
HAL Id: hal-00368535
https://hal.science/hal-00368535

Submitted on 19 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Further Results on Event-Based PID Controller
Sylvain Durand, Nicolas Marchand

To cite this version:
Sylvain Durand, Nicolas Marchand. Further Results on Event-Based PID Controller. ECC 2009 -
European Control Conference, Aug 2009, Budapest, Hungary. pp.1979-1984. �hal-00368535�

https://hal.science/hal-00368535
https://hal.archives-ouvertes.fr

Further Results on Event-Based PID Controller

Sylvain Durand and Nicolas Marchand

Abstract— In this paper, some improvements of the simple
event-based PID controller presented by K-E Årzén in [2] are
proposed. This controller, contrary to a time-triggered con-
troller which calculates the control signal at each sampling time,
calculates the new control signal only when the measurement
signal sufficiently changes. In the original work of Årzén, a
safety maximum period is added forcing the control to be
recomputed even if the measurement signal remains unchanged.
The contribution of this paper is to propose a scheme to avoid
this re-computation. Besides a noticeable reduction of the mean
control computation cost, the performance of the closed loop
system is also improved.

I. INTRODUCTION

The classical so-called discrete time framework of con-
trolled systems consists in sampling the system uniformly
in the time with some constant sampling period hnom

and in computing and updating the control law every time
instants t = khnom. This field, denoted the time-triggered
case (or the synchronous case in sense that all the signal
measurements are synchronous), has been widely investi-
gated [5] even in the case of sampling jitter or measure
loss that can be seen as some asynchronicity. However,
some works addressed more recently event-based sampling
where the sampling intervals are event-triggered (also called
asynchronous), for example when the output crosses a cer-
tain level. Extending the analogy between Riemann and
Lebesgues integral calculation (the first one summing the
height at each instant whereas the second sums the instants at
all height), the notion of Lebesgues sampling was introduced
to denote this sampling scheme: the measures are taken only
when variables cross some specific levels by opposition to the
Riemann sampling where the measures are taken at specific
time instants. Thus in the event-triggered sampling scheme,
the term sampling period denotes a time interval between
two consecutive level crossings of the measure, that is two
successive sampling instants, and the sampling periods are
hence not equidistant in time anymore.

Event-based notion is taking more and more importance in
the signal processing community with now various publica-
tions on this subject (see for instance [1] and the references
therein). In the control community, very few works have been
done. In [3], it is proved that such an approach reduces the
number of sampling instants for the same final performance.
In [6], it is shown that controlling a Lebesgues sampled
system or a continuous time system with quantized mea-

S. Durand is with NeCS Project-Team, INRIA - GIPSA-lab - CNRS,
Grenoble, France, sylvain.durand@inrialpes.fr

N. Marchand is with NeCS Project-Team, INRIA - GIPSA-lab - CNRS,
Grenoble, France, nicolas.marchand@gipsa-lab.inpg.fr

surements and a constant control law over sampling periods
are equivalent problems.

Many reasons are motivating the event-triggered systems
and in particular because more and more asynchronous sys-
tems or systems with asynchronous needs are encountered.
Actually, the demand of low power electronic components
in all embedded and miniaturized applications encourages
companies to develop asynchronous versions of the exist-
ing time-triggered components, where a significant power
consumption reduction can be achieved by decreasing the
samplings and consequently the CPU utilization: about four
times less power than its synchronous counterpart for the
80C51 microcontroller of Philips Semiconductors in [12]
for example. Moreover, the absence of synchronization in
the asynchronous circuits considerably reduces the noises
and the electromagnetic emissions by improving the time
repartition of the events [11], [10]. Note that the sensors and
the actuators based on level crossing events also exist, ren-
dering a complete asynchronous control loop now possible.
But the most important contributions come from the real-
time control community. Indeed, the real-time synchronous
control tasks are often considered as hard tasks in term
of time synchronization, requiring some strong real time
constraints. Efforts are so carried on the co-design between
the controller and the task scheduler in order to soften these
constraints. The adopted approach in this field is often either
to change dynamically the sampling period related to the
load [8], [9] or to use an event-driven control where the
events are generated with a mix of level crossings and a
maximal sampling period [7], [2].

In this paper we are interested on this maximal sampling
period, firstly introduced by Karl-Erik Årzén with his simple
event-based PID controller [2], which seems to be added for
stability reasons in order to fulfill the condition of Nyquist-
Shannon sampling theorem: a new control signal is per-
formed when the time elapsed since the last sample exceeds a
certain limit. Nevertheless, we propose to remove this safety
condition because, thanks to the level detection, the Nyquist-
Shannon sampling condition is no more consistent.

