φρ) +

1

ρ

dP

dφ
= 0,

while differentiation of equation (7-c) yields

−
D2

(φρ)3

d

dφ
(φρ) +

γ

γ − 1

(
ρdP

dφ
− P dρ

dφ

ρ2

)
= 0.

We combine the two expressions and we get

dP

dφ
= γ

P

ρ

dρ

dφ

and we obtain the relation
P

ργ
= S by integration where S > 0 is a constant.

For a given initial state V −, the curve W(φ, V −) is implicitly given by the
three relations

φρu = D, u2 +
2γ

γ − 1

P

ρ
= H,

P

ργ
= S, (8)

where constants D, H and S are determined by the initial condition V −. We
deduce from relation (8) an implicit relation P = P (φ) given by

D2

φ2
+

2γ

γ − 1
P

(
P

S

) 1

γ

= H

(
P

S

) 2

γ

. (9)
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3. Nonconservative scheme

Domain R is uniformly divided with cells Ki = [xi−1/2, xi+1/2], i ∈ Z of

length ∆x where we set xi−1/2 = i∆x and xi = xi−1/2 +
∆x

2
is the cell center.

We denote by φi =
1

|Ki|

∫

Ki

φ(x) dx, by αn
i an approximation of the mean

value of α on cell Ki at time tn for the other physical variables α = ρ, u, P
and Un

i (resp. V n
i ) for an approximation of U (resp. V ) at time tn on the

cell Ki. We consider generic schemes of the form

Un+1
i = Un

i −
∆t

∆x

(
Fi+1/2 +G−

i+1/2
− Fi−1/2 −G+

i−1/2

)
. (10)

Flux Fi+1/2 = F(Vi, Vi+1) is the conservative numerical flux across interface
xi+1/2 while G−

i+1/2
= G−(Vi, Vi+1) and G+

i−1/2
= G+(Vi−1, Vi) represent the

nonconservative contribution across the interface consecutive to the φ space
variation. Real functions Fα, G−,α and G+,α α = ρ, u, e represent the three
components of the flux vectors.

Remark 1. Since G±(VL, VR) represent the nonconservative contributions
due to the φ variation, the numerical nonconservative fluxes vanish when the
porosity is constant hence we state that for any physical state V0

G−(V0, V0) = G+(V0, V0) = 0.

For any physical state Vj ∈ Ωp, corresponding to the cellsKj, j = i−1, i, i+1,
we introduce the three points operator H

H(Vi−1, Vi, Vi+1) = F(Vi, Vi+1) + G−(Vi, Vi+1) −F(Vi−1, Vi) − G+(Vi−1, Vi)
(11)

hence the three points scheme reads

Un+1
i = Un

i −
∆t

∆x
H(V n

i−1, V
n
i , V

n
i+1)

with V n
j = V̂ (φj, U

n
j ), j = i− 1, i, i+ 1.

3.1. Well-balanced flux criterion

Following the idea of Parés & Castro (2004) and Parés (2006), we intro-
duce a definition of well-balanced schemes. We emphase that the definitions
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we propose are based on the φ parameterization of the intergral curve in-
stead of the x parameterization as it is proposed by Parés & Castro (2004).
The motivation is that we want to define well-balanced schemes even if φ is
discontinuous in space.

Definition 1 (well-balanced scheme). Let Vi ∈ Ωp and W(φ;Vi) the pa-
rameterization of the integral curve with φ. For any φj, j = i−1 and j = i+1,

we set Uj = W(φj;Vi) and Vj = V̂ (φj, Uj).

(a) The scheme is exactly well-balanced for the state Vi if for any φj,
j = i− 1 and j = i+ 1

H(Vi−1, Vi, Vi+1) = 0.

(b) The scheme is well-balanced with order p for the state Vi if for any
φj, j = i− 1 and j = i+ 1

H(Vi−1, Vi, Vi+1) = O(max(|φi − φi−1|, |φi − φi+1|)
p+1.

(c) The scheme is exactly well-balanced (resp. well-balanced with order
p) if it is exactly well-balanced (resp. well-balanced with order p) for any
Vi ∈ Ωp.

Note that we recover the definition proposed by Parés & Castro (2004) in the
case where φ is a local regular function in space i.e. φj = φ(xj), j = i−1, i, i+
1. Indeed, in this case, we have |φi−φi−1| = O(∆x) and |φi−φi+1| = O(∆x),
hence

H(V (xi−1), V (xi), V (xi+1)) = O(∆x)p+1.

The well-balanced definition induces a nonconservative flux consistency with
the nonconservative term for steady-state solution. To this end, we assume
that the numerical flux F(V1, V2) and the physical flux F (U) are regular
functions (at least C1) and we denote by ∇1F(V1, V2) and ∇2F(V1, V2) the
Jacobian matrices with respect to V1 and V2 respectively.

Proposition 1. Let φ(x) be a regular function on the neighbouring of xi, i.e.
on the intervals [xi−1, xi+1] for ∆x small enough, and Ui ∈ Ωc a given conser-
vative state. We denote by U(x) = W(φ(x);Vi) the local regular solution of

equation (5) and we set φj = φ(xj), Uj = U(xj) = W(φj;Vi), Vj = V̂ (Uj, φj)
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for j = i − 1, i + 1. Assume that H is well-balanced with order p ≥ 1 then
we have

1

∆x

[
G−(Vi, Vi+1) − G+(Vi−1, Vi)

]
= −G(xi)∂xφ(xi) +O(∆x). (12)

Proof. To prove the proposition, we recall the notation where we distin-
guish the vector U(x) with the function Û(V ). Thanks to the consistency

condition F(V, V ) = F (Û(V )), we deduce

∇1F(V, V ) + ∇2F(V, V ) = ∇UF (Û(V )).∇V Û(V ).

On the one hand, since we have a pth order scheme with p ≥ 1, we can
write

1

∆x

[
F(Vi, Vi+1) −F(Vi−1, Vi)

]
+

1

∆x

[
G−(Vi, Vi+1) − G+(Vi−1, Vi)

]
= O(∆x)p.

On the other hand, we introduce vector F (Vi, Vi) such that

1

∆x

[
F(Vi, Vi+1) −F(Vi−1, Vi)

]
=

1

∆x

[
F(Vi, Vi+1) −F(Vi, Vi) + F(Vi, Vi) −F(Vi−1, Vi)

]
.

Writing the Taylor expansion for F(Vi, Vi+1) = F(V (xi), V (xi + ∆x)) yields

1

∆x

[
F(Vi, Vi+1) −F(Vi, Vi)

]
= ∇2F(Vi, Vi)∂xV (x)|x=xi

+O(∆x).

In the same way, we have

1

∆x

[
F(Vi, Vi) −F(Vi−1, Vi)

]
= ∇1F(Vi, Vi)∂xV (x)|x=xi

+O(∆x).

Hence we get with the consistency property

1

∆x

[
F(Vi, Vi+1) −F(Vi−1, Vi)

]
= ∇UF (Û(V ))|V =Vi

∇Û(V )|V =Vi
∂xV (x)|x=xi

= ∂x(F (U(x))|x=xi
+O(∆x).
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We then deduce

1

∆x

[
G−(Vi, Vi+1) − G+(Vi−1, Vi)

]
+ ∂x(F (U(x))|x=xi

= O(∆x).

Since U(x) belongs to the integral curve, relation (5) is satisfied and we get

∂xF (U(x))|x=xi
= G(U)|U=Ui

∂xφ(x)|x=xi
,

thus relation (12) holds. �

We now turn to the discontinuous case for the Riemann problem with
initial conditions U(x, 0) = UL, φ(x) = φL for x < 0 and U(x, 0) = UR,
φ(x) = φR for x > 0. To deal with a steady-state problem, we assume that
UR = W(φR;VL) i.e. UL and UR belong to the same integral curve. Since we
have a stationary solution, we reduce the study on the cells K0 = [−∆x, 0]
and K1 = [0,∆x] which share the interface x = 0 where U(x) = UL on K0

while U(x) = UR on K1.

Proposition 2. The following consistancy relations hold:
(a) If H is a pth order well-balance scheme, then

G+(VL, VR) − G−(VL, VR) =

∫ φR

φL

G(W(φ;VL)) dφ+O(|φR − φL|)
p+1. (13)

(b) If H is an exact well-balanced scheme, then

G+(VR, VL) − G−(VL, VR) =

∫ φR

φL

G(W(φ;VL)) dφ. (14)

Proof. We only deal with the situation where H is a pth order well-balanced
scheme, the case of an exact well-balanced scheme is similar and provide
relation (14). On the cell K0, we write

H(VL, VL, VR) = F(VL, VR) + G−(VL, VR) −F(VL, VL) − G+(VL, VL),

while we have on cell K1

H(VL, VR, VR) = F(VR, VR) + G−(VR, VR) −F(VL, VR) − G+(VL, VR).

Using remark 1 and adding the two relations, the definition of a pth order
well-balanced scheme yields

F(VL, VR) + G−(VL, VR) −F(VL, VL) +

F(VR, VR) −F(VL, VR) − G+(VL, VR) = O(|φR − φL|)
p+1.
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Since UL and UR belong to the same integral curve, we have by integration
of equation (6)

F(VR, VR) −F(VL, VL) = F (UR) − F (UL) =

∫ φR

φL

G(W(φ;VL)) dφ.

Hence relation (13) holds. �

3.2. The intermediate state

To construct explicitly the nonconservative schemes, we propose a new
technique (up to our knowledge) based on intermediate states which pro-
vide expressions for the nonconservative flux G±. More precisely, let us
consider three physical states Vi−1 = V (φi−1, Ui−1), Vi = V (φi, Ui) and
Vi+1 = V (φi+1, Ui+1) given on cell Ki−1, Ki and Ki+1 respectively such that

Ui−1 = W(φi−1;Vi), Ui+1 = W(φi+1;Vi).

For the couple (φi−1, φi), we introduce an intermediate value φ∗
i−1/2

and its

corresponding conservative state U∗
i−1/2

= W(φ∗
i−1/2

;Vi) and physical state

V ∗
i−1/2

= V̂ (φ∗
i−1/2

, U∗
i−1/2

) at the interface xi−1/2. In the same way, we define
φ∗

i+1/2
, U∗

i+1/2
and V ∗

i+1/2
at the interface xi+1/2. The goal is to choose φ∗

i−1/2

and φ∗
i+1/2

such that

F(Vi, Vi±1) − F (V ∗
i±1/2) = O(|φi − φi±1|

p+1).

Proposition 3. For any intermediate states V ∗
i−1/2

and V ∗
i+1/2

operator H
writes

H(Vi−1, Vi, Vi+1) = (15)
[
F(Vi, Vi+1) − F (V ∗

i+1/2) + G−(Vi, Vi+1) +

∫ φ∗

i+1/2

φi

G(W(φ;Vi)) dφ

]
−

[
F(Vi−1, Vi) − F (V ∗

i−1/2) + G+(Vi−1, Vi) +

∫ φ∗

i−1/2

φi

G(W(φ;Vi)) dφ

]
.

