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Abstract: This paper analyses the behaviour of a second order DPCM (Differential Pulse 
Code Modulation) transmission system when the nonlinear characteristic of the quantizer is 
taken into consideration. In this way, qualitatively new properties of the DPCM system have 
been unravelled, which cannot be observed and explained if the nonlinearity of the 
quantizer is neglected. For the purposes of this study, a piece-wise linear nondifferentiable 
quantizer characteristic is considered. The resulting model of the DPCM is of the form of 
iteration equations (i.e. map), where the inverse iterate is not unique (i.e. noninvertible 
map). Therefore the mathematical theory of noninvertible maps is particularly suitable for 
this analysis, together with the more classic tools of Non Linear Dynamics. This study 
allowed us in addition to show from a theoretical point of view some new properties of 
nondifferentiable maps, in comparison with differentiable ones. After a short review of 
noninvertible maps, the presented methods and tools for noninvertible maps are applied to 
the DPCM system. An original algorithm for calculation of bifurcation curves for the DPCM 
map is proposed. Via the studies in the parameter and phase plane, different nonlinear 
phenomena such as the overlapping of bifurcation curves causing multistability, chaotic 
behaviour, or multiple basins with fractal boundary are pointed out. All observed 
phenomena show a very complex dynamical behaviour even in the constant input signal 
case, discussed here. 

 

1. INTRODUCTION 

Differential Pulse Code Modulation (DPCM) transmission systems are widely used in 

telecommunications, speech and image coding [Dong H.K. et al, 1992], digital systems, medical 

research, signal processing [Bellanger, 1989], [Macchi & Uhl., 1993] and so on. Many papers have 

been devoted to this subject for a one step [Dinar, 1994], [Uhl & Fournier-Prunaret ,1995] or a two 

step [Fournier-Prunaret & al., 1993], [Gicquel, 1995] predictor. Different quantizer models have 

already been studied [Gicquel, 1995], [Fournier-Prunaret & al., 1993], [Uhl & al., 1991], but all of 

them were differentiable ones; the present paper claims to be a first attempt to model the quantizer 

characteristic by a piece-wise linear, i.e. a non differentiable, function. In this sense, the choice of 

the model puts this work into the field of digital filters with saturation-type overflow characteristic 

[Chua & Lin, 1988] [Ogorzalek, 1991], [Ogorzalek & Galias, 1991]. The first aim of this article is 

to compare our results (with the non-differentiable quantizer characteristic) to previous results (with 

the differentiable one), and further to compare these results with digital filters. Our second objective 
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is to demonstrate the complexity of the system and the specific bifurcations taking place in the 

piece-wise linear case. 

DPCM (see Fig.1) is a digital data compression technique based on error transmission. The encoder 

encodes through a quantization an input signal, which must be reconstructed at the output of the 

decoder. The differential part of the DPCM system is used to reduce the signal flow before its A/D 

transmission and is based on the following coding principle: as the successive signal values are 

usually correlated, it would be useful to make use of this transmission redundancy, without in any 

way losing information. Therefore, rather than transmitting the signal itself, only the prediction 

error ne , i.e. the difference between the predicted and the effective signal values, ns  and nŝ , is 

quantized and transmitted. The difference between the two correlated signals is thus coded in a 

smaller number of bits, and so the transmission data flow is reduced. The input signal ns  has to be 

reconstructed at the end of the chain. The reconstructed signal is called ns' . At the encoder, the 

predicted value nŝ  of the input signal ns  is calculated based on its past samples by the recursive 

linear filter R. The encoder of the system (Fig.1) includes a nonlinear element - the quantizer. The 

latter is approximated by a piece-wise linear characteristic containing points of non-

differentiability. 

s

R

Predictor

Q

ENCODER DECODER



Transmission
channel

Predictor

e e es s

~s ~s
s

 

Fig. 1 : DPCM Transmission system 
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Fig.2a : Quantizer staircase characteristic 
(c1=0.1,c2=0.3 c3=0.7) 

