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Abstract

In this paper, we propose a low-cost n-dimensional cache
(nD-Cache) architecture for FPGA-Based image and sig-
nal processing Systems On Chip (SoCs). The architecture
allows efficient access to structured data as in 2D or 3D
images. We developed a theoretical model for our architec-
ture. It gives a methodology to define cache’s practical im-
plementation based on the application and system param-
eters. Complexity and performance measurements for se-
lected image processing algorithms like jumping snake and
2D Back-Projection are done and compared to classical so-
lutions like associative caches. The architecture is shownto
be efficient for tracking algorithm applications by exploit-
ing spacial and temporal locality. Numerical results indi-
cate that 50% improvement in run-time performance can be
achieved.

Keywords
FPGA SoC, cache memory, structured data caching, Adap-
tative Predictive Cache, image processing.

1. Introduction

Modern FPGA allows designing of Programmable SoC
(PSoC) using specific blocs such as DSP, CPU, Embedded
RAM ... However, this embedded memory is insufficient
for complex image and signal processing systems. Thus,
the use of external memory is mandatory. Modern tech-
nology brings large amount of cheap memories (SDRAM)
at the cost of increasing access latency. Typically, cache-
memories build from on-chip memories are used to speed-
up the system.

There are some cache Intellectual Properties (IPs) for
FPGA-embedded microprocessors. These IPs are more or
less complex depending on the strategy used for data re-
placement. The cache IPs proposed by the FPGA vendors
are, to our knowledge, direct mapped caches which are too
simple to provide desired performance in image processing

applications [15, 7, 20]. This is due to the relatively slow
operating frequency of the old generation FPGA systems.
With new FPGA-SoCs, it is essential to have efficient cache
strategies to share memory access between several process-
ing IPs. Nevertheless, some IP vendors provide more com-
plex cache implementation for FPGA, for example, Gaisler
company proposes an open source tunable IP set-associative
cache in the SoC environment of LEON3 [1].

Traditional caches exploit spatial and temporal locality,
but image and signal processing applications process mas-
sive amounts of data and temporal locality is not very abun-
dant. For traditional caches, spatial locality occurs in one
dimension, a line is fetched on a cache miss. Image pro-
cessing applications operate on small blocks of 2D data.

This paper focus on the data cache memory for image
and signal processing. The architecture we propose (nD-
Cache) allows efficient access to structured data as in 2D or
3D images. A theoretical model of this architecture is devel-
oped. The cache is suitable for a large class of applications
that fetches data from an n-dimensional data structure. It
is targeted to be used in the context of application specific
hardware on FPGAs where the nature of the algorithms is
clearly identified. The prefetching strategy of the cache is
independent from the applications and can be tuned with
few parameters.

2. Related Work

Cache architectures for general purpose processors have
been optimized to deal with structured data and especially
for multimedia applications [22, 8]. However, to exploit
the parallel computation capacities of FPGA, the rule is to
design specific memory access architectures [17].

2.1. Cache architectures for structured data man-
agement

Performance’s gains may come from a suitable static pa-
rameterization of the cache (number of lines, size of line,
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replacement policy), prefetching strategies and dynamic re-
configuration of the cache’s parameters [19, 16].

The challenge of a prefetching strategy is to estimate the
cache lines to prefetch from an analysis of the past fetches,
without the knowledge of the initial data structure. The One
Block Lookahead (OBL) [21] technique fetches consecutive
cache lines based on the reference causing a cache miss.
Stride Prediction Table (SPT) [13], used in the Intel-Core
processor [11], associates to each load instruction the previ-
ous fetched address to compute the stride with the new ref-
erence address. SPT prefetches the line a stride ahead the
current reference. Although SPT is efficient for high-end
micro-processors, it is too complex for specific hardware,
FPGA targets and embedded systems because it needs an
additional associative memory to store the loaded instruc-
tions and the associated tags.

The dynamic tuning of the cache memory tries to opti-
mize the efficiency of applications for which memory ac-
cess patterns may vary in time. [3] proposes to reconfigure
a tunable cache when a phase transition is detected at fixed
intervals. The reconfiguration process needs an exhaustive
search of the available cache parameters to reduce the miss
rate.

Some knowledge about the pattern access may lead to
efficient prefetching mechanisms. As an example, texture
caching for 3D rendering, benefits of some assumptions
about the access pattern [18, 6]. Some information about
the size of an image can also be used to exploit 2D locality
and perform neighbor prefetching [9]. [14] reports satisfy-
ing results of a Markov predictor based prefetching but the
important memory’s need to store the matrix of transition
probability makes it impracticable.