Proof. Since the conservative states U∗
i−1/2

and U∗
i+1/2

belong to the same

integral curve W(φ;Vi), we have

F (V ∗
i−1/2) − F (Vi) = F (U∗

i−1/2
) − F (Ui) =

∫ φ∗

i−1/2

φi

G(W(φ;Vi)) dφ,

F (V ∗
i+1/2) − F (Vi) = F (U∗

i+1/2
) − F (Ui) =

∫ φ∗

i+1/2

φi

G(W(φ;Vi)) dφ.
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On the other hand, definition of the numerical scheme H writes

H(Vi−1, Vi, Vi+1) = F(Vi, Vi+1) + G−(Vi, Vi+1) −F(Vi−1, Vi) − G+(Vi−1, Vi)

=
[
F(Vi, Vi+1) − F (Vi) + G−(Vi, Vi+1)

]
−[

F(Vi−1, Vi) − F (Vi) + G+(Vi−1, Vi)
]
.

Substitution of F (Vi) in the last relation provides relation (15). �

Note that no regularity assumption has been made to obtain relation
(15). Assume that physical states VL and VR correspond to a steady-state
discontinuous solution such that UR = W(φR;VL). Relation (15) then writes

H(VL, VL, VR) =
[
F(VL, VR) − F (V ∗) +

∫ φ∗

φL

G(W(φ;Vi)) dφ+ G−(VL, VR)

]
−

[
F(VL, VL) − F (VL) +

∫ φL

φL

G(W(φ;Vi)) dφ+ G+(VL, VL)

]

where φ∗ is an intermediate value between φL and φR and U∗ = W(φ∗;VL),

V ∗ = V̂ (φ∗, U∗). After simplification, we have on cells K0 and K1

H(VL, VL, VR) = F(VL, VR) − F (V ∗) + G−(VL, VR) +

∫ φ∗

φL

G(W(φ;Vi)) dφ,

(16)

H(VL, VR, VR) = F(VL, VR) − F (V ∗) + G+(VL, VR) +

∫ φ∗

φR

G(W(φ;Vi)) dφ.

(17)

4. The Rusanov nonconservative scheme

We elaborate a well-balanced scheme based on a very simple flux initially
proposed by Rusanov (1961). We then construct the nonconservative flux
such that the well-balanced property is achieved using an adapted intermedi-
ate state. Saurel & Abgrall (1999) use the same flux for the multiphase flows
while Andrianov (2003) introduces the Rusanov flux for the Baer-Nunziato
problem. The main advantages are the robustness and the simplicity of such
a flux which can be used with complex pressure law. The main drawbacks
are the important diffusion generated by the diffusion term to stabilize the
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scheme and contact discontinuities are not well-determined since the solver
does not take into account the intermediate waves (Toro et al., 1994). It is
noticeable that second-order schemes like MUSCL technique strongly reduces
the diffusion effect and the Rusanov flux usage is relevant in a second-order
scheme perspective.

4.1. The Rusanov conservative flux F

We first begin with the expression of the conservative part of the flux
which is an adaptation of the original Rusanov flux for the Euler problem
with porosity. The original Rusanov flux F(VL, VR) for the classical Euler
system (i.e. with φ = 1) associated to the physical flux F (V ) writes

F(VL, VR) =
F (VL) + F (VR)

2
− λ(UR − UL)

where
λ = sup(cL + |uL|, cR + |uR|),

with cL (resp. cR) the sound velocity associated to state VL (resp. VR). We
shall modify the classical Rusanov scheme for the following reason. Consider
a Riemann problem with VL = (φL, ρ̄, 0, P̄ ) and VR = (φR, ρ̄, 0, P̄ ) with
ρ̄, P̄ ∈]0,+∞[. Since UL and UR belong to the same integral curve, we have
a steady-state solution.

The first and third components of the nonconservative contribution G are
null therefore the first and third components of the nonconservative numerical
flux G± vanish and, for the mass equation, the scheme writes on cell K0

ρ1
0 = ρ̄−

∆t

∆x
c̄(φRρ̄− φLρ̄)

with c̄ the sound velocity associated to the configuration. If the porosity is
not constant i.e. φL 6= φR, the density changes due to the viscosity contribu-
tion and the steady-state solution is not preserved. A similar situation also
happens with the energy equation. To preserve the steady-state solution,
we introduce the following Rusanov flux adapted to the porosity variation
situation:

F(VL, VR) =
F (VL) + F (VR)

2
− V(VL, VR), (18)

with

V(VL, VR) = λφLR




ρR − ρL

ρRuR − ρLuL

ER − EL
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where φLR = max(φL, φR). Since φ ∈]0, 1], we can also choose φLR = 1.

4.2. The Rusanov nonconservative flux G±

We now construct the nonconservative flux G± in order to preserve the
steady-state solutions. Since the nonconservative contribution only acts on
the impulsion equation, we have G±,α = 0 for α = ρ and e. We now turn
to the construction of the nonconservative flux G±,u. Relation (15) suggests
that we have to define the intermediate states such that the conservative
contribution writes

[
F(Vi, Vi+1) − F (V ∗

i+1/2)
]
−

[
F(Vi−1, Vi) − F (V ∗

i−1/2)
]

= O(∆φ)p+1,

while the nonconservative contribution writes
[∫ φ∗

i+1/2

φi

G(W(φ;Vi)) dφ+ G−(Vi, Vi+1)

]
−

[∫ φ∗

i−1/2

φi

G(W(φ;Vi)) dφ+ G+(Vi−1, Vi)

]
= O(∆φ)p+1.

To explicite the scheme, we have to fix the intermediate values φ∗
i−1/2

and
φ∗

i+1/2
. We propose here to set

φ∗
i−1/2 =

φi−1 + φi

2
, φ∗

i+1/2 =
φi+1 + φi

2
. (19)

and we define the Rusanov nonconservative fluxes by:

G−(Vi, Vi+1) = −
φi+1 − φi

2




0
Pi

0


 , G+(Vi−1, Vi) = +

φi − φi−1

2




0
Pi

0


 .

(20)

4.2.1. Nonconservative Rusanov scheme order : the regular case

To study the nonconservative scheme order, we first deal with the reg-
ular situation where we assume that (φ(x), U(x)) is a regular steady-state
solution.

Lemma 1. We have the following error order
[
F(Vi, Vi+1) − F (V ∗

i+1/2)
]
−
[
F(Vi−1, Vi) − F (V ∗

i−1/2)
]

= O(∆φ2) (21)

with ∆φ = max(|φi+1 − φi|, |φi − φi−1|).
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Proof. The conservative part of the flux is composed of a difference of flux

Ai+1/2 =
F (Vi+1) + F (Vi)

2
− F (V ∗

i+1/2)

and the viscous term

Bi+1/2 = −λi+1/2




ρi+1 − ρi

ρi+1ui+1 − ρiui

Ei+1 − Ei




with U∗
i+1/2

= W(φ∗
i+1/2

;Vi) and V ∗
i+1/2

= V̂ (φ∗
i+1/2

, U∗
i+1/2

). Since Ui+1 =

W(φi+1;Vi), we have Fα(Vi) = Fα(Vi+1) = Fα(V ∗
i+1/2

) for α = ρ, e and we
obtain the simpler expression

Ai+1/2 =




0
F u(Vi) + F u(Vi+1)

2
− F u(V ∗

i+1/2)

0


 .

We denote ∆φi+1/2 = φi+1 − φi. The Taylor expansion of function W(φ;Vi)
gives

U∗
i+1/2 − Ui = W

(
φi + φi+1

2
;Vi

)
−W(φi;Vi)

= −
dW

dφ

(
φi + φi+1

2
;Vi

)
∆φi+1/2

2
+O(∆φ2

i+1/2),

U∗
i+1/2 − Ui+1 = W

(
φi + φi+1

2
;Vi

)
−W(φi+1;Vi)

= +
dW

dφ

(
φi + φi+1

2
;Vi

)
∆φi+1/2

2
+O(∆φ2

i+1/2).

We deduce that U∗
i+1/2

− Ui = O(∆φi+1/2), U
∗
i+1/2

− Ui+1 = O(∆φi+1/2) and
the impulsion flux difference writes

F u(Vi+1) + F u(Vi)

2
− F u(V ∗

i+1/2) =
1

2
[F u(Ui+1) − F u(U∗

i+1/2)] +
1

2
[F u(Ui) − F u(U∗

i+1/2)]

=
1

2
∇UF

u(U∗
i+1/2)(Ui+1 − U∗

i+1/2) +

1

2
∇UF

u(U∗
i+1/2)(Ui − U∗

i+1/2) +O(∆φ2
i+1/2).
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We finally obtain

F u(Vi+1) + F u(Vi)

2
− F u(V ∗

i+1/2) = O(∆φ2
i+1/2), (22)

hence we get Ai+1/2 = O(|∆φ|2). In the same way, we have Ai−1/2 =
O(|∆φ|2).

We now focus on the viscous contribution Bi+1/2 − Bi−1/2. A simple
calculation gives

Bi+1/2 −Bi−1/2 = −λi+1/2




ρi+1 − ρi

ρi+1ui+1 − ρiui

Ei+1 − Ei


+ λi−1/2




ρi − ρi−1

ρiui − ρi−1ui−1

Ei − Ei−1




= (λi−1/2 − λi+1/2)




ρi+1 − ρi

ρi+1ui+1 − ρiui

Ei+1 − Ei


−

λi−1/2




ρi+1 − 2ρi + ρi−1

ρi+1ui+1 − 2ρiui + ρi−1ui−1

Ei+1 − 2Ei + Ei−1


 ,

where λi+1/2 = max(|ui|+ ci, |ui+1|+ ci+1) and λi−1/2 = max(|ui|+ ci, |ui−1|+
ci−1). Since function max(α, β) is a 1-lipschitzian function, we get (λi−1/2 −
λi+1/2) = O(∆φ). On the other hand, we have αi − αi−1 = O(∆φ) and
αi+1 − 2αi + αi−1 = O(∆φ2) for α = ρ, ρu,E. We finally obtain

Bi+1/2 −Bi−1/2 = O(∆φ2) (23)

and estimate (21) holds from relations (22)-(23). �

Remark 2. Note that relation (22) holds even if the steady-state is not reg-
ular while estimate (23) is obtained under the regularity assumption. It is of
numerical interest to see that the order discrepancy comes from the viscosity
stability terms Bi+1/2 and Bi−1/2 when we deal with irregular solutions .

We now treat the nonconservative numerical flux.

Lemma 2. We have the following error order
[∫ φ∗

i+1/2

φi

G(W(φ;Vi)) dφ+ G−(Vi, Vi+1)

]
−

[∫ φ∗

i−1/2

φi

G(W(φ;Vi)) dφ+ G+(Vi−1, Vi)

]
= O(∆φ)2. (24)
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Proof. Since G±,α = 0 and Gα = 0 for components α = ρ and α = e, we
only deal with the impulsion equation. Using the midpoint approximation
formula for the integral, we have

Ci =

[∫ φ∗

i+1/2

φi

Gu(W(φ;Vi)) dφ+ G−,u(Vi, Vi+1)

]
−

[∫ φ∗

i−1/2

φi

Gu(W(φ;Vi)) dφ+ G+,u(Vi−1, Vi)

]

=

[∫ φ∗

i+1/2

φi

P (φ) dφ− Pi
φi+1 − φi

2

]
−

[∫ φ∗

i−1/2

φi

P (φ) dφ+ Pi
φi − φi−1

2

]

=

∫ φ∗

i+1/2

φ∗

i−1/2

P (φ) dφ− Pi
φi+1 − φi−1

2

= P (φi)(φ
∗
i+1/2 − φ∗

i−1/2) − Pi
φi+1 − φi−1

2
+O(∆φ2) = O(∆φ2).