Fig.2b : Quantizer piece-wise linear characteristic
p is the slope of the characteristic (p> 1) 
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The decoder is a linear system, therefore the nonlinear behaviour of a DPCM system is generated 

by the encoder and hereafter we shall focus on its dynamics. The quantizer of a DPCM encoder can 

be approximated as shown in Figs. 2a and 2b. Unlike previous studies, these models take into 

account the nondifferentiability of the quantizer characteristic and reveal new features of the driven 

system. In this paper, we have chosen to study the case of Fig. 2b; p is the slope of the quantizer 

characteristic, it is called companding gain and is larger than 1 (see [Uhl & al., 1991]). Despite the 

simple form of this piece-wise linear characteristic, we shall see that: 

1) many new dynamical phenomena ensue from this model, 

2) well-known phenomena, such as appearance of stable orbits, occur in a different way compared 

to the differentiable quantizer characteristic case. 

Although more difficult for analytical studies, the characteristic of Fig.2a is closer to the real one 

and can be used for comparison. It has been shown in [Taralova-Roux & Fournier-Prunaret, 1996a] 

that the system behaviour is very similar in the cases of piece-wise linear and staircase 

characteristic.  

This paper is organized as follows: Section 2 gives a short review of two-dimensional maps and the 

principal tools of noninvertible maps. Section 3 shows some basic properties of the DPCM system 

modelled by a noninvertible map. Section 4 focuses on typical nonlinear features exhibited by the 

DPCM system and analyses some typical cases. Section 5 summarizes the studies realized in the 

phase plane. To end the paper, section 6 concludes with final remarks and suggestions for future 

work. 

2. OVERVIEW OF NONINVERTIBLE MAPS 

2.1. CRITICAL LINES 

Let the map T : R R2 2  be defined by the following system of equations : 





  ),( = 

),( = 

1

1+n

nnn

nn

yxgy

yxfx
  (1) 

where xn, yn are real variables, 2R),( nn yx , and f, g are single valued piece-wise linear functions. 

In the following, we will denote the map T PWL for piece-wise linear. ),( nn yx will also be denoted 

Xn. 
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In general we will say that the map T is invertible if to any point ( , )x yn n 1 1  corresponds one and 

only one point ( , )x yn n  which is called the rank-1 preimage of the point ( , )x yn n 1 1 . Then the 

inverse map 1T  has unique determination everywhere in the phase plane. The map T is said to be 

noninvertible if there exist ( , )x yn n 1 1  with zero or more than one rank-1 preimages ( , )x yn n .  

Thus, when T is a continuous noninvertible map, the phase plane can be divided into different 

regions Zi, in which each point has the same number i  of preimages. The regions Zi are generally 

delimited by particular curves called critical curves LC  [Gumowski & Mira, 1980][Mira, 1987], 

along which at least two rank-1 preimages merge. In the differentiable case, critical curves LC are 

obtained by cancelling the determinant of the Jacobian of T. The curve of merging rank-1 

preimages of LC  is denoted LC1 . Although for simplicity we consider here the two-dimensional 

case, the critical curve tool retains the same insight and can easily be extended to higher order 

(predictor accounting for several past samples) systems as a critical surface. In the PWL case, 

critical curves are defined in a different way, which is explained in the section 3. 

2.2. SINGULARITIES IN A TWO-DIMENSIONAL MAP. FOLIATION OF THE 
PARAMETER PLANE 

In this paragraph, we recall some results about the singularities of a two-dimensional map and their 
nature: 

 A k-cycle (order k cycle or period k orbit) of T consists of k consecutive points (iterates or 

images) (Xi), i=1,...,k satisfying i
k

i XTX   with i
h

i XTX  , for kh 1 , h and k being 

integers. In other words, a cycle is a periodically repeating sequence of states Xn. A fixed 

point is a cycle with k 1. Figures 3a-3b show the representation of an order-3 cycle. 

 Another index j is also associated with a cycle in order to distinguish cycles having the 

same period k . This index characterizes the permutation of the k  cycle points by 

successive applications of the map T [Mira, 1987]. 