The next section recalls both the conventional time-
triggered PID structure and the event-triggered PID con-
troller proposed by Årzén. Then, a small discretizetion’s
improvement is presented and the simulation test benches are
described. The main contribution of this paper is developed
in section III where several event-based PID algorithms
without safety limit condition are proposed. These new event-
based controllers are finally successfully compared (in terms
of performance and CPU need) to the conventional PID and
the Årzén’s PID controllers.

II. PID CONTROL

In order to compare our work with the existing con-
trollers we propose to recall the conventional time-based
PID controller structure and the event-based PID controller
introduced by Årzén [2].

A. Time-Based PID Controller

The textbook PID controller in frequency domain is given
as following:

U(s) = K

(
E(s) +

1
Tis

E(s) + TdsE(s)
)

This equation can be divided into a proportional, an integral
and a derivative parts, i.e. Up, Ui and Ud respectively,
which are then modified to improve performances [4]. First,
set point weighting is applied on Up and Ud for a more
flexible structure, giving the PID two dimensions of freedom.
Moreover, a low-pass filter is added in the derivative term to
avoid problems with high frequency measurement noise.

Up(s) = K (βYsp(s)− Y (s))

Ui(s) =
K

Tis
E(s)

Ud(s) =
KTds

1 + Tds/N
(γYsp(s)− Y (s))

A discrete time PID controller is finally obtained by
discretizing: the proportional part is straightforward, forward
and backward difference approximation is used for the inte-
gral part and the derivative part respectively.

The resulting code is:

% inputs
ysp = u(1);
y = u(2);
e = ysp - y;

% calculate control signal
up = K*(beta*ysp - y);
ud = Td/(N*hact + Td)*ud

- K*Td*N/(N*hact + Td)*(y - y_old);
u = up + ui + ud;

% update
ui = ui + K/Ti*hact*e;
y_old = y;

B. Årzén’s Event-Based PID Controller

The basic setup depicted in [2] consists of two parts: a
time-triggered event detector used for level crossings and an
event-triggered PID controller which calculates the control
signal. The first part runs with the sampling period hnom

(that is the same as for the corresponding conventional
time-triggered PID) whereas the second part runs with the
sampling interval hact which depends on the requests sent
by the event detector when a new control signal has to
be calculated. This is required either when the relative
measurement crosses a certain level, i.e. when the absolute
value of the difference between the measured error of the
last sampling and that of the current sampling crosses the
limit elim, or if the maximal sampling period is achieved,
i.e. hact ≥ hmax.

The resulting code is:
% inputs
ysp = u(1);
y = u(2);
e = ysp - y;

% calculate control signal
hact = hact + hnom;
if abs(e - e_old) > elim || hact >= hmax

up = K*(beta*ysp - y);
ud = Td/(N*hact + Td)*ud

- K*Td*N/(N*hact + Td)*(y - y_old);
u = up + ui + ud;

% update
ui = ui + K/Ti*hact*e;
e_old = e;
y_old = y;
hact = 0;

end

C. Discretization Improvement
Let tk denotes the current time, tk−1 the last time where a

control signal was calculated and tk+1 the next time where
a control signal will be calculated. Furthermore, let h(tk)
denotes the current sampling period, i.e. the interval time
between the current sampling and the last one, and h(tk+1)
the next sampling period, i.e. the interval time between the
current sampling and the next one. These notations are shown
on Figure 1. Note that the sampling interval previously
depicted and used by the event-triggered PID controller is
hact = h(tk).

tk tk+1tk−1

h(tk) h(tk+1)

elim

time

forward approximation

backward approximation
signal

Fig. 1. Forward and backward difference approximation

Currently, the forward difference approximation is used
to calculate the integral part of the Årzén’s PID controller,
which means that the integral part is precalculated during
the current interval for the next sampling, i.e. ui(tk+1) =
ui(tk) + K/Tih(tk+1)e(tk). This method can be a good
choice for time-triggered controllers (where the sampling
interval h is constant) but for event-based controllers the
next sampling period h(tk+1) varies and so has to be a
priori known. But this is not possible in practice. One could
note that in [2] the proposed algorithm is wrong because
hact and h(tk+1) are mixed up (whereas hact = h(tk)).
However, a solution could be to calculate the current integral
part from the previous error by shifting the instant times in
the equation, i.e. ui(tk) = ui(tk−1) +K/Tih(tk)e(tk−1).