Hence we deduce estimate (24) �.
Combining the two lemmas, we have the following theorem for the regular
steady-state solutions.

Theorem 1. The scheme H using the modified Rusanov conservative flux
(18) and the associated Rusanov nonconservative flux (20) is a first-order
scheme following definition 1.

4.2.2. Nonconservative Rusanov scheme order : the discontinuous case

We now turn to the case of a discontinuous steady-state solution where
φ(x) jumps from φL to φR at x = 0. We define the steady-state solution using
the φ parameterization U(φ) = W(φ;VL) of the integral curve of equation
(6). We denote by K0 = [−∆x, 0] and K1 = [0,∆x] the cells on both side
of the discontinuity and we study the order of H(VL, VL, VR) on K0 and
H(VL, VR, VR) on K1. In the sequel, we set φ∗ = φL+φR

2
, U∗ = W(φ∗;VL) and

V ∗ = V̂ (φ∗, U∗).

Proposition 4. Assume that the velocity is null then the scheme is exactly
well-balanced:

H(VL, VL, VR) = H(VL, VR, VR) = 0. (25)
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Proof. If uL = 0, we deduce that uR = 0 thanks to the parameterization
(8) and conclude that ρL = ρR and EL = ER. The viscosity contribution
vanishes and we have

H(VL, VL, VR) = F(VL, VR) + G−(VL, VR) −F(VL, VL)

=
F (VL) + F (VR)

2
− F (VL) + G−(VL, VR)

=
1

2




0
PRφR − PLφL

0


−




0
φR − φL

2
PL

0


 = 0.

Then the scheme is exactly well-balanced. �

Remark 3. If the velocity does not vanish, we loose the first-order due to
the viscosity contribution. On the other hand, the nonconservative flux writes

∫ φ∗

φL

P (φ) dφ− PL
φR − φL

2
= O(∆φ)

which is not enough to provide a first-order scheme in the sense of defini-
tion 1. A solution consists in using a more precise numerical integration
formula like the trapezoidal formula but the intermediate value P ∗ has to be
determined.

4.3. Second-order nonconservative scheme

Second-order schemes provide more precise approximation of the solu-
tion and less viscosity in the vicinity of shocks. We propose a second-order
method based on the MUSCL reconstruction to provide better accuracy of
the numerical approximation. Our method derives from the following re-
mark, if φ is regular (at least differentiable) then ∂xφ is a volumic source
term. On the contrary, if φ presents a discontinuity at point x0, then ∂xφ is a
dirac distribution supported by the point x0, hence a punctual source term.
The second-order method we proposed is based on the following porosity
decomposition

φ(x) = φd(x) + φr(x)

where φd and φr are respectively the discontinuous part and the regular part
(at least C1). From a numerical point of view, the regular contribution
is approximated by a volumic term while the discontinuous part is taken
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into account with the nonconservative flux. If we consider the first-order
scheme, φ is a constant piecewise function and φr = 0. The nonconservative
contribution is exclusively evaluated with the nonconservative numerical flux.
We now turn to the second-order situation where we use the classical MUSCL
technique.

4.3.1. The MUSCL reconstruction

For each interface at point xi+1/2, we aim to compute new values V −
i+1/2

and V +
i+1/2

on both side of the interface. We then substitute the first-order nu-

merical flux F(Vi, Vi+1) with the second-order numerical flux F(V −
i+1/2

, V +
i+1/2

)
to compute the conservative flux across the interface xi+1/2. We proceed in
the same way with the nonconservative flux.

For any approximation (αi)i∈Z with α = φ, ρ, u, P , we define the slopes

σα
i+1/2 =

αi+1 − αi

∆x

which represent an approximation of ∂xα on the interfaces xi+1/2, i ∈ Z. To
evaluate an approximation σα

i of the derivative on cell Ki, we set

σα
i = ψ(σα

i−1/2, σ
α
i+1/2) (26)

where the function ψ is a limiter function. For example, we use the minmod
limiter

ψ(p, q) = minmod(p, q) =

{
0 if pq ≤ 0,
p
|p|

min(|p|, |q|) if pq > 0.
(27)

We then propose the decomposition of φ = φd(x) + φr(x) such that φd(x)
is constant piecewise, φr(x) is continuous linear piecewise where ∂xφ

r(x) =
σφ

i+1/2
on each cell Ki. We define the new values on the interface xi+1/2

setting for α = φ, ρ, u, P

α−
i+1/2

= αi + σi−1

∆x

2
, α+

i+1/2
= αi+1 − σi

∆x

2
.
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4.3.2. Second-order nonconservative scheme

Using the generic finite volume scheme proposed in (10), we consider the
second-order scheme

Un+1
i = Un

i −
∆t

∆x

[ {
F(V n,−

i+1/2
, V n,+

i+1/2
) + G−(V n,−

i+1/2
, V n,+

i+1/2
)
}
−

{
F(V n,−

i−1/2
, V n,+

i−1/2
) + G+(V n,−

i−1/2
, V n,+

i−1/2
)
}

+S(V n,−
i+1/2

, V n,+
i−1/2

)
]

(28)

with

S(V n,−
i+1/2

, V n,+
i−1/2

) =




0

P n
i σ

φ
i ∆x
0


 =




0
P+

i−1/2
+ P−

i+1/2

2
(φ−

i+1/2
− φ+

i−1/2
)

0


 .

(29)
The term S corresponds to the contribution of the regular part of P∂xφ.

Remark 4. If φ is a constant piecewise function, we does not recover exactly
the first-order scheme since the MUSCL reconstruction provides new values
for ρ, u and P at the interfaces. On the other hand, if φ is regular, the φ
jump at the interface φ+

i+1/2
− φ−

i+1/2
is very small, of order ∆x2, hence the

principal nonconservative contribution is furnished by the source term S.

5. The Riemann problem configurations

In this section, we present a complete description of the admissible con-
figurations, i.e. the succession of simple waves separated by constant states,
for the nonconservative Euler system. Two major situations arise whether all
the waves are distinct or two waves are superposed: the resonant cases. The
resonant cases have been analysed by Noussair (2000) in the framework of a
scalar nonconservative problem with a source term. The works of Noussair
(2001) and Chinnayya et al. (2004) deal with the resonant configurations for
the shallow-water problem while Le Floch & Thanh (2003) treat the resonant
case for the isentropic nonconservative Euler problem. The configurations in
the resonant case for a general nonconservative hyperbolic system are pre-
sented in Goatin & Le Floch (2004) where a sharp study of the interactions

22



between a genuinely nonlinear characteristic field with the linearly degener-
ated field associated to the nonconservative term is performed (see also the
pioneer works of Isaacson & Temple (1992)).

We do not intend to solve the Riemann problem leading to huge complex
nonlinear problems as Andrianov & Warnecke (2004); Goatin & Le Floch
(2004); Le Floch & Thanh (2003); Noussair (2001); Chinnayya et al. (2004)
but we propose here a construction of all the configurations based on three cri-
terions: the configuration stability criterion, the sign criterion and the Mach
criterion we shall define in the sequel. A study of the eigenvalue sign and the
criterions allow to disqualify the noncompatible configurations. Moreover, a
specific study of the linearly degenerated field associated to the nonconser-
vative term brings new informations to construct the configurations for the
resonant case.

5.1. Eigenvalues and eigenvectors

To study the nonconservative Euler system which describes gas flow in
porous media, we add equation ∂tφ = 0 to system (2), named the augmented
system (see Andrianov & Warnecke (2004); Goatin & Le Floch (2004) for
justifications) leading to a problem with four unknowns. For regular solution
V , the augmented system equipped with the perfect gas law P = (γ − 1)ρe
with γ ∈]1, 3[ can be rewritten in the form

∂tV + A(V )∂xV = 0, with A(V ) =




0 0 0 0
ρu
φ

u ρ 0

0 0 u 1

ρ
γPu

φ
0 γP u


 .

We get a non-strictly hyperbolic system with the eigenvalues

λ0 = 0, λ1 = u− c, λ2 = u, λ3 = u+ c,

and the associated eigenvectors

R0 =




φ(u2 − c2)
−ρu2

uc2

−ρu2c2


 , R1 =




0
−ρ
c

−ρc2


 , R2 =




0
1
0
0


 , R3 =




0
ρ
c
ρc2


 .

The characteristic fields (or simple waves) associated to eigenvalues λ1 and
λ3 are genuinely nonlinear while the characteristic fields associated to λ0 and
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λ2 are linearly degenerated. We say that V is a subsonic, sonic or supersonic
state if we have u2 < c2, u2 = c2 or u2 > c2 respectively.

Eigenvalue λ0 = 0 characterizes the change of porosity and a new difficulty
arises since we are no longer able to order the four eigenvalues. In particular,
for sonic state V , we have only three distinct eigenvalues (λ0 = λ1 or λ0 = λ3).

Eigenvectors R1, R2 and R3 correspond to the classical Euler system
eigenvectors with constant porosity. It results that the simple waves pa-
rameterization (shock, rarefaction, contact discontinuity) associated to each
eigenvalue is identical to the classical Euler system ones.

5.2. The stability configuration criterion

In the sequel, we denote by k − w the simple wave associated to the
eigenvalue λk. For k = 1 or k = 3, k − r represents a rarefaction whereas
k − s represents a shock. For k = 0 and k = 2 the simple waves are contact
discontinuities we still denote k − w. For given left and right states VL and
VR, we seek an autosimilar solution for the Riemann problem and we shall
describe using the following definition.

Definition 2 (configuration). A configuration is the succession of simple
waves from left to right which separate constant states.

As an example, the configuration C = {1− r; 0−w; 2−w; 3− s} means that
we have four simple waves separating five constant states : VL is linked to the
state Vl by the 1−r rarefaction, Vl is linked to Vr by the contact discontinuity
0−w while Vr is linked to Va by the contact discontinuity 2−w. At last Va

is linked to VR by the 3 − s shock (see Fig. 1).
We now introduce a criterion to select the configurations which are of

interest from a numerical point of view. Each simple wave k−w corresponds
to a one-parameter characteristic curve in the phase space. Existence of a
solution for the Riemann problem means that there exists a path in the phase
space from VL to VR following the characteristic curves given by the config-
uration. Since V is a vector of R

4, we need four independent characteristic
curves to link VL to VR.

Definition 3 (configuration stability criterion). Assume that for given
left and right states VL, VR we have a solution for the Riemann problem with
a given configuration X. We say that the configuration is stable if there exists
a small enough ε > 0 such that :
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1-r

0-w 2-w

3-s

t

xVL

Vl Vr
Va

VR

Figure 1: An example of configuration : C = {1 − r; 0 − w; 2 − w; 3 − s}.

for any physical states ṼR and ṼL with |ṼL − VL| < ε and |ṼR − VR| < ε,
there exists a solution for the Riemann problem associated to the initial states
ṼL and ṼR with the same configuration X.