 Let X* be a fixed point of T and (Xi), i=1,...,k be an order k cycle, then their stability can be 

determined using the eigenvalues of the Jacobian matrix DT(X*) or 


k

i
iXDT

1

)( . Let Sl, 

l=1,2, be the two eigenvalues, also called multipliers. Now, if the multipliers are real and : 
a) |S1| > 1 and |S2| < 1, X*  or the k-cycle (Xi), i=1,...,k is a saddle,  

b) |S1| > 1 and |S2| > 1, X* or the k-cycle (Xi), i=1,...,k is an unstable node,  

c) |S1| < 1 and |S2| < 1, X* or the k-cycle (Xi), i=1,...,k is a stable node. 

If the multipliers are complex conjugates, i.e. S1=e+i, S2=e-i
 , then  

a)  > 1, X* or the k-cycle (Xi), i=1,...,k is an unstable focus 

b)  < 1, X* or the k-cycle (Xi), i=1,...,k is a stable focus 
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Fig. 3a : Order 3 periodic signal in the time domain.  Fig. 3b : Corresponding order 3 
periodic         orbit in the phase plane 

 A set of points, say A, is said to be invariant under T if it is exactly mapped into 
itself, that is,  

T (A) = A  (2) 

 We define an attractor A , for which there exists a non-zero measure set of initial 

conditions  giving rise to iterated sequences converging towards A by application of the map T. 

Stable fixed points, stable period k orbits and asymptotically stable invariant closed curves are 

attractors. We also define a chaotic attractor from a practical point of view as bounded steady state 

behavior that is not an equilibrium point, not periodic state and not quasi-periodic. There is no 

widely accepted definition of chaos, from a mathematical point of view. A chaotic set may contain 

infinitely many unstable periodic orbits. 

The set of initial conditions giving rise to iterated sequences converging towards a given attractor is 

called the basin of the attractor. A basin B is such that T (B)  B. 

 T can depend upon parameters; for instance, let us consider (a, b), two real parameters. 

When a and b are varied, one can observe qualitative change in the system. Such changes are called 

bifurcations. Let us define some particular bifurcations. The first one is called a fold bifurcation, 

which is denoted j
k 0)( and corresponds to the appearance/disappearance of node and saddle 

periodic orbits according to the following scheme: 

    

saddle order  node unstable order 

or

saddle order node stable order 

kk

kk





.   (3) 

where  means absence of order k cycle. 
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In the differentiable case, a fold bifurcation curve is such that only one multiplier of an order k 

periodic orbit is S 1  , and corresponds in the simplest case to the merging of a cycle with one 

multiplier S 1  with a cycle with one multiplier S > 1 . When a system is not differentiable, 

bifurcation curves have to be calculated in a non-traditional way : periodic orbits appear, following 

the scheme (3) when getting into contact with the lines of nondifferentiability (see section 4). 

Similarly, a Neïmark-Sacker bifurcation curve k
j  is defined by i

1,2S  e  and corresponds to the 

generation of either one (simplest case) or several [Mira, 1969] [Mira, 1987] invariant closed curves 

(ICC) from a focus cycle. In the simplest case, the bifurcation scheme is:  

  

ICC unstable focus stable order  focus unstable order 

or

ICCstablefocusunstableorder focus stable order 

1

1









kk

kk





  (4) 

Particular features of this bifurcation in the PWL case presented here are discussed further in 

section 4. 

 

 

 

 

 

 

 

Fig. 3c : Period-5 cycle, rotation number 2/5. Fig. 3d : Period-5 cycle, rotation number 1/5. 

Next, two cycles may have the same period k, without arising from the same bifurcation. A way to 

distinguish these cycles is to analyse the permutation mechanism of their k points, which is done by 

iterating consecutively k times in the phase plane, starting from any point of the cycle. When 

period-k cycles are issued from a Neïmark-Sacker bifurcation, one can define the associated 

rotation number j/k, which characterises a cycle in a unique way [Mira, 1987] (see Figs. 3c-d). In 

the rotation number j/k, the denominator k corresponds to the periodicity of the orbit, and the 

numerator j  to the  number of  rotations necessary to pass through all points of the orbit; after j 

rotations the orbit comes to its initial point. 