Specific caching hardware can be implemented, more or
less tighten to the application. The most obvious strategy
is to pipeline computations and memory accesses. But it
makes little use of the fetch coherency and parallelizationis
difficult. Similar to pipelining, deterministic caching [10]
analyzes a part of the fetch sequence to compute the needed
data. It may be of low overhead but some memory is nec-
essary to store the fetch sequence and the corresponding in-
termediate internal variables. On-line cache accesses with
a prefetch mechanism is the most efficient way to reach a
high throughput with a low pipeline latency.

2.2. Optimization of applications for cache effi-
ciency

Applications have to be transformed in such a way that
they produce fetches in a cache friendly way: the next it-
eration of a loop has to produce a fetch at an address close
to the previous one. The main results we can find in the
literature are about the transformation of nested loop when
data indexes are affine functions of loop indexes [5]. Tiling

is another popular optimization which decomposes a loop
into a higher level loop to produce tiles and an inner loop in
each tile [12]. Furthermore, the combination of the trans-
formations of an application together with a re-mapping of
the data structure in the memory can lead to a high cache
efficiency of a direct mapped cache, which is of low hard-
ware cost [5]. These solutions are shown to be efficient at
the expense of a lack of genericity.

3. A model of targeted data access applications

Our cache is intended for applications with multidimen-
sional data. For example in 2D image processing, by ana-
lyzing the accessed pixels addresses, the cache predict the
2D block of memory elements to pefetch. Successive ac-
cess fetches represent displacements in the data structure.
A typical example is shown in figure 1, we assume that the
displacement in one dimension is the sum of a low speed
global displacement and a high speed local displacement.
The sequence is characterized by three parameters:

- N : the number of dimensions in the data structure.

- vn: the maximum speed of the global displacement for
thenth dimension.

- An: the magnitude of the local displacement for the
nth dimension.

We assume that displacements in different dimensions
are independent. The tracking mechanism is performed in
each dimension independently.

An ideal cache should be able to contain the data corre-
sponding to local displacements and predict the global dis-
placement in order to update the cached data. Targetted ap-
plications should fit this model or should be transformed to
comply with it.
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Figure 1. A model of targeted application in
one dimension
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4. The Cache architecture

The principle of the cache is to copy n-Dimension (nD)
block elements of the main memory in the cache memory
to speed up memory access by prefetching the element the
processing unit would use in advance. Doing so, we reduce
cache miss while moving in the n-Dimensions. To predict
the cached zone position we measure the mean of the ad-
dresses issued by the processing unit. Low-pass IIR filters
are used to compute these means. The cache is updated each
time the mean value drift to much from the cache center (the
center of the cached block). Therefore, a virtual zone is de-
fined around the current cache center called “guard zone”.
The cache does not move if the computed mean is inside
this guard zone. The cache center is updated with a fixed
step when the estimated mean crosses a border of that zone.
At each movement, only the needed data are updated. The
prefetching mechanism, is called atrackerhereinafter. Fig-
ure 2 shows the cache zones for a one dimension example.

• 2T is the size of the cached zone,

• 2Γ is the size of the guard zone,

• ∆ is the tracker step displacement.

TT

c

Cached zone

∆

ΓΓ

Figure 2. The Cache zones
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Figure 3. The cache architecture for 2D signal

The cache architecture as illustrated in the figure 3, is
composed of of:

Y

Y

N

N

Start

Initial loading 

End of
Initialization
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N Y

Request next data
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Y

LOADING?
NY

Load miss
data

Miss?

LOADING

Y

N

Adress analysing

adresses

zone?
mean out guard

End of loading?

End of loading?

Figure 4. The cache algorithm flow

- Trackers : They estimate the zone of data to cache and
prefetch.

- Control unit : It performs the memory mapping of
indexes into addresses and, loads zones of data upon
requests of trackers.

- An embedded double port memory: thanks to this
memory the cache updates are performed concurrently
with the cache accesses, this kind of memory is avail-
able in numerous FPGAs [2].

- External bus interface: The cache provides a virtual
interface to the processing unit that issues multidimen-
sional indexes in the data structure. The cache per-
forms the memory mapping between indexes and the
external memory addresses by an interface to standard
bus like Avalon, CoreConnect or AMBA.