For example, let us consider the Riemann problem with VL = (φL =
1, ρL = 1, uL = 10, PL = 105) and VR = (φR = 1, ρR = 5, uR = 10, PR = 105),
the associated configuration is constituted of a unique contact discontinuity
X = {2 − w}. If one slightly modifies the pressure, the velocity or the
porosity, new simple waves appear and configuration X no longer holds. The
goal of the stability criterion is to only focus on the configurations which are
important from a numerical point of view.

5.3. The sign criterion

Let us denote by P− = {(x, t);x < 0, t > 0} and P+ = {(x, t);x >
0, t > 0} the two half-planes. As noticed Andrianov & Warnecke (2004),
the augmented system reduces to the classical Euler system with constant
porosity in each half-plane. In particular, there exists at most three ordered
simple waves in each half-plane leading to an important number of potential
configurations. Nevertheless, the admissible configuration number will be
drastically cut down thanks to the following sign criterion.

Definition 4 (sign criterion). The sign velocity does not change across
the interface x = 0.

We apply the Rankine-Hugoniot condition to the conservative mass conser-
vation equation of system (2) for the contact discontinuity associated to λ0.
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Since the shock velocity is null, we get [φρu] = 0 at interface x = 0, hence
the sign of u is preserved for positive density and porosity.

Proposition 5. The following successions of waves and constant states

(a) {3 − w, 0 − w, 1 − w}, (b) {3 − w, 0 − w, 2 − w},

(c) {2 − w, 0 − w, 1 − w}, (d) {2 − w, 0 − w, 2 − w},

are not admissible.

Proof. We present the proof for the case (a). Let denote by Vl and Vr the
constant states situated on the left and right of the interface x = 0. Since we
deal with rarefactions or entropic shocks, the Lax entropy condition yields

λ3(Vl) < 0, λ1(Vr) > 0.

It results that ul < 0 while ur > 0 which is a contradiction with the sign
criterion, thus the succession (a) is not admissible. The other successions are
treated in the same way. �

We list in Fig. 2 the configurations which satisfy both the sign and the
stability configuration criterions. Configurations A, B, C and D involve the
four simple waves only one time (see Andrianov & Warnecke (2004)). The
two last configurations F and G correspond to the situation when the 1−w
or the 3 − w waves are splitted by the interface. We have not presented
here the resonant situations when the 1−w or the 3−w wave is superposed
with the 0 − w wave. To characterize more precisely the two last situations,
we study in the next subsection the transition across the interface when the
porosity changes.

5.4. The MACH criterion

Across the porous interface x = 0, the state Vl changes to the state
Vr in function of the porosity variation. Since mass and energy equations
in system (2) are written in a conservative form, we deduce the Rankine-
Hugoniot condition across the contact discontinuity λ0 :

[φρu] = 0, [u(φE + φP )] = 0. (30)

We can not use the classical Rankine-Hugoniot condition for the impulsion
equation since there is no conservative form but since we deal with a contact
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Figure 2: Admissible configurations respecting the sign and the stable configuration cri-
terions.
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discontinuity, we use the Riemann invariants associated to the simple wave
0 − w (see Andrianov & Warnecke (2004), p. 881):

w1
0(V ) = φρu, w2

0(V ) =
P

ργ
, w3

0(V ) = u2 +
2γP

(γ − 1)ρ
. (31)

We note that w1
0 and w3

0 correspond to relations (30) while the entropy invari-
ant w2

0 comes from the impulsion equation. Moreover, the three invariants
provide the same equations which characterize the steady-state solutions (8)
(see Chinnayya et al. (2004) p.12 for the shallow-water problem).

For a given left state Vl of porosity φL, we seek a right state of porosity
φR which preserves the Riemann invariants (31). To this end, we denote by

D = φLρlul, S =
Pl

ργ
l

, H = u2
l +

2γPl

(γ − 1)ρl

, (32)

and we seek ρr, ur and Pr such that w1
0(Vr) = D, w2

0(Vr) = S, w3
0(Vr) = H.

After some algebric manipulations, the problem consists in finding the density
as a solution of the scalar equation

g(ρ;S,H) = −

(
D

φR

)2

(33)

where we have defined

g(ρ;S,H) :=
2γS

γ − 1
ργ+1 − ρ2H. (34)

If we manage to compute ρ, we obtain the pressure P and the velocity u which
preserve the entropy S and the flux D. We now deal with the calculation of
ρ. Differentiation of function g gives

g′(ρ) = 2ρ

(
γ(γ + 1)

γ − 1
Sργ−1 −H

)
.

The derivative only vanishes at point ρson = ρson(H,S) given by γργ−1
son =

(γ − 1)H

(γ + 1)S
. Since γ ∈]1, 3[, function g′ is positive for ρ > ρson and negative

for ρ < ρson. To sum up, we have the proposition.
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Proposition 6. Function g admits a minimum at point ρson which only de-
pends on S and H characterized by

γργ−1
son =

(γ − 1)H

(γ + 1)S
and g(ρson) =

1 − γ

1 + γ
Hρ2

son < 0.

g is a decreasing function on interval [0, ρson] and an increasing function on
interval [ρson,+∞[.
Let denote by uson, Pson and cson the respective velocity, pressure and sound
velocity associated to ρson, then u2

son = c2son. Moreover, we have

• if ρ > ρson, then u2 < c2 (subsonic branch),

• if ρ < ρson, then u2 > c2 (supersonic branch).

ρson

(1−γ)

(γ+1)
Hρ

son

2

ρ

ρ

g(  )

Figure 3: Function g : the minimum is attained at point ρson.

For H and S given, function g reaches the minimum at the sonic point
ρson. Consequently, for a given D, we deduce the minimum value φmin =
φmin(D,S,H) such that equation (34) has a solution given by

γ − 1

γ + 1
Hρ2

son =

(
D

φmin

)2

.

Hence we get

φ2
min =

(γ + 1)D2

(γ − 1)Hρ2
son

. (35)

The solutions of equation (34) are detailed in the following corollary.
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Corollary 1. Let (φ,D, S,H) be fixed and ρson be the density associated to
S and H. We denote by

χ(φ,D, S,H) =

(
D

φ

)2

+ g(ρson) =

(
D

φ

)2

+
1 − γ

1 + γ
Hρ2

son.

We have the three situations:

1. If χ(φ,D, S,H) < 0 (i.e. φ > φmin), there are two solutions ρsup < ρson

and ρsub > ρson for equation (33).

2. If χ(φ,D, S,H) > 0 (i.e. φ < φmin), there is no solution for equation
(33).

3. If χ(φ,D, S,H) = 0 (i.e. φ = φmin), there is the unique solution ρson

for equation (33).

In case (1) two solutions are available and the question of the choice is crucial.
For example, assume that we have a prescribed left subsonic state Vl =
(φL, ρl, ul, Pl). For φR in the vicinity of φL, we have two possible solutions but
only one belongs to the same subsonic branch ρ > ρson. For continuity reason,

it is judicious that the solution ρ̄ of equation g(ρ) = −
(

D
φR

)2

belongs to the

subsonic branch. Chinnayya et al. (2004) (p. 13) give a clever justification
for the shallow-water problem using a regularisation of the topography while
Goatin & Le Floch (2004) (p. 891) state a similar criterion.

Definition 5 (MACH criterion). The subsonic or supersonic regimes are
preserved across the interface. If Vl and Vr are the states on the left and
right sides of the contact discontinuity 0 − w then they are both subsonic or
supersonic.

Note that the MACH criterion does not apply in case of a sonic state. For
example, if Vl is sonic, Vr could be subsonic or supersonic. A direct conse-
quence of the MACH criterion concerns the splitting of the 1 − w or 3 − w
waves.

Proposition 7. The simple waves 1 − w or 3 − w can not be splitted with
two constant states on both sides of the interface x = 0.

Proof. We give the proof when the 1 − w wave is splitted into two parts
leading to the configuration F = {1−w, 0−w, 1−w, 2−w, 3−w} represented
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Figure 4: The 1 − w is splitted with two constant states on both sides of the interface.
Such a situation is not available since the MACH and sign criterions are not respected.

in Fig. 4. The 1 − w wave is splitted by the 0 − w wave with two constant
states on both sides of the interface with Vl on the left and Vr on the right.
Due to the presence of the 1−w in the half-plane P+, state Vr is supersonic
with ur > cr whether the simple wave is a rarefaction or an entropic shock
thanks to the Lax condition. In consequence, the sign and MACH criterions
yield that ul > cl. We now deal with the 1 − w which separates the two
constant states VL and Vl in P−. Since Vl satisfies ul > cl, the 1−w can not
be a rarefaction because Vl belongs to the P− half-plane. On the other hand,
the Lax condition says uL − cL > σ1 > ul − cl > 0 hence the 1 − s shock
velocity σ1 is positive which is a contradiction with the assumption that the
shock belongs to P−. �

5.5. The splitting wave configurations LR and RR

Let us consider the situation where the 1 − w simple wave is splitted
into two waves by the interface x = 0. Proposition 7 says that there is at
most a constant state on one side of the interface. Consequently, the 1 − w
wave situated on the other side is a rarefaction which touches the interface
at x = 0. We present in Fig. 5 the two situations for the 1−w wave whether
the rarefaction is on the left or on the right leading to the configuration LR1

(Left Rarefaction for the 1 − w wave) and RR1 (Right Rarefaction for the
1 − w wave). Similar configurations denoted by LR3 and RR3 hold for the
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3 − w wave splitting.
Such configurations have been proposed by Noussair (2000) (p. 324, case 6
and 8) for the scalar nonconservative problem, by Noussair (2001) (p. 61,
cases Dn), Chinnayya et al. (2004) (p. 19, case d), Alcrudo & Benkhaldoun
(2001) (p. 659, cases 6.1.2, 6.1.4, 6.2.2, 6.2.4 for examples) for the shallow-
water problem, by Le Floch & Thanh (2003) (p. 791, case C2.1 and C2.2)
for the nonconservative isothermal Euler problem, by Lowe (2005) for the
two-phase flow problem, by Goatin & Le Floch (2004) (p. 897, case 2a(A)
and case 2b(A’)) for a general nonconservative hyperbolic system.
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Figure 5: The 1 − w is splitted into a rarefaction on one side and a constant state on the
other side which provides the following configurations whether the rarefaction is on the
left (LR1 configuration) or on the right (RR1 configuration) of the interface.

We now analyse such a situation where we shall prove the important result:
the rarefaction takes place only on the lower porosity side.

Proposition 8. The 0 − w wave parts the 1 − w or 3 − w simple waves in
the following way (see Fig. 6 for the configuration designations).

Rarefaction from P−. We assume there is a rarefaction in the P−

half-plane which reaches the interface x = 0 to a limit state Vl such that
ul = ±cl and jumps to a constant state Vr on the right:

• If φL > φR, there is no solution;

• If φL < φR, there is two possibilities:

* a 1 − r rarefaction with ul, ur positive and Vr supersonic (case
LR1),

* a 3−r rarefaction with ul, ur negative and Vr subsonic (case LR3).
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Rarefaction from P+. We assume there is a rarefaction in the P+

half-plane which reaches the interface x = 0 to a limit state Vr such that
ur = ±cr and jumps to a constant state Vl on the left:

• If φL < φR, there is no solution;

• If φL > φR, there is two possibilities:

* a 1−r rarefaction with ul, ur positive and Vl subsonic (case RR1),

* a 3 − r rarefaction with ul, ur negative and Vl supersonic (case
RR3).
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Figure 6: Admissible configurations where the 1−w or the 3−w simple waves are splitted by
the 0−w contact discontinuity. Configurations LR1 and RR1 correspond to the 1−w wave
with φL < φR and φL > φR respectively while configurations LR3 and RR3 correspond
to the 3 − w wave with φL < φR and φL > φR respectively.