Each cycle exists in a precise domain of the parameter plane. Let us call such domain a box. The 

box is delimited by the bifurcation curves, between which the cycle exists. The bifurcation structure 

called boxes in file (for one-dimensional systems) is characterised by the typical ordering of the 
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rotation numbers on the parameter axis, which exhibits a typical fractal structure, known also as the 

“devil’s staircase” structure. For two-dimensional systems, this ordering can be observed in the 

two-parameter plane, and the phenomenon is similar to Arnold tongues of the differentiable case 

because of the particular tongue-shaped form of the boxes [Mira,1987] [Boyland, 1986]. 

In the parameter plane, a given point is generally related to different cycles of order k with possibly 

different multipliers and different values of rotation numbers. Then, this plane can be considered 

foliated and made up of sheets, each of them corresponding to a specific cycle. If ( , )x yn n  is a point 

of such a cycle, and if we consider one of its coordinates, for instance yn, then the (a, b, yn) space 

gives a qualitative three-dimensional representation of this sheet structure. In this foliated space, the 

sheets present folds along fold bifurcation curves. A fold curve joins two sheets, one related to the 

stable cycle born as a node, the other to the saddle one. The Fig. 3e gives an example of this 

situation with a fold bifurcation curve. 

More complex communications between sheets, related to the existence of cusp points on 

bifurcation curves, also occur. For more details, see [Mira, 1987] [Mira & Carcassès, 1991] [Mira 

& al., 1991]. 

Sheet (j/k) |S1|<1, |S2|<1

Sheet (j/k) |S1|>1, |S2|<1

j
(k)0

 

Fig. 3e : Disposition of the sheets of the phase-parameter plane in presence 
of a fold bifurcation curve. 

3. SYSTEM MODELLING BY Z1/Z3/Z1 NONINVERTIBLE MAP AND 
CORRESPONDING PHASE SPACE FOLIATION 

Let us consider now the DPCM system.  

Considering what has been written in Section 1, the encoder input is the signal ns  to be transmitted, 

the encoder output is the quantized version ne  of the prediction error nnn sse ˆ , where nŝ  is the 

predicted signal. The signal nnn ess  ˆ~  is the reconstructed signal. For instance,  

       s a s a sn n n  1 1 2 1      (5) 

y 

a 
b 
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in the case of an order 2 predictor, (a1 ,a2)
T being the predictor vector of parameters. The quantizer 

characteristic is taken as a piece-wise linear function (cf. Fig. 2b) : 

   















p
zsifzssign

p
zsifzsp

zsq
1

    )(

1
        )(

)(       (6) 

p is called companding gain and is always larger than 1, it serves to increase the signal/noise ratio; 

it corresponds to the slope of the piece-wise linear quantizer approximation presented in Fig. 2b. 

In previous studies, the quantizer has been modeled by the following differentiable characteristic 

[Macchi & Uhl, 1993], [Fournier-Prunaret & al., 1993] : 

)( tanh)( zspzsq       (7) 

 The decoder predictor has the same parameter vector (a1 ,a2)
T  as the encoder. In the absence 

of transmission errors at time « j » ( , )  e e j nj j , if the decoder is suitably initialized 

(   ,   )   s s s s0 0 1 1  its output sn  at time « n » is the signal sn reconstructed by the encoder. Thus  

      s s e en n n n        (8) 

which means that the transmission noise s sn n  '  is merely the quantization noise. Here the order 2 

predictor is investigated, in the particular case of a constant input signal sn = s. This assumption is 

often used in the literature and can be justified by the fact that at high sampling rates a time-varying 

input can be approximated by a dc input over relatively large time intervals. In fact, the assumption 

of s not constant leads to a higher order autonomous system [Rouabhi & Fournier-Prunaret, 1999], 

whose analysis would be highly intricate.  