Figure 4 illustrates the cache algorithm flow. It starts by
Initial loading which corresponds to either “cold start” or
“ shift in the sequence bigger than the cache size”. There-
after, we read (request next data) and analyze the addresses
(address analyzing) simultaneously. If the computed mean
of addresses crosses the limit of the guard zone, we shift the
cached zone (loading). The cache can be read concurrently
with the loading process. If there is a cachemissoutside
the loadingphase, we read back the missed data from the
external memory (load miss data), but, if the miss occurs
during theloadingphase, the cache willwait until theend
of loading.
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5. The theoretical model of the Cache

To compute the runtime parameters of the cache (T , Γ
and∆), we developed a theoretical model of the cache. This
model is a starting point to understand how the cache can
be dynamically set. The entry of the model is a part of a
fetch sequence and more preciselyv the speed of the global
displacement andA the magnitude of the local displace-
ment. To set the cache parameters, we need also the system
characteristics ie. memory latency in cycles (Lat) and bus
throughput in data by cycle (m).

Table 1 details the accesses and updates chronology of
the cache. In the phase 1 the meanei is out of the guard
zone[ci − Γ, ci + Γ], we make the assumption that the next
fetch will be in the direction of the crossed border. Phase
2, the actual centerci+1 is then updated toci + ∆ and the
zone[ci − T, ci − T + ∆] is invalidated. In the phase 3, the
cache loads the needed data[ci+T, ci+T +∆] concurrently

with the cache accesses. AfterLat +
∆

m
cycles, the cache

is updated (phase 4) and the new available cached zone is
[ci−T +∆, ci +T +∆] (phase 5). In the phase 6, the mean
is once again out the guard zone so we return to phase 1.

5.1. The cache constraints

From table 1, to avoid cache misses, we must check some
constraints:

1. We must not ask for new cached zone before the end
of the current loading to avoid conflicts:

∆ + Γ > Γ + v.(Lat +
∆

m
) (1)

2. While loading, we must not have cache miss, to avoid

waiting time. The loading time isLat +
d

m
cycles, the

mean moves from the positionci + Γ to the position

ci + Γ + v(Lat +
∆

m
). The second constraint is:

{

Γ + v(Lat +
∆

m
) + A < T

Γ − A > −T + ∆
(2)

3. To avoid the cache center oscillations, after updating
the cache, we must have the computed mean in the
guard zone:

Γ >
∆

2
(3)

From the equations (1), (2) and (3), the constraints to
check are:































∆ >
v.Lat

1 −
v

m

Γ >
∆

2

T > Γ + v(Lat +
∆

m
) + A

(4)

5.2. The efficiency model

There are several ways to measure a cache efficiency de-
pending on the target specifications. One can measure the
ratio between the number of total memory referencesNr

and the number of clock cycles to get all the data sequence,
the hit rate, the bus occupancy, the power consumption,
etc. . . In this paper, we focus on the timing performance

given by: Efficiency=
Nr

#cycles
. This efficiency takes into

account the initialization time of the cacheNinit.

Ninit = Lat +
2T

m
cycles. (5)

If equ. 4 are respected, the cache achieves maximum ef-
ficiency which is given by the equ. 6:

Efficiency=
Nr

Ninit + Nr

(6)

For a given configuration of the cache (T , Γ and∆), we
can compute the maximum latencyLatmax (equ. 8) that
offers the optimum efficiency. Above that latencyLatmax,
misses appear during the loading time. In that case, the
efficiency can be written as:

Efficiency=
Nr

Ninit + (Lat +
∆

m
)
vNr

∆

(7)

Latmax = min{
T − Γ − A

v
−

∆

m
,
∆

v
−

∆

m
} (8)

Figure 5 represents the efficiency model for a cache with
minimal size forLatmax = 36.

5.3. Tuning the model

For a given image processing algorithm, from which, we
can extract the parameters (v andA) and for a given FPGA-
SoC system from which we can extract the mean access
latency; we can find the minimal dimensions of the cache
using the equ. 4 giving optimum efficiency. We should take
into account a safety margin, given the rapid collapse of the
performance afterLatmax

4
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phase Access number (cycle) Mean position (ei) Cached zone available Cache state

1 i− ci + Γ [ci − T, ci + T ] out of the guard zone
2 i+ ci + Γ [ci − T + ∆, ci + T ] zone invalidation

3
...

... [ci − T + ∆, ci + T ] Loading[ci + T, ci + T + ∆]

4 i + Lat +
∆

m
ci + Γ + v(Lat +

∆

m
) [ci − T + ∆, ci + T + ∆] End of loading

5
...