Proof. We only deal with the left rarefaction. We reach the state Vl with
a 1 − r or a 3 − r rarefaction from the left such that u2

l = c2l . For the limit
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state, we associate the values of D, S and H given by relations (32) and we
seek a solution ρ̄ of the equation

g(ρ) +

(
D

φR

)2

= 0. (36)

• If φR < φL then
(

D
φR

)2

>
(

D
φL

)2

. Since the left state is sonic, function g

attains its global minimum at point ρl and we have g(ρ) +
(

D
φL

)2

≥ g(ρl) +
(

D
φL

)2

= 0 for all ρ > 0. It results that g(ρ) +
(

D
φR

)2

> 0 and equation (36)

has no solution.

• Assume now that φR > φL, we then have
(

D
φR

)2

<
(

D
φL

)2

. Since

g(ρl) +
(

D
φL

)2

= 0, we deduce that g(ρl) +
(

D
φR

)2

< 0. From proposition 6

there exists two solutions ρsub > ρson = ρl and ρsup < ρson = ρl for equation
(36). We now distinguish the situations whether we have a 1 − r or a 3 − r
rarefaction.

* For a 1− r rarefaction (configuration LR1). We have, on one
hand, a 1−r rarefaction in the half-plane P− from the VL state to a Vl

state located at x = 0 where Vl is prescribed with the condition ul = cl
and we have, on the other hand, a 1−w simple wave in the half-plane
P+. We cross the interface x = 0 using the parameter φR to provide
state Vr on the right side of the interface. Since ρl is the minimum of
function g and φR > φL, there is two solutions: ρsub for the subsonic
branch and ρsup for the supersonic branch. Since there exists a 1 − w
wave in the half-plane P+, then Vr must be supersonic whether the
wave is a rarefaction or an entropic shock. Hence, we have to choose
ρ̄ = ρsup.

* For a 3− r rarefaction (configuration LR3). We have, on one
hand, a 3 − r rarefaction in the half-plane P− from the Vb state to a
Vl state located at x = 0 and we have, on the other hand, a 3 − w
simple wave in the half-plane P+. As in the previous case, we have
two possible solutions for the state Vr = VR situated on the right side
of the interface. Since there exists a 3 − w wave in the half-plane P+,
then VR must be subsonic and we have to choose ρ̄ = ρsub. �

To sum up, we propose the following criterion when a rarefaction touches the
porous interface.
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Definition 6 (rarefaction in porous media criterion). A rarefaction can
only reach the interface from the lower porosity side.

Remark 5. To our knowledge, such a criterion has not been clearly brought
to the fore before. For the shallow-water problem, Chinnayya et al. (2004)
(p. 19) show that the transition with a rarefaction reaching the interface
only occurs on the lower vertical height side. Moreover, in the general case
of nonconservative hyperbolic systems studied by Goatin & Le Floch (2004),
all the rarefactions reaching the interface satisfy the criterion in definition 6.

Remark 6. When a k − w wave splitting occurs, we have shown that the
first part of the wave situated on the lower porous side must be a rarefaction.
The second part of the wave (in the higher porosity side) is not a priori a
rarefaction and could also be a shock. We shall present examples of various
configurations in the numerical test section where the second part of the k−w
wave is a rarefaction or a shock.

5.6. The resonant configurations

Since the eigenvalues are not strictly ordered due to the presence of the
eigenvalue λ0 = 0, the question arises when a k−s shock crosses the interface
leading to the so-called resonant situation. We have to treat two situations
whether the k − w wave is splitted (with a rarefaction on one side) or not.

The simpler situation concerns a simple k − s shock which crosses the
interface. The k − s shock splits the 0 − w contact discontinuity into two
parts where an intermediate porosity φs is introduced (see Goatin & Le Floch
(2004) p.892 case 1a (C) for example). We denote by R1 the resonant config-
uration with the 1 − s shock while R3 represents the resonant configuration
with the 3 − s shock.
A more complex situation arises when the k−w is splitted into two parts: a
rarefaction on the lower porosity side and a stationary shock of null velocity
(see Goatin & Le Floch (2004) p. 897 case 2a (C) and Chinnayya et al.
(2004) p. 22 section 3.3.4 for examples). The shock itself splits the contact
discontinuity and we shall one more time introduce an intermediate porosity.
We denote by LRR1 and LRR3 the Left Rarefaction and Resonant configu-
rations associated to the 1 − w and 3 − w respectively when φL < φR while
RRR1 and RRR3 are the Right Rarefaction and Resonant configurations
when φL > φR.
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5.6.1. Configurations R1 and R3

The resonant configuration R1 appears when the 1−s shock and the 0−w
are superposed. To illustrate the phenomena, let us consider the situation
where we have a 1 − s shock on the left of the interface (configuration C in
Fig. 7). We increase the left velocity uL until the shock reaches the interface
x = 0. At that very moment, the shock touches the left side of the contact
discontinuity. If we increase a little bit the velocity, the shock shares the
interface in two parts introducing an intermediate porosity φs ∈ [φL, φR]
leading to the following configuration {0−w, 1− s, 0−w} at the same point
x = 0 (R1 configuration). We increase one more time the velocity until the
1−s shock reaches the right side of the interface, i.e. φs = φR. Configuration
R1 respects the stability configuration criterion since the 1 − s shock stays
on the interface for small perturbations of VL and VR but the intermediate
porosity φs changes. The same situation arises with a 3 − w shock leading
to the R3 resonant configuration.
Such configurations have been proposed by Goatin & Le Floch (2004) (p.
896, case 2b(C’)) for a general nonconservative hyperbolic system.
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VL VLVR VR
VRVL
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Vr VlVl Vr

Vl Vr

configuration C configuration DConfiguration R1

0-w

3-w

1-s

Vb

Figure 7: Configuration R1 is a transition between configurations C and D with a 1 − s

shock.

We now detail the construction of configuration R1 composed of two 0−w
contact discontinuities shared by a stationary 1 − s shock. We assume that
the physical states are Vl and Vr on the left and right of the interface. To
construct the transition, we introduce an intermediate porosity φs and we
consider the following waves succession linking Vl to Vr (see Fig. (8)).

- From Vl to Vs,l : we have a 0 − w contact discontinuity from φL to an
intermediate porosity φs ∈ [φL, φR].
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- From Vs,l to Vs,r : we have a stationary 1 − s shock of velocity σ1 = 0.

- From Vs,r to Vr : we have a 0−w contact discontinuity from φs to φR.

φ
R

V
r

Vs,l Vs,r

V
l

φ
s

φ
L

x=0

{
0−w 0−w

1−s

Figure 8: Resonant configuration R1. The stationary 1−s shock occurs at an intermediate
porosity φs.

The porosity φs has to be chosen such that the intermediate states Vs,l and
Vs,r define a stationary shock. Since we require an 1 − s entropy shock, the
Lax condition implies us,l − cs,l > 0 > us,r − cs,r hence Vs,l is supersonic while
state Vs,r is subsonic. Since Vs,l is a supersonic state, the MACH criterion
says that the left state Vl must be a supersonic state while Vs,r and Vr have
to be subsonic states.

To compute the two states and the intermediate porosity, we proceed in
the following way. For a given Vl, we define the unique ρs,l = ρs,l(φs) on the
supersonic branch of g (see Fig. 3) such that we satisfy the relation

g(ρs,l;Sl, Hl) =
2γSl

γ − 1
ργ+1

s,l − ρ2
s,lHl = −

(
Dl

φs

)2

, (37)

where Hl, Sl and Dl are computed with the left state Vl. In the same way
for a given Vr, we define a unique ρs,r = ρs,r(φs) on the subsonic branch of
g such that we satisfy the relation

g(ρs,r;Sr, Hr) =
2γSr

γ − 1
ργ+1

s,r − ρ2
s,rHr = −

(
Dr

φs

)2

, (38)
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where Hr, Sr and Dr are computed with the right state Vr.
With ρs,l and ρs,r in hand, we compute the velocities us,l, us,r and the pres-
sures Ps,l, Ps,r and we fix the intermediate porosity φs using the stationary
shock condition

ρs,lus,l = ρs,rus,r. (39)

Of course φs is implicitely given by relation (39) and an iterative algorithm
should be employed to compute an approximation of φs such that we satisfy
the three relations (37), (38) and (39).

5.6.2. Configurations LRR1 and LRR3

We now deal with a more complex situation when a k−w wave is splitted
into a k − r rarefaction on the left side and a k − s shock superposed with
the 0−w contact discontinuity. For such a situation, we must have φL < φR

such that the rarefaction occurs on the left side. We then obtain a Left
Rarefaction and Resonant configuration LRR1 or LRR3 for the 1−w or the
3 − w respectively.
Configuration LRR has been studied by Chinnayya et al. (2004) (p. 19, case
c) for the shallow-water problem, by Goatin & Le Floch (2004) (p. 897, case
2a(C)) for a general nonconservative hyperbolic system.
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Figure 9: Left Rarefaction and Resonant configuration LRR1 with φL < φR. The 1 − w

is constituted of a rarefaction on the left and a 1 − s stationary shock sharing the 0 − w

contact discontinuity with an intermediate porosity φs.

We detail the LRR1 configuration as an example (see Fig. 9 for the no-
tation).
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- A 1 − r rarefaction takes place on the left of the interface from VL to
the sonic state Vl

- From Vl to Vs,l : we have a 0 − w contact discontinuity from φL to an
intermediate stage φs ∈ [φL, φR] such that Vs,l is supersonic.

- From Vs,l to Vs,r : we have a stationary 1 − s shock of velocity σ1 = 0
and Vs,r is subsonic.

- From Vs,r to Vr : we have a 0−w contact discontinuity from φs to φR.

Like the R1 configuration, one has to choose the intermediate porosity such
that Vs,l and Vs,r are linked with a stationary shock of null velocity and
respect the entropy Lax condition u1,l−c1,l > 0 > u1,r−c1,r. To compute the
two states and the intermediate porosity, we have to fix φs such that relations
(37), (38) and (39) are satisfied. The only difference with the configuration
R1 is that Vl is the sonic state which links VL with a 1 − r rarefaction.

5.6.3. Configurations RRR1 and RRR3

We now analyse a similar situation when the k − w wave is splitted into
a k − r rarefaction on the right side and a k − s shock superposed with the
0 − w contact discontinuity. For such a situation, we must have φL > φR

such that the rarefaction occurs on the right side. We then obtain a Right
Rarefaction and Resonant configuration RRR1 or RRR3 for the 1−w or the
3 − w respectively.

We detail the RRR1 configuration as an example (see Fig. 10 for the
notation).

- From Vl = VL to Vs,l : we have a 0 − w contact discontinuity from φL

to an intermediate stage φs ∈ [φL, φR].

- From Vs,l to Vs,r : we have a stationary 1 − s shock of velocity σ1 = 0.