Nevertheless, we propose to calculate the integral part
with a more recent value of the error by using the back-
ward difference approximation. This leads to calculate the
current integral part during the current time with the current
sampling period and the current error, as follows:

ui(tk) = ui(tk−1) +K/Tih(tk)e(tk) (1)

D. Simulation Results
The simulations are performed on a simple first order

system which is described as:

H(s) =
G

1 + τs
where G = 1 and τ = 1

This system will be controlled with different controllers:
firstly with the conventional time-triggered PI controller, then
with the Årzén’s event-based PI controller and finally with
our proposals, i.e. the event-based PI controllers without
safety limit condition (detailed in section III).

The parameter’s values of the controllers are obtained by
pole placement of the closed-loop system with the time-
triggered PI controller. The event-based controllers are then
designed with these same values and they will finally try to
be as closed as possible of the time-triggered closed-loop
shaping. K = 1.83 and Ti = 0.457, the nominal sampling
interval is chosen as hnom = 0.05s and the maximal one
as hmax = 0.5s. The system is simulated for 20s and two
different test benches are proposed:

- Test bench 1: The set point is changed from 0 to 1 at
time 1s and changed again at time 10s to achieve 2.

- Test bench 2: The set point is changed from 0 to 1 at
time 2s. A load disturbance is introduced at time 12s
with an amplitude of 0.1.

The simulation results are then plotted in order to compare
two controllers using both test benches. The top plot shows
the set point and the measured signals, the bottom plot shows
the sampling intervals (i.e. this signal changes each time
the controller calculates a new control signal). Note that the
sampling intervals for the time-triggered controller are shown
only once on Figure 2.

The first simulation results are shown on Figures 2 and 3
where the conventional time-triggered PI controller is com-
pared to the Årzén’s event-based one for different value of
elim, i.e. the event detection level. Thus, Figure 2 shows that
the Årzén’s controller permits to obtain a system response as
quick as the time-triggered one by calculating a control signal
twice less. However, whereas the event detection level elim is
increased, the results become deteriorated and the measured
signal oscillates as shown on Figure 3. These oscillations
come from the bad discretization of the integral part (see
the subsection II-C for further details). Actually, a mistake
is done with the Årzén’s algorithm and we propose two
solutions to avoid that: i) calculating the current integral
part from the previous error by shifting the instant times in
the integral part (still using the forward approximation) or
ii) using the backward approximation. The second solution
is applied and Figure 4 shows the difference between the
original Årzén’s event-based PI controller and the improved
Årzén’s controller using (1). The improvement is immediate:
the results obtained with elim = 0.01 are better than with
the original Årzén’s controller when elim = 0.001.

In the following section, we will base the new PI architec-
tures on the backward difference approximation and keep the
level detection used for the simulations equal to elim = 0.01.

Fig. 2. The conventional time-triggered PI controller (400 sampling
intervals) vs. the Årzén’s one with elim = 0.001 (195 intervals for bench1
and 158 for bench2, that is 49 and 39.5% respectively)

Fig. 3. The time-triggered PI controller (400 sampling intervals) vs. the
Årzén’s one with elim = 0.01 (126 intervals for bench1 and 97 for bench2,
that is 31.5 and 24.5% respectively)

Fig. 4. The original Årzén’s PI controller (126 sampling intervals for
bench1 and 97 for bench2) vs. the Årzén’s PI controller with improved
discretization (101 intervals for bench1 and 82 for bench2, that is 80 and
84.5% respectively) with elim = 0.01

III. EVENT-BASED PID CONTROL WITHOUT
SAFETY LIMIT CONDITION

As explained before, our idea is to remove the safety limit
condition hhact ≥ hmax introduced by Årzén, in order to
improve and simplify the event-based controller. However, by
only doing that the controller will correct the system output
too much each time the set point changes after a long steady
state interval, which leads to important overshoots as one
can see on Figure 5.