... [ci − T + ∆, ci + T + ∆] cache updated

6 n = i +
∆

v
ci + ∆ + Γ [ci − T + 2∆, ci + T + ∆] new out of guard zone

Table 1. Cache accesses chronology
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v = 0.1
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m = 1
Nr = 5.10

3
Latmax = 36

Figure 5. The efficiency model

6. Application and results

In this section, we present measurement of the cache
efficiency and complexity. The cache is designed both in
VHDL RTL for synthesis and SystemC for high speed sim-
ulation. It has been successfully implemented on a SoPC
(System On Programmable Chip) prototype and validated
with a Avnet Virtex II Pro Development board.

6.1. Complexity

Table 2 gives the complexity results of the 2D Cache for
a typical applications and an unconstrained logical synthe-
sis. The synthesis tool reports a 170 MHz frequency for the
Virtex 4 FX target.

The hardware complexity and timing of the cache control
are almost independent of the size of the embedded mem-
ory, contrary to a standard cache (set-associative caches).

Unit Virtex 4

Control Unit 853 FG, 280 DFF
Tracker 216 FG, 49 DFF

Table 2. The 2D cache complexity

6.2. Experimental results

Performances are measured for several applications such
as: “Jumping Snake”, “2D & 3D Backprojection” used in
medical imaging [4], “Ray Casting” algorithm used for 3D
visualization (lines that propagate in a 3D grid) and “2D tile
based video rendering” used in image transformation and
composition.

Figure 6 gives the curves of the cache efficiency depend-
ing on the system bus (32 bit bus) latency, for the aforesaid
applications. These results are given by the cache parame-
ters computed with the method from section 5.The embed-
ded memory cache size is also given for each measure. The
2D Cache efficiency is compared with an ideal model of the
following caches:

- Full Associative, 16K, 256 lines of 16 words.

- TM32 cache, 16K, 2 way set-associative, 256 lines of
16 words.

- PowerPC 405 cache , 16K, 8 way set-associative, 512
lines of 8 words.

The results demonstrate that the 2D Cache is better in terms
of cache efficiency than a standard cache. The model pre-
sented in section 5 gives satisfying results.

2D Backprojection and Ray Casting provide almost an
ideal performance. For a wide range of memory latencies,
the prefetch realized by the cache corresponds exactly to the
need of the application (Latmax > 30). Excellent results
are achieved, in part,thanks to the high rates of data reused
by these algorithms.

The case of the Snake shows the limitations of the pro-
posed tracking and inefficient configuration of the parame-
ters of the cache in one dimension for latencies over 15. The
residual oscillations of the filter imposes a large guard zone.
That limits the prediction’s performance and makes it more
sensitive to memory latency. This seems to be related to the
phase shift of the low pass filter that prevents the tracker to
predict the next references on time.
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(a) 2D Backprojection: cache size=0.5 KB
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(b) Ray Casting: cache size=1 KB
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(c) Snake: cache size=0.5 KB
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(d) Video rendering: cache size=4 KB

Figure 6. Cache efficiency of a single 2D Cache with automatic setting of the parameters

Finally, an interesting result is the video rendering that is
an IP that was designed previously prior to the 2D Cache by
another team. The 2D Cache acts as a 2nd level cache and
appears to be efficient. The reuse of data is relatively low
(high speed movement of the cache center) which makes
the cache much more sensitive to memory latency. How-
ever, the performance remains more efficient than a stan-
dard cache(50% improvement).

If we consider only the tracking algorithm, figure 7
shows that the hit rate of the nD-Cache is near perfect. The
efficiency as defined before is therefore a more objective
way of comparing the nD-Cache to other architectures.

7. Conclusion & perspectives

This paper presents the nD-Cache architecture and an as-
sociated methodology to compute its runtime parameters.
The nD-Cache is a new trade-off between the hardware
complexity of the control unit, the size of embedded mem-

 97.5

 98

 98.5

 99
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 100

Jumping Snake, 2D Backprojection, Ray Casting, Video Rendering,

H
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R
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Figure 7. Measured hit rate

ory and the cache efficiency. Several prefetching mecha-
nisms and models of fetch sequence are available and the
system designer can choose the one that fits its application
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best. The tracker presented in this paper can be automati-
cally tuned and is shown to be efficient for several applica-
tions.

As already seen in the snake sequence, the two major
drawbacks of the simple filters already used for the cen-
ter tracking are residual oscillations and prediction delay.
Auto tunable trackers investigation will permit to dynami-
cally compute the nD-Cache parameters. This preliminary
work is still on-going and the evaluation in realistic envi-
ronment has now to be undertaken.
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