- From Vs,r to Vr : we have a 0 − w contact discontinuity from φs to φR

such that Vr is a sonic state.

- A 1 − r rarefaction takes place on the right of the interface from Vr to
Va.
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Figure 10: Right Rarefaction and Resonant configuration RRR1 with φL > φR. The 1−w

is constituted of a rarefaction on the right and a 1− s stationary shock sharing the 0−w

contact discontinuity with an intermediate porosity φs.

Like the LRR1 configuration, one has to choose the intermediate porosity
such that Vs,l and Vs,r are linked with a 1−s stationary shock of null velocity
and respect the entropy Lax condition u1,l − c1,l > 0 > u1,r − c1,r. The only
difference with the configuration LRR1 is that the rarefaction is on the right
and φs has to be chosen such that Vr is a sonic state. This last point leads
to a more complex problem from the numerical point of view when we solve
the inverse Riemann problem.
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6. The inverse Riemann problem

Let us consider the Riemann problem with initial left and right states VL

and VR and assume that there exists an autosimilar solution. We characterize
the solution by its configuration C and the set (P1, ρ2, P3, φR) where P1 is the
pressure of the constant state situated on the right of the 1 − w wave, ρ2 is
the density of the constant state situated on the right of the 2−w wave and
P3 is the pressure of the constant state situated on the right of the 3 − w
wave. We then define an application

(VL, VR) → fR(VL, VR) = {C; (P1, ρ2, P3, φR)}.

For the inverse Riemann problem, we proceed in a different way (see Andri-
anov (2003), Andrianov & Warnecke (2004)). We assume that the left state
VL is known and we want to determine the right state VR (if it is possible)
with the prescribe configuration C and intermediate values P1, ρ2, P3, φR,
i.e. we have to compute VR such that fR(VL, VR) = {C; (P1, ρ2, P3, φR)}.
Note that for a given set (P1, ρ2, P3, φR), we can obtain different solutions for
different configurations and some configurations have no solution.

6.1. Parameterization of the simple waves

To compute each intermediate state for the inverse Riemann problem,
we shall use a parameterization of the k − w waves in the simpler cases but
configurations like Rk, LRk, RRk, LRRk and RRRk require some iterative
algorithm we present in the sequel. We introduce some new notations to
provide a parameterization of the simple waves. For a given k −w wave, we
denote by Vk,l and Vk,r the left and the right states such that Vk,l is linked
to Vk,r by the one-parameter characteristic curve in the phase space. We
construct the inverse Riemann problem solution in the following way:

• For the 1−w and 3−w waves, the right state is fixed by the pressure
setting P1,r = P1 or P3,r = P3.

• For the 2 − w wave, the right state is fixed by the density setting
ρ2,r = ρ2.

• For the 0 − w wave, the right state is fixed by the porosity setting
φ0,r = φR.
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6.1.1. Parameterization of the 1 − w wave

We consider two states V1,l and V1,r separated by the simple wave 1 − w
which is a shock (P1,r > P1,l) or a rarefaction ( P1,r < P1,l). For a given left
state V1,l and a prescribed pressure of the right state P1,r = P1, we deduce
the other components of V1,r with the following relation.

– If P1,r > P1,l, we have a shock and we compute

ρ1,r = ρ1,l
P1,l(γ − 1) + P1,r(γ + 1)

P1,l(γ + 1) + P1,r(γ − 1)
, u1,r = u1,l −

√
(P1,r − P1,l)(ρ1,r − ρ1,l)

ρ1,rρ1,l

.

The discontinuity moves with the velocity

σ1 =
ρ1,lu1,l − ρ1,ru1,r

ρ1,l − ρ1,r

.

– If P1,r < P1,l, we have a rarefaction and we compute

ρ1,r = ρ1,l

(
P1,r

P1,l

) 1

γ

, c1,r =

√
γP1,r

ρ1,r

, u1,r = u1,l +
2

γ − 1
(c1,l − c1,r)

with the left state sound velocity c1,l =

√
γP1,l

ρ1,l

. The rarefaction area is

characterized by

u1,l − c1,l ≤
x

t
≤ u1,r − c1,r.

Note that the porosity does not change hence φ1,l = φ1,r.

6.1.2. Parameterization of the 3 − w wave

We consider two states V3,l and V3,r separated by the simple wave 3 − w
which is a shock (P3,r < P3,l) or a rarefaction ( P3,r > P3,l). For the given left
state V3,l and a prescribed pressure of the right state P3,r = P3, we deduce
the other components with the following algorithm.

– If P3,r < P3,l, we have a shock and we compute

ρ3,r = ρ3,l
P3,l(γ − 1) + P3,r(γ + 1)

P3,l(γ + 1) + P3,r(γ − 1)
, u3,r = u3,l −

√
(P3,r − P3,l)(ρ3,r − ρ3,l)

ρ3,rρ3,l

.

The discontinuity moves with the velocity

σ =
ρ3,ru3,r − ρ3,lu3,l

ρ3,r − ρ3,l

.
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– If P3,r > P3,l, we have a rarefaction and we compute

ρ3,r = ρ3,l

(
P3,r

P3,l

) 1

γ

, c3,r =

√
γP3,r

ρ3,r

, u3,r = u3,l −
2

γ − 1
(c3,l − c3,r)

with the left state sound velocity c3,l =

√
γP3,l

ρ3,l

. The rarefaction area is given

by

u3,l + c3,l ≤
x

t
≤ u3,r + c3,r.

Note that the porosity does not change hence φ3,l = φ3,r.

6.1.3. Parameterization of the 2 − w wave

For a given left state V2,l, we have u2,r = u2,l, P2,r = P2,l since pressure
and velocity are unchanged across the contact discontinuity moving with the
velocity σ = u2,l = u2,r. We prescribe the right density ρ2,r = ρ2 and the

sound velocity for the right state is given by c2,r =

√
γP2,r

ρ2,r

.

6.1.4. Parameterization of the 0 − w wave

For a given left state V0,l, we compute

D = φLρ0,lu0,l, S =
P0,l

ργ
0,l

, H = u2
0,l +

2γP0,l

(γ − 1)ρ0,l

.

We then seek the solutions of the nonlinear equation

2γS

γ − 1
ργ+1 − ρ2H = −

(
D

φR

)2

using for example an iterative Newton algorithm. Let γργ−1
son =

(γ − 1)H

(γ + 1)S
be the density corresponding to the sonic state, following corollary 1, we
compute χ(φR, D, S,H) and we have the three situations:

• If χ(φR, D, S,H) > 0, there is no solution.

• If χ(φR, D, S,H) = 0, there is the unique solution ρ0,r = ρson.
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• If χ(φR, D, S,H) < 0, there are two solutions and we choose ρ0,r = ρsup

if V0,l is a supersonic state and ρ0,r = ρsub if V0,l is a subsonic state.

We then obtain the two other components with

u0,r =
D

φRρ0,r

, P0,r = P0,l

(
ρ0,r

ρ0,l

)γ

.

6.2. Resolution of the inverse Riemann problem

Let VL be the left state and (P1, ρ2, P3, φR) be the set of prescribed in-
termediate values. We aim to construct all the intermediate states and VR

which respect a given configuration C. We proceed with a ”Try and Check”
technique in the following manner. We start from the left side with VL, then
we compute the first intermediate constant state Va situated just after the
1−w. Then we check if the wave we have produced corresponds to the pat-
tern of the configuration we are supposed to respect. If the wave is wrong (for
example Va is supersonic whereas configuration C requires a subsonic state),
we stop the procedure and no solution is available for such a configuration.
If the 1−w wave is admissible, we continue with the second wave and so on.

6.2.1. Configurations A, B, C, D

We only detail the algorithm for the configuration C = {1−w, 2−w, 0−
w, 3 − w}, the other cases are similar. We shall employ the notations in-
troduced in Fig. 2. Let VL be the left state and (P1, ρ2, P3, φR) the set of
intermediate values.

- If PL < P1 we have a shock of velocity σ1 otherwise we have a rarefac-
tion. We then compute the new state Va. In case of a shock, we have
to check that σ1 < 0 whereas in case of a rarefaction we have to check
that ua − ca < 0. If the condition is not satisfied, the C configuration
is not available and we stop the algorithm.

- Furthermore the velocity ua has to be positive. Indeed, the velocity
sign does not change across the interface x = 0 and the configuration
C stipulates that λ2 > 0. If ua < 0 then the C configuration is not
available.

- Using φR, we compute the intermediate state Vb where we choose the
subsonic solution using a Newton algorithm to solve equation (34). If
there is no solution, the configuration C is not available.
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- We compute the state Vc after the contact discontinuity prescribing the
density ρ2.

- If P3 < Pc we have a shock of velocity σ3 whereas we have a rarefaction
if P3 > Pc. We compute the state Vd using the parameterization. In
case of a shock, one has to check that σ3 > uc.

The state Vd corresponds to the right state VR we shall use in the simulations.

6.2.2. Configurations LR1 and LR3

The configurations LR are a little bit more complex. We only deal with
the LR1 case since the LR3 configuration is computed in the similar manner.
We have to construct a rarefaction which joins the left state VL to the sonic
point. We shall employ the notations introduced in Fig. 6. The algorithm is
the following.

- We first check that φL < φR and that uL − cL < 0. If one of these
conditions is not satisfied, configuration LR1 is not available.

- We compute the sonic state Vl using the 1 − r rarefaction such that
ul = cl.

- We compute the state Vr solving relation (34). We take the solution
ρsup corresponding to the supersonic state.

- If P1 < Pr we have a rarefaction while we have a shock of velocity σ1

if P1 > Pr and we compute an intermediate supersonic state Va with
pressure P1. In case of a shock, we have to check that σ1 > 0. If σ1 < 0
the LR1 configuration is not available.

- We compute the state Vb using the contact discontinuity where we
prescribe the density ρ2.

- We compute the state Vc using the prescribed pressure P3. In case of
a shock, we have to check that σ3 > ub.

The state Vc corresponds to the right state VR we shall use in the simulations.
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6.2.3. Configurations RR1 and RR3

The configurations RR are more complex than configurations LR because
we have to guess the intermediate subsonic state Vl on the left of the interface
such that Vr is exactly a sonic state.

Computation of the Vl and Vr states. A Lagrange-like iterative procedure has
to be employed to compute the intermediate subsonic state Vl. To this end
we introduce the intermediate pressure Pl and denote by Vl the corresponding
state obtained with a 1− r rarefaction if Pl < PL or a 1− s shock if Pl > PL.
For such a Vl, we compute the associated Vr on the other side of the interface
corresponding to the right porosity φR where we solve equation (34) taking
the subsonic solution ρr = ρsub. We then consider the function

Pl → f(Pl) = cr − ur.

If one has f(Pl) = 0, the Vr state is sonic and we obtain an admissible state
Vl. To compute Pl we adapt the Lagrange algorithm to function f . We take
PL and P1 as initial guess to perform the computation. If the algorithm
converges we obtain an approximation of Vl and Vr.

Computation of the other states. Once we have Pr, we check that P1 < Pr

since we must have a rarefaction and we compute the intermediate state Va.
If P1 > Pr configuration RR1 is not available. The next operations are the
following.

- We compute the state Vb after the contact discontinuity prescribing the
density ρ2.