As the decoder is a linear system, we will concentrate from this point on the analysis of the DPCM 

encoder. One can write : 

    )ˆ(ˆ)ˆ(ˆˆ 1212111   nnnnn ssqasassqasas    (9) 

A corresponding substitution can be applied to the DPCM encoder by selecting new variables: 

 ˆ 1 nn sx and nŝ=yn , thus xn et yn correspond to two consecutive estimations of the input signal s.  

This substitution transforms the second order difference equation (9) into two first order recurrent 

equations, giving rise to the following two-dimensional noninvertible nondifferentiable map: 











n

n
nnn y

x
XXTX        where)(1     (10) 
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   










)()(),(

),(
 : 

121

1

nnnnnnn

nnnn

ysqyaxsqxayxgy

yyxfx
T   (11) 

q satisfying equation (6). 

As mentioned at the beginning of this section, the state variables xn and yn correspond to two 

consecutive estimations of the input signal s which is constant and so considered to be a parameter 

for this study. In this case the function g is no longer continuously differentiable, and particular 

properties appear that do not arise in the continuously differentiable case [Macchi & Uhl, 1993], 

[Fournier-Prunaret & al., 1993]. 

In the next sections we will often refer to the critical lines of the DPCM, so let us calculate them 

first. There is a difference in principle between the differentiable and the non-differentiable case. It 

is not possible to apply the classical definition for critical lines determination implying Jacobian 

determinant canceling, as the latter is not defined at the lines along which the determination of the 

piece-wise linear map changes. Moreover, the eigenvalues change with discontinuity when crossing 

through these lines. For this reason, another method described in [Mira & Gumowski, 1966] has 

been used to define critical lines. This method is the following. In the phase plane ),( nn yx  two 

families of curves, corresponding to the right hand side of (11) are plotted: 

constyxfx nnn  ),(1  and constyxgy nnn  ),(1 , where   and  are variable 

parameters (Fig.4). In this way, the phase plane represents the DPCM map both at time « n » and 

« n+1» : the axes ),( nn yx  give the present states of the system, i.e. at time « n », and the curves   

and   represent the next states of the system, i.e. at time « n+1 ».  Since for our model nn yx 1 ,  

the first family of curves constyxfx nnn  ),(1  is in fact an infinity of  parallel horizontal 

lines in the plane ),( nn yx  for all constyn   (these lines are not plotted in order to simplify the 

drawing). We can now determine the image ),( 11  nini yx  of the point ),( nini yx  using the drawing: 

indeed, according to (11), this image (or iterate) is given by the right hand side of (11),  i.e. 

   iinininininini yxgyxfyx  ,),(),,((), 11  .  In the phase plane ),( nn yx , the curve 

inini yxf ),(  intersects the curve inini yxg ),(  at the point with coordinates ),( nini yx . Fig. 4 

shows an example : let the image (or iterate) of the point ),(M1 niin yx  be the point 

)(M),(P 111 Tyx niin   ; suppose we know ),( nini yx and we are looking for ),( 11  nini yx . If we 

read the values of the curves i and i  passing through ),(M1 niin yx ,  we obtain the coordinates 

of the image )(MP 1T  shown in Fig.4 since inini yx 1  and iniy 1 . In general (i.e. when 

P is not a fixed point), the coordinates of P and M1 are different. Now, suppose we are interested in 
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the opposite problem, i.e. the determination of the inverses of P, knowing its coordinates 

),( 11  nini yx . First, we have to localise in the plane ),( nn yx  the curves i  and i  such as 

ninii yx  1  and 1 nii y ,  then find their intersection(s), and finally project the intersection 

point(s) on the axes ),( nn yx . The resulting coordinates  correspond to the preimage(s). 