Actually, the integral part of the event-based PI controller,
i.e. ui(tk) = ui(tk−1) +K/Tihacte(tk) from (1), is respon-
sible of this problem because the value of hact becomes
huge due to the absence of event. The integral part hence
exploses when the set point changes, i.e. the error e(tk)
becomes high. In fact, the time interval between the last
sample before the steady state and the first sample of the
transient can be divided into a “real” steady state interval,
which is equal to hact−hnom, plus the detection time period
hnom (because the event detector is time-triggered with the
constant sampling period hnom). During the first part the
error is very small, i.e. lower than elim else the steady state
is not achieved, and so is the product he, i.e. lower than
(hact − hnom) elim. As regards the second part, when the
set point changes the error becomes large but only during
the event detection and therefore the product he is lower
than hnome. In fact, the product he was over-estimated until

now and so we propose to include a more precise value in
the code of our proposals. Thus we can write:

ui(tk) = ui(tk−1) +K/Tihe
where he ≤ (hact − hnom) elim + hnome(tk) (2)

Moreover, this inequality which was built for the steady
state intervals remains true for the transients, i.e. when
hact = hnom. Several algorithms without safety limit con-
dition and based on this assumption are proposed: the first
one where nothing else is done and the others which modify
the integral part in order to reduce its impact after a long
steady state interval (the depicted approaches are somehow
similar to the antiwindup mechanism where the error induced
by the saturation has to be compensated):
1) algorithm only without safety limit condition

This algorithm corresponds to the Årzén’s one where the
safety limit condition hhact ≥ hmax is removed without
doing anything else. Results are shown on Figure 5
where important overshoots appear after the steady state
intervals because of the principle described before.

2) algorithm with saturation of the product he
This algorithm consists in bounding the product he
after a long steady state interval in order to reduce the
overshoots. Thus, when the sampling period becomes
too large, i.e. hact ≥ hmax, the product is saturated
according (2), i.e. he = (hact − hnom) elim + hnome.
Results are shown on Figure 6.

3) algorithm with exponential forgetting factor of hact

Another method consists in adding a forgetting factor
of the sampling period so that, after a long steady state
interval, the hact value is reduced enough to not impact
the control signal too much. Thus, the exponential
function hi

act = hact · exp (hnom − hact) is chosen
to decrease the sampling period impact as the elapsed
steady state time increases (with hi

act corresponding to
the new sampling interval used in the integral part). This
function leads to have a nominal sampling period during
the transients, i.e. hact = hnom ⇐⇒ hi

act = hnom, and
an exponential decreasing sampling period during the
steady state intervals. Results are shown on Figure 7.

4) hybrid algorithm
This algorithm is a mix between the previous two ones.
Indeed, the exponential algorithm does not correctly
reduce the overshoot in the transient if the steady state
interval was not long enough (as one can see at time
1s on test bench 1 or at time 2s on test bench 2 on
Figure 7). Actually, the exponential function used in the
algorithm 3 increases first and then decreases, and so
if the set point changes before the function decreasing
then the sampling period hi

act is still too high. In another
way, once the sampling interval exponentially decreases
the results are quite good. Furthermore, results obtained
with the algorithm 2 are interesting. For this reason, we
propose to use the exponential forgetting factor into the
algorithm with saturation. Thus, if hact ≥ hmax the
product he is bounded in

(
hi

act − hnom

)
elim +hnome.

Results are shown on Figure 8.

The resulting code for theses different algorithms (where
the value of choice depends on the chosen algorithm) is:
% inputs
ysp = u(1);
y = u(2);
e = ysp - y;

% calculate control signal
hact = hact + hnom;
if (abs(e-e_old)>elim)

up = K*(beta*ysp - y);

switch choice
% only without safety limit condition
case 1

ui = ui + K/Ti*hact*e;

% saturation of h*e
case 2

if hact >= hmax
he = (hact - hnom)*elim + hnom*e;

else
he = hact*e;

end
ui = ui + K/Ti*he;

% exponential forgetting factor of hact
case 3

hact_i = hact*exp(hnom-hact);
ui = ui + K/Ti*hact_i*e;

% hybrid
case 4

if hact >= hmax
hact_i = hact*exp(hnom-hact);
he = (hact_i - hnom)*elim + hnom*e;

else
he = hact*e;

end
ui = ui + K/Ti*he;

end

ud = Td/(N*hact + Td)*ud
- K*Td*N/(N*hact + Td)*(y - y_old);

u = up + ui + ud;

% update
e_old = e;
y_old = y;
hact = 0;

end

The results obtained with the event-based PI controllers
without safety limit condition are quite interesting. Indeed,
we obtain some measured signals really similar to the
conventional time-triggered one, both in term of transients
and overshoots. Two algorithms can be highlighted: a) The
hybrid algorithm is the best one: it leads to a control without
performance degradation, by calculating a control signal 80%
of time less than with the time-triggered controller. If we
compare it with the Årzén’s controller, the gain on sampling
interval number is still about 50% and the performance
improvements are very important. A problem could be the
computational complexity of the hybrid algorithm in practice
because of the exponential function, but a look-up table with
precalculated values of the function can replace the online
calculation and thereof highly reduce the computational cost.
b) On the other hand, the algorithm with saturation of the
product he is quite simple and gives similar results.