- If P3 < Pb we have a shock of velocity σ3 whereas we have a rarefaction
if P3 > Pb. We compute the state Vc using the parametrization. In
case of a shock, one has to check that σ3 > ub.

The state Vc corresponds to the right state VR we shall use in the simulations.

6.2.4. Configurations R1 and R3

We now deal with the resonant configurations. We first consider the
simpler cases when a k − s shock splits the 0 − w wave. We shall employ
the notations introduced in Fig. 8. The main difficulty is to determine the
intermediate porosity such that we have a stationary shock between Vl,s and
Vr,s. We only treat the case R1 but the R3 configuration is similar.
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Computation of φs and the Vr state. First of all, if state Vl is not supersonic
then configuration R1 is not avalaible. Now, for a given φs, we compute
the supersonic state Vl,s linking Vl when the porosity changes from φL to φs

solving equation (37). With Vl,s in hand, we compute Vr,s using the stationary
1 − s shock parameterization :

us,r = us,l −

√
(Ps,r − Ps,l)(ρs,r − ρs,l)

ρs,rρs,l

, M = ρs,lus,l = ρs,rus,r.

After some algebric manipulation we get

M2

(
1

ρs,l

−
1

ρs,r

)
=
√
Ps,r − Ps,l.

On the other hand, we have the relation

ρs,r = ρs,l
Ps,l(γ − 1) + Ps,r(γ + 1)

Ps,l(γ + 1) + Ps,r(γ − 1)
,

and combining the two equations, we obtain

Ps,r =
2M2

(γ + 1)ρs,l

−
γ − 1

γ + 1
Ps,l. (40)

We then deduce ρs,r and us,r, hence the state Vs,r. We compute the density
ρr taking the subsonic solution of equation (38). We then deduce the state
Vr. The intermediate porosity has to be fixed such that Pr = P1 where P1 is
the prescribed pressure. To this end, we introduce the function

φ→ f(φ) = Pr − P1

and we seek φs such that f(φs) = 0. We use a Lagrange method where we
initialise the algorithm with φ = φL and φ = φR.

Computation of the other states. Assume that state Vr is well-calculated,
we compute the state Va after the 2 − w contact discontinuity using the ρ2

density. We finally determine state VR using the pressure P3. If P3 > Pa we
have a rarefaction while we have a shock if P3 < Pa. In this last case, we
have to check that σ3 > ua to obtain an admissible R1 configuration.
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6.2.5. Configurations LRR1 and LRR3

We now deal with the LRR configuration (φL < φR) where a k−w wave
is splitted into a rarefaction on the left side of the interface and a stationary
shock. We shall employ the notations introduced in Fig. 9.

First of all, the VL state has to be subsonic since we have a 1−r rarefaction
in the half-plane P−. From VL, we compute the sonic state Vl linked to VL by
the 1−r rarefaction such that ul = cl. We proceed computing the stationary
shock.

Computation of φs and the Vr state. Note that state Vl is sonic and we have
to compute a supersonic Vs,l state and a subsonic Vs,r state. To this end, for
a given φs, we compute the supersonic state Vl,s linking Vl when the porosity
changes from φL to φs solving equation (37). With Vl,s in hand, we compute
Vr,s using relation (40). We then deduce ρs,r and us,r, hence the state Vs,r.
Finally we compute Vr solving equation (38) when the porosity changes from
φs to φR. The intermediate porosity has to be fixed such that Pr = P1 where
P1 is the prescribed pressure. To this end, we introduce the function

φ→ f(φ) = Pr − P1

and we seek φs such that f(φs) = 0. We use a Lagrange method where we
initalise the algorithm with φ = φL and φ = φR.

Computation of the other states. We compute the state Va after the 2 − w
contact discontinuity using the ρ2 density. We finally determine state VR

using the pressure P3. If P3 > Pa, we have a rarefaction while we have a
shock if P3 < Pa. In the last case, we have to check that σ3 > ua to obtain
an admissible LRR1 configuration.

6.2.6. Configurations RRR1 and RRR3

We treat the RRR configuration (φL > φR) where a k−w wave is splitted
into a rarefaction on the right side of the interface and a stationary shock.
We shall employ the notations introduced in Fig. 10. The configuration is
more complex to solve than the LRR configuration since we have to compute
φs such that Vr is a sonic state.

Computation of φs and the Vr state. To obtain such a φs we proceed as
follows. Let φs ∈ [φL, φR], we link the state Vl = VL to the state Vs,l solving
equation (37) when the porosity changes from φL to φs where we choose the
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supersonic solution. We then compute the Vs,r subsonic state using relation
(40) of the 1 − s stationary shock. Finally we determine with equation (35)
the porosity φmin such that we obtain a sonic state Vr. The point is that Vr

should be sonic with φmin = φR so we consider the function

φs → f(φs) = φmin − φR,

and we seek φs such that f(φs) = 0. We use a Lagrange algorithm where
we initialise the algorithm with φ = φL and φ = φR. Assume that we have
determined φs and Vr, then we check that Pr < P1 such that we can construct
a rarefaction.

Computation of the other states. We compute the state Va after the 2 − w
contact discontinuity using the ρ2 density. We finally determine state VR

using the pressure P3. If P3 > Pa, we have a rarefaction while we have a
shock if P3 < Pa. In this last case, we have to check that σ3 > ua to obtain
an admissible RRR1 configuration.

7. Numerical Results

Numerical investigations have been carried out to test the numerical
scheme based on the Rusanov flux and the nonconservative flux given in
section 3. Two sets of tests are proposed: the first set of tests aims to check
the ability of the numerical method to solve the Riemann problem for sev-
eral characteristics situations (rarefaction and resonant configurations) while
a second set of tests is dedicated to the comparison between the first- and
second-order schemes with a regular porosity function to check the perfor-
mance of the decomposition into nonconservative flux and source term. Com-
putations are performed using the OFELI library of Touzani (1998-2003) to
handle the mesh.

7.1. New Sod tests

We consider a Sod tube on domain [0, 2] where the initial condition discon-
tinuity is located at point x = 0.8. All the simulations have been performed
using a uniform subdivision of 800 elements and we adapt the time step to
guarantee the scheme stability using the CFL condition deriving from the
conservative part of the flux:

∆t ≤
∆x

2 maxi(|ui| + ci)
. (41)
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First-order schemes are stable if the CFL condition is respected but we have
to cut by two (and sometimes by three) the time step to carry out simulations
with the second-order scheme to preserve stability.

We face to an important number of configurations and we have selected
a representative set of situations we shall compare to the exact solution ob-
tained with the inverse Riemann problem. Configurations A, B, C and D are
the simpler cases where the four waves are clearly isolated. Such a situation
have been yet studied (Andrianov & Warnecke, 2004) and we only present
the comparison between the numerical solution and the exact solution with
the configuration C. The main point is to check that the contact disconti-
nuity consecutive to porosity jump is well calculated. We then proceed with
the LR and RR configurations when the 1 − w is splitted into a rarefaction
reaching the sonic point on one side and a second contribution of the 1 − w
wave on the other side. We consider the two configurations whether φL < φR

or φL > φR and for each case, two simulations have been carried out where
the second part of the 1 − w wave is a rarefaction or a shock. We finally
deal with the resonant configuration where a 1−s stationary shock splits the
0−w contact discontinuity. We have first considered the R1 situation where
the 1 − w is reduced to the 1 − s stationary shock. We then proceed with
more complex configurations like LRR1 and RRR1. Numerical simulations
have been carried out with φL < φR to obtain a left rarefaction reaching the
sonic point and a 1−s stationary shock sharing the 0−w discontinuity at an
intermediate porosity φs ∈ [φL, φR]. A similar configuration has been studied
when φL > φR.
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7.1.1. Configuration C

Table 1: Configuration of type C = {1 − r, 0 − w, 2 − w, 3 − s}.

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mach

VL 0.9 3.6 100 300000 0.29277
Vl 0.9 2.69478 196.113 200000 0.608399
Vr 1.0 2.82888 168.135 214071 0.51656
Va 1.0 3.4 168.135 214071 0.566308
VR 1.0 3.23885 153.785 200000 0.523034

Comments. Table 1 gives the states obtained with the inverse Riemann

problem while Fig. 11 shows the comparison between the exact solution and the

numerical approximations for the C configuration. Viscosity effects of the Rusanov

flux are strongly reduced by the MUSCL procedure and we obtain an accurate

approximation of the solution. In particularly, we note that the 0 − w contact

discontinuity situated at x = 0.8 is correctly resolved.
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Figure 11: Configuration of type C = {1 − r, 0 − w, 2 − w, 3 − s}.

7.1.2. Configuration LR1 with a rarefaction for the second part of the wave

Comments. Table 2 gives the states obtained with the inverse Riemann

problem while Fig. 12 shows the comparison between the exact solution and the

numerical approximations for the LR1 configuration. We note that the constant

state situated just after the contact discontinuity is not well-approximated whereas

all the other states are well-evaluated. Our point of view is that the rarefaction on

the left side of the interface x = 0.8 is not well-evaluated and does not reach the

sonic point inducing a poor approximation of the constant state on the right side.

All the numerical experiences we have carried out for such a situation indicate a

high sensitivity of the right state Vr with respect to the approximation of the left

rarefaction accuracy.
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Table 2: Configuration of type LR1 = {1 − r, 0 − w, 1 − r, 2 − w, 3 − s}.

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mach

VL 0.8 5 250 400000 0.747018
Vl 0.8 4.03113 320.553 295869 1
Vr 0.8 2.26274 456.86 131823 1.59971
Va 0.8 1.58382 555.19 80000 2.08778
Vb 1.0 1.68 555.19 80000 2.15024
VR 1.0 2.3764 647.909 130000 2.3412

7.1.3. Configuration of type LR1 with shock for the second part of the wave

Table 3: Configuration of type LR1 = {1 − r, 0 − w, 1 − s, 2 − w, 3 − s}.

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mach

VL 0.8 5 200 300000 0.690066
Vl 0.8 3.83531 274.856 206959 1
Vr 1.0 2.15282 391.731 92209.2 1.59971
Va 1.0 3.03737 303.314 150000 1.15354
Vb 1.0 1.68 303.314 150000 0.8579
VR 1.0 1.03385 136.275 75000 0.427612

Comments. Table 3 gives the states obtained with the inverse Riemann

problem while Fig. 13 shows the comparison between the exact solution and the

numerical approximations for the LR1 configuration. The goal is to numerically

check that the second part of the 1 − w wave can be a rarefaction or a shock. As

in the previous situation, the poor approximation of the rarefaction to the sonic

point induces a poor approximation of the constant state situated on the right of

the interface.
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Figure 12: An example of configuration : LR1 = {1 − r, 0 − w, 1 − r, 2 − w, 3 − s}.

7.1.4. Configuration of type RR1

Comments. Table 4 gives the states obtained with the inverse Riemann

problem while Fig. 14 shows the comparison between the exact solution and the

numerical approximations for the RR1 configuration. The numerical simulations

we have carried out seem to indicate that the solution is less sensitive to the

rarefaction approximation situated on the right of the interface. The case φL > φR

provides a better numerical solution accuracy than the case φL < φR. As in the

LR1 case, we can numerically check that we can also have a rarefaction or a shock

for the second part of the 1 − w when φL > φR.
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Figure 13: An example of configuration : LR1 = {1 − r, 0 − w, 1 − s, 2 − w, 3 − s}.