For our example, if we follow the curve i  on which the point M1 is located, we can notice that 

besides the point M1, there are two more intersection points between the curve inini yxf ),(  and 

the curve inini yxg ),( ,  let us denote them by M2 and M3. All three distinct points M1, M2 and 

M3 have the same image       ),(),(PMMM 11321 iinini yxTTT   , but correspond to 

different preimages: M1 ),( niin yx , M2 ),( '
nini yx  and M3 ),( ''

nini yx ; thus  321
-1 M,M,M(P)T  .  We 

can see that the DPCM map is noninvertible, since to one couple of coordinates ),( 11  nini yx  

correspond three different preimages. Now it is useful to find the location in the plane ),( nn yx  of 

the regions Z3 with three preimages. According to the definition, the number of preimages changes 

when the critical lines are crossed, so we need to localise the critical lines. To do this, let us find the 

location of points where the number of intersections of 
 
and   

 
changes.  If we consider again Fig. 

4, for a given 
i  curve and because of the shape of the 

 
and   

 
curves, we observe either 1, or 3 

intersections with a given curve i . There always exists at least one preimage, i.e. at least one 

intersection point of i  and 
i , since the lines const  are parallel horizontal lines and they exist 

for any  . Now, if we imagine « moving » the curve 
i  

up and down, the number of intersections 

of i  and 
i  will change from 1 to 3 and vice versa, and this will happen along the lines  : 

s x
pn 
1

   (11a) 

where the determination of the map changes ; at the limit when i  and 
i  

are tangent, we have one 

separate preimage and two merging preimages (corresponding to the peak of the curve
i ). The 

lines with merging preimages are also the lines (11a). As mentioned in section 2, critical curves LC 
are such that along them at least two preimages by point merge ;  therefore, LC can be constructed 
point by point, taking the images of the points where the curves 

 
and   are tangential. Following 

this rule, two critical lines LCa and LCb  have been constructed, as images of the two lines of 
discontinuity (11a) . The obtained critical lines separate the phase plane into regions with 
qualitatively different behaviour. Each point chosen between LCa and LCb possesses three rank-one 
preimages, and only one outside. The equivalent graphical representation is provided in the state 
plane, containing nine different regions D1, D2, … D9, according to the lines of discontinuity of the 
derivatives (11a) and : 
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p

ys n

1
     (11b) 

The lines (11b) are not associated with a difference in the number of preimages (and thus are not 

critical lines) while for the other two (11a), their images separate zones whose points have 1 or 3 

rank-1 preimages. Thus these are critical curves LC-1 and their images are LC curves. The obtained 

critical curves LC separate the phase plane into regions with qualitatively different behaviour. For 

the map (11), the critical curves are given by the following equations : 
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We observe three regions in the ( , )x y  plane with two different kinds of behaviour : 
 Z3 between LCa  and LCb , where a point possesses three rank-1 preimages  
 two regions Z1  outside, where a point possesses one rank-1 preimage 

 

Fig. 4 : Numerico-analytical approach for calculating the critical lines 

xn

xn+1 = yn 
lineshorizontalparallelei

yyxfx nnnn

  ..

),(1 

 ),(1 nnn yxgy

yni+1 

   M2 M1 

''
nix'

nix nix

P=T(M1)=(i,i)

   M3 
yni=i 

xni+1 



12 

The equivalent graphical representation is provided in the phase plane, containing nine different 

regions according to the lines (11a) (11b) as shown in Fig. 4. These regions are associated with the 

different determinations (i.e. defining functions) of the map T (11). According to (6) where z is 

either xn or yn, there are three regions with different deteminations for xn and three regions with 

different deteminations for yn which correspond to nine regions D1,…,D9 with different 

determinations of the map T in the plane ),( nn yx . 

The preimages  can be calculated as follows:  

  
 
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
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this inverse gives a point with x s
pn  
1

 i.e. 963 DDDxn     (14a) 
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pn  
1

 i.e. 741 DDDxn      (15a) 
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this inverse gives a point with s
p

x s
pn   

1 1
 i.e. 852 DDDxn    (16a) 

These expressions have been obtained taking into account that )()( 1 nn ysqxsq   . For points 

( , )x yn n 1 1  belonging to the strip between the two critical curves LCa  and LCb , which is the 

region Z3, three inverses having the same ny  exist ),( ),,( ),,( 321 nnnnnn yxyxyx , while for points 

above LCb  and below LCa , which is the region Z1 , only one inverse exists. 