IV. CONCLUSIONS AND FUTURE WORKS
This paper proposes some algorithms to improve the

simple event-based PID controller presented in [2]. The

Fig. 5. The time-triggered PI controller (400 sampling intervals) vs. the
event-based PI controller without safety limit condition (112 intervals for
bench1 and 96 for bench2, that is 28 and 24% respectively)

Fig. 6. The time-triggered PI controller (400 sampling intervals) vs. the
controller with saturation of the product he (77 intervals for bench1 and
51 for bench2, that is 19.5 and 13% respectively)

Fig. 7. The time-triggered PI controller (400 sampling intervals) vs. the
controller with exponential forgetting factor of hact (77 intervals for bench1
and 52 for bench2, that is 19.5 and 13% respectively)

Fig. 8. The time-triggered PI controller (400 sampling intervals) vs. the
hybrid controller (67 intervals for bench1 and 43 for bench2, that is 16.5
and 11% respectively)

improvement comes from the removing of a safety limit
condition used for stability reason by the author (maximum
sampling period without control update). To compensate
this condition, a forgetting factor is imagined in order to
reduce the sampling period impact in the integral part of
the PID controller. This approach is somehow similar to the
antiwindup one where the error induced by the saturation
has to be compensated. Based on this idea, event-based
PID controllers without safety limit condition are proposed
and compared both with the conventional time-triggered
controller and the Årzén’s event-based controller. Two of the
proposed approaches clearly give good performances with a
minimum of sampling intervals.

Next steps in this research is naturally to test these event-
based controllers in practice and develop other event-based
methods for more general types of control.

V. ACKNOWLEDGMENTS

This research has been supported by the NeCS Project-
Team (INRIA, GIPSA-lab, CNRS) in the FeedNetBack
project context. The project aims to close the control loop
over wireless networks by applying a co-design framework
that allows the integration of communication, control, com-
putation and energy management aspects in a holistic way.

REFERENCES

[1] F. Aeschlimann, E. Allier, L. Fesquet, and M. Renaudin. Asyn-
chronous FIR filters: towards a new digital processing chain. In
Proceedings of the 10th International Symposium on Asynchronous
Circuits and Systems, pages 198–206, 2004.

[2] K.-E. Årzén. A simple event-based PID controller. In Preprints of the
14th World Congress of IFAC, Beijing, P.R. China, 1999.

[3] K. Åström and B. Bernhardsson. Comparison of Riemann and
Lebesque sampling for first order stochastic systems. In Proceedings
of the 41st IEEE Conference on Decision and Control, 2002.

[4] K. Åström and T. Hägglund. PID controllers: theory, design, and
tuning, 2nd Edition. The Instrumentation, Systems, and Automation
Society, 1995.

[5] K. Åström and B. Wittenmark. Computer Controlled Systems, 3rd
Edition. Prentice Hall, 1997.

[6] N. Marchand. Stabilization of Lebesgue sampled systems with
bounded controls: the chain of integrators case. In Proceedings of
the 17th IFAC World Congress, 2008.

[7] J. Sandee, W. Heemels, and P. van den Bosch. Event-driven control
as an opportunity in the multidisciplinary development of embedded
controllers. In Proceedings of American Control Conference, pages
1776–1781, 2005.

[8] O. Sename, D. Simon, and D. Robert. Feedback scheduling for real-
time control of systems with communication delays. In Proceedings
of the IEEE Conference on Emerging Technologies and Factory
Automation, volume 2, 2003.

[9] D. Simon, D. Robert, and O. Sename. Robust control/scheduling
co-design: application to robot control. In Proceedings of the IEEE
Symposium on Real-Time and Embedded Technology and Applications,
pages 118–127, 2005.

[10] C. Van Berkel, M. Josephs, and S. Nowick. Scanning the technology:
Applications of asynchronous circuits. Proceedings of the IEEE,
87(2):223–233, 1999.

[11] K. Van Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij, and
A. Peeters. Asynchronous circuits for low power: a DCC error
corrector. IEEE Design and Test of Computers, 11(2):22–32, 1994.

[12] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann, D. Gloor,
and G. Stegmann. An asynchronous low-power 80C51 microcontroller.
In Proceedings of the 4th International Sympsonium on Advanced
Research in Asynchronous Circuits and Systems, pages 96–107, 1998.