7.1.5. Configuration R1

Comments. Table 5 gives the states obtained with the inverse Riemann

problem while Fig. 15 shows the comparison between the exact solution and the

numerical approximations. We observe that the numerical approximation suits

very well with the exact solution. We also note that the scheme does not detect

the intermediate states Vsl and Vsr we have introduced to compute the 1 − s

stationary shock but reproduces the state Vl and Vr.
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Table 4: Configuration of type RR1 = {1 − r, 0 − w, 1 − r, 2 − w, 3 − s}.

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mach

VL 1.0 3.6 0 400000 0
Va 1.0 2.50105 138.545 240219 0.377818
Vs 1.0 1.70111 339.491 140043 0.999999
Vb 1.0 1.33739 419.224 100000 1.29572
Vc 0.6 0.7 419.224 100000 0.937414
VR 0.6 0.57037 329.131 75000 0.7671

Table 5: Configuration of type R1 = {0 − w, 1 − s, 0 − w, 2 − w, 3 − s}.

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mach

VL 1.0 1.0 500 10000 1.33631
Vs,l 0.979139 1.05179 485.508 107325 1.28454
Vs,r 0.979139 1.56585 326.119 188717 0.793928
Vr 0.95 1.45327 362.159 170000 0.89492
Va 0.95 1.2 362.159 170000 0.813207
VR 0.95 1.34771 414.462 200000 0.909292

7.1.6. Configuration LRR1

Comments. Table 6 gives the states obtained with the inverse Riemann

problem while Fig. 16 shows the comparison between the exact solution and the

numerical approximations for the LRR1 configuration. Like in the LR1 case,

the major difficulty is the computation of the rarefaction situated on the left of

the interface leading to a poor approximation of the constant state located at the

right of the interface, the other states being well-approached. Such a configuration

is difficult to numerically solve and shows the limit of the Rusanov scheme we

have proposed. New schemes have to be considered to correctly solve such a

configuration.
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Figure 14: An example of configuration : RR1 = {1 − r, 0 − w, 1 − r, 2 − w, 3 − s}.

7.1.7. Configuration RRR1

Comments. Table 7 gives the states obtained with the inverse Riemann

problem while Fig. 17 shows the comparison between the exact solution and the

numerical approximations for the RRR1 configuration. Like in the LRR1 the main

difficulty is the rarefaction approximation. We observe a different behaviour of the

rarefaction between the LRR and the RRR configuration.
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Figure 15: An example of configuration : R1 = {0 − w, 1 − r, 0 − w, 2 − w, 3 − s}.

7.1.8. General comments on the Sod tests

In the major case, the contact discontinuity 0 − w is well-computed and
the second-order scheme manages to strongly reduce the diffusion effect of
the Rusanov flux. Since the porosity is constant on both side of the interface,
the porosity splitting φ = φr + φd is reduced to φ = φd and we keep a first-
order scheme in the vicinity of the interface whereas we have a full second-
order scheme on both side of the interface. We would like to highlight the
difficulty to compute an accurate solution when the configuration involves
a rarefaction which reaches the sonic point at the interface (configuration
LR, RR, LRR and RRR). A small error on the rarefaction approximation
induces an important error on the constant state situated on the other side of
the interface. We also mention that the scheme fails to compute an accurate
solution when the porosity jump is to high (more precisely when the rate of
porosity is far from one). Indeed, we have proved that the scheme consistency
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Table 6: Configuration of type LRR1 = {1 − r, 0 − w, 1 − s, 0 − w, 2 − w, 3 − s}.

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mach

VL 1.3 1.862 0.826 2.4583 0.607559
Vl 1.3 1.32768 1.27062 1.53106 1
Vs,l 1.31102 1.21448 1.37737 1.35148 1.10351
Vs,r 1.31102 1.42713 1.17214 1.69479 0.909049
Vr 1.6 1.78931 0.766029 2.32609 0.567819
Va 1.6 2 0.766029 2.32609 0.60032
VR 1.6 1.79564 0.629806 2 0.504356

Table 7: Configuration of type RRR1 = {0 − w, 1 − s, 0 − w, 1 − r, 2 − w, 3 − s}.

φ ρ (kg.m−3) u (m.s−1) P (Pa) Mach

VL 1.0 1.3 2 1 1.92725
Vs,l 0.78177 1.8729 1.77574 1.66725 1.59064
Vs,r 0.78177 3.77579 0.880818 4.64356 0.671275
Vr 0.7 2.96991 1.25064 3.31803 1
Va 0.7 0.533582 3.06782 0.3 3.45784
Vb 0.7 1 3.06782 0.3 4.73375
VR 0.7 2.36311 3.67595 1 4.77582

error is of order |∆φ|1 which leads to a poor accuracy with too large porosity
discontinuities even if we use a finer mesh.

7.2. Numerical tests with regular porosity

The second set of numerical tests consists in computing approximations
of the stationary solution using a regular porosity. We check the ability of
the scheme to correctly reproduce stationary solutions satisfying the well-
balanced criterion, and we measure the scheme accuracy.

A stationary solution V (x) has to respect the steady-state equation (6)
which is equivalent to the three invariants:

(a) D = φρu, (b) H = u2 +
2γ

γ − 1

P

ρ
, (c) S =

P

ργ
.
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Figure 16: An example of configuration : LRR1 = {1− r, 0−w, 1− s, 0−w, 2−w, 3− s}.

Let us consider the domain Ω = [0, 1], we consider the following porosity
function

φ(x) =
2 + sin(3πx)

3
. (42)

For a given state VL = (φ(0), ρL, uL, PL), the steady-state solution at any
point x is given by V (x) = (φ(x), ρ(x), u(x), P (x)) where ρ(x) is a solution

of g(ρ;S,H) = −

(
D

φ(x)

)2

, coefficients D, H and S being computed with

VL. If VL is a subsonic state, we use the subsonic branch of g while we seek
a supersonic solution if VL is a supersonic state.

To perform the simulation, we use a regular mesh Th of spatial step h =
1

I+1
where I is the cell number. For a given left state VL at point x = 0,

we compute the right state VR at point x = 1 solving equation g. In the
test we propose, we have immediately VR = VL since φ(0) = φ(1). We then
compute the solution using the finite volume scheme till we converge to a
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Figure 17: An example of configuration : RRR1 = {0−w, 1− s, 0−w, 1− r, 2−w, 3− s}.

stationary solution using the left and right condition and we denote by Vi

the approximation of the steady-state solution on cell Ki.
To measure the scheme accuracy and the convergence to the steady-state

solution, we compute Di, Hi and Si for each cells and we set

Derr = max
i

|DL −Di|, Herr = max
i

|HL −Hi|, Serr = max
i

|SL − Si|.

Of course, if one has Derr = Herr = Serr, we have exactly obtain the steady-
state solution.

In a first test, we perform the simulation for a subsonic and a supersonic
configurations. For each configuration, we have used the first-order scheme
and the second-order scheme using the minmod and the vanleer limiter.
We have also performed a second-order simulation cancelling the limiting
procedure. We would like to mention that we enforce the Dirichlet condition
on cells 1, 2, I − 1 and I to obtain the second-order accuracy. Indeed, if one
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only enforces the states at cells 1 and I, the second-order accuracy can not
be attained.

7.2.1. Subsonic stationary case

We first deal with the subsonic configuration where we use the left state
ρL = 1, uL = 100 and PL = 100000 and use four different meshes of size
h = 0.01, 0.005, 0.0025 and 0.00125 respectively. Table 8 presents the D
and H errors with respect to the mesh. We obtain a slow convergence (lower
than one) with the first-order scheme but a very good accuracy with the
second-order schemes. We note important differences with the choice of the
limiter and super convergence effect when the limiter procedure is cancelled
(remember that we use a uniform mesh). The great difference of accuracy
between the first- and second-order is noticeable and proves that (in this case
at least) the nonconservative term splitting is efficient.

Table 8: Subsonic stationary case : D and H errors.

(D error)

h 10. 10−3 5. 10−3 2.5 10−3 1.25 10−3 order

first-order 19.2 12.31 7.48 4.31 0.72
minmod 3.97 0.996 0.231 0.0561 2.04
vanleer 1.03 0.149 0.027 0.0080 2.33

no limiter 0.45 0.061 0.0084 0.0013 2.81

(H error)

h 10. 10−3 5. 10−3 2.5 10−3 1.25 10−3 order

first-order 6454.6 3465.05 1844.8 969.4 0.91
minmod 126.45 32.606 13.77 5.29 1.52
vanleer 64.92 12.48 2.25 0.303 2.58

no limiter 68.10 10.68 1.24 0.157 2.92

We draw the convergence curves using the logarithm scale in Fig. 18
where the errors uniformly decrease with respect to h. We mention that the
steady-state solution is rapidly obtained with a first-order scheme whereas
we have to compute the unstationary solution for a very larger time interval
to reach the solution with a second-order scheme. For example, the time
computation of the steady-state solution without limiter procedure is more
than one hundred longer that the time to compute the steady-state solution
with the first-order scheme.
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Figure 18: Subsonic stationary case : D and H errors.

7.2.2. Supersonic stationary case

We now deal with the supersonic configuration where we use the left state
ρL = 1, uL = 2000, PL = 100000. The supersonic case is easier to compute
from a numerical point of view and steady-state are reached more rapidly
than in the subsonic case. Like in the subsonic situation, we obtain in Table
9 a convergence order of one with the first-order scheme while the second-
order schemes converge with an order greater than two. We find again a super
convergence effect with the scheme where the limiter procedure is cancelled.
Like in the subsonic case, we observe in Fig. 19 a regular convergence of the
D and H errors.

8. Conclusions

In this paper, we have presented a generic method to construct well-
balanced scheme for the nonconservative Euler system based on a conser-
vative flux and a nonconservative flux such that the steady-state solutions
are preserved. We have also introduced the porosity splitting principle to
construct second-order scheme. The technique has been applied to the Ru-
sanov conservative flux where we deduce the nonconservative flux to satisfy
the well-balanced criterion. The second part of the article is dedicated to a
complete description of the Riemann problem where we focus on the reso-
nant situations. We have listed 14 configurations and proposed a technique
to solve the inverse Riemann problem. At last, we have presented two sets
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Table 9: Supersonic stationary case : D and H errors.

(D error)

h 10. 10−3 5. 10−3 2.5 10−3 1.25 10−3 order

first-order 162.16 80.92 40.16 19.98 1.00
minmod 19.31 4.89 1.227 0.306 1.99
vanleer 8.62 2.094 0.516 0.128 2.02

no limiter 1.34 0.242 0.0515 0.012 2.26

(H error)

h 10. 10−3 5. 10−3 2.5 10−3 1.25 10−3 order

first-order 24381.5 10845.4 5047.2 2424.2 1.10
minmod 2975.1 665.2 158.3 38.612 2.09
vanleer 244.2 27.8 3.331 0.407 3.07

no limiter 180.0 20.72 2.459 0.299 3.07
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Figure 19: Supersonic stationary case : D and H errors.
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of numerical tests to show the scheme ability to compute approximations for
the Riemann problem and we have measured the convergence order in case
of a steady-state solution with a smooth porosity function.
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