Fig. 4 also gives the two dimensional non-linear projection of a three-dimensional qualitative 

representation [Taralova-Roux & Fournier-Prunaret, 1998]. We are used to the two-dimensional 

phase plane representation. Nevertheless, if we calculate and draw the preimage 1nx  as a function 

of ),( nn yx  it is possible to reconstruct a kind of three dimensional foliation of the phase space of 

the map (11) as shown on Fig. 5a and Fig. 5b according to the sign of the parameter a1. The upper 

pictures show the phase plane, and the lower ones the corresponding three-dimensional foliation, 

with the representation of a point in Z3 and of a point in Z1. The foliation shows that a point in Z3 is 
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the image of three points and the point in Z1 of one point. This representation enables a visual 

understanding of the notion of noninvertibility and better explanation of the phenomena arising in 

the phase plane.  

 

 

Fig.5a : Phase Plane Foliation for a
1
<0. One can 

see that the red point located in the region Z3 is 
the image of three distinct points  (in green) 
while each point in the region Z1 is the image of 
only one point. 

Fig.5b Phase Plane Foliation for a
1
>0 

Now, to show one of the uses of the critical lines tool, let us consider an attractor and its basin D, 

the boundary of which is crossed by aLC  (Figs.6a, 6b). Let us call H0 the part limited by segments 

of aLC  and the boundary of the domain D. H0 is inside the zone Z3, two preimages of H0  are 

located on the two sides of LCa1  forming a hole H1
1,2 inside D. The third preimage H1

3 is located in 

a region Z3; therefore H1
3 possesses its own three rank-1 preimages H2

1 , H2
2 , H2

3, which are 

spread in the phase plane, which have their rank-1 preimages etc . The resulting cheese-like domain 

can possess an infinite countable number of holes and is called multiply connected. Let us consider 

now  two different basins D1  (in pink) and D2  (in red) which coexist (fig.7a, 7b). The critical line 

LCa  "cuts" a piece of D1 , forming a domain H0  and, following the properties of critical curves 

already used in the previous example, the preimage of H0, denoted H1
1,2, is found back on both sides 

of 1aLC  forming respectively an island for D1 , and a hole for D2 . All original points (xn,yn) 

located inside as well as their rank "k" preimages (e.g. all rank "k" holes) do not belong to D2 , but 

to D1 . D2  becomes a multiply connected domain and D1  a non-connected domain. [Mira & al., 

1996 ] 
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D

xn

yn

xn

yn

 

Fig.6a : Bifurcation connected  multiply connected basin  Fig.6b : Enlargment of Fig.6a  

 Fig.7a : In the phase plane (xn, yn), passage connected  
multiply connected basin in the case where two different 
attractors coexist. Their basins are shown in red and pink. 

 

 Fig.7b : Enlargment of Fig.7a. 

4. BIFURCATIONS 

By bifurcation we denote qualitative change in the system behaviour; for instance, switching from 

one stable to another different stable state, from stable to unstable state, change in the geometrical 

shape of a basin, etc. Bifurcations occur when the system parameters are varied. They can be 

D2 
D1 

H0 
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tracked by analyzing the influence of the variations in the parameter vector for a map T on its 

solutions.  

The study of bifurcations is extremely important, especially when the model describes a 

transmission system and when its stability is concerned. Due to the tolerances and time-variant 

features of electronic components, it is well known that two physical circuits can never be identical; 

bifurcation studies give us the range of parameters and the conditions under which the behaviour of 

the circuit remains unaltered. An additional restriction in the case of the DPCM system is that the 

encoder and the decoder have to be lined up. The equality of the encoder input and the 

reconstructed decoder output signals is formally required. A necessary condition is the uniform 

encoder stability in time, independently of the adaptation type. The evolution of the signal depends 

on certain parameters. We seek to analyze this dependence and to identify significant changes that 

certain evolutions undergo as the parameters are varied. Variation in one or several components of 

the parameter vector may give rise to periodic orbits (cycles) at the quantizer output, or more 

complex phenomena (e.g. chaotic behaviour), structure modifications in the boundaries of basins in 

the phase plane, etc. Parameter vector values corresponding to these qualitative modifications are 

called bifurcation values. A study of these bifurcations forms the bulk of the present section.  

4.1. BIFURCATION DIAGRAMS 

When the parameter vector dimension is greater than one, bifurcations occur over a curve (surface 

in 3D) called a bifurcation curve. A bifurcation curve gives the region of admissibility of a given 

stable state. Bifurcation curves are summarized in bifurcation diagrams and tell us a priori for 

which parameter values the system converges or diverges, exhibits chaotic or periodic behaviour. 

Crossing a bifurcation curve implies qualitative change in the system behaviour. 

All the bifurcation diagrams shown in Figs. 8-12 and Fig. 14 concern the DPCM model (map(11)); 

they are two-dimensional and they refer to the map (11) with different values of the companding 

gain p and the input signal s (constant for this study). As the parameter vector  a a p s1 2, , , is four-

dimensional, only the plane of predictor parameters ( , )a a1 2  has been scanned, with p and s values 

chosen according to their physical meaning: p higher than one, and input signal amplitude s 

involving full use of the quantizer characteristic (both linear part and saturation). 

Stable solutions are obtained by iterating from different initial conditions (x0, y0) for fixed 

parameter values  a a p s1 2, , , . Each color corresponds to a region of existence of different stable 

behaviour (attractors): fixed point (blue), stable period-two orbit (green), stable period-three orbit 

(cyan) etc. The white area corresponds to divergent iterated sequences in the phase plane. The black 
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area corresponds to l -periodic orbits ( l 14 ) or bounded iterated sequences including chaotic 

behaviour. Each different colour defines a region of admissibility of a k -periodic orbit  ( k 14 ), 

delimited by a bifurcation curve. Any point ( , )a a1 2 , chosen inside a given region and corresponding 

to the existence of a given periodic orbit, guarantees at least one solution of the considered order; 

nevertheless its structural stability, i.e. its robustness with respect to small ( , )a a1 2  perturbations 

must be studied more precisely via a more detailed analysis of the phase plane. In order to compare 

separately the influence of  p and s, the ( , )a a1 2  parameter plane has been scanned for fixed p and 

different s values (Figs. 8;9;12 and Figs. 10;11), and for fixed s and different p values (Figs. 8;10). 

This representation gives a global view of the parameter plane. Figures 8-12 show areas in the 

( , )a a1 2  plane (coloured parts of Figs. 8-12), where at least one attractor exists in the phase plane. 

On Figs. 8-12, a special domain, the stability triangle () is represented. This triangle corresponds to 

the predictor parameters ( , )a a1 2  for which the DPCM transmission system is considered as stable 

and well-functioning by users. These results have been obtained using linear studies, by neglecting 

the nonlinearity of the quantizer. For our study, we have analyzed the DPCM encoder inside and 

outside the stability triangle. The latter study is justified, since setting the parameters outside the 

stability triangle may be used to break undesirable orbits; moreover, if an adaptive filter is used, 

during the adaptation algorithm the parameters can leave the stability triangle.  

One can observe that, when p is small enough (p=1.2), the stability triangle only contains parameter 

values for which periodic orbits exist and, when p is higher (p=5), () contains black regions with 

possible chaotic behaviour, which can disturb the functioning of the system [Macchi & Uhl, 1993] 

[Fournier-Prunaret & al., 1993]. 

One can see that the stability triangle is bounded on its lower part by the bifurcation curve 1
1  

(bifurcation (4) for a fixed point, see section 4.2).  

From Figs.8-12, it can be seen that, as in the differentiable case [Fournier-Prunaret & al., 1993], 

when p is increasing, the parameter plane domain where an attractor exists has a decreasing size.  

These diagrams are not exhaustive since several attractors may coexist for the same parameter 

values, as was shown in the previous section, due to the foliation of the parameter plane. Indeed, 

bifurcation curves may overlap. The mere knowledge of the existence of multistability is not 

sufficient to give information about the stability of a system since the coexisting stable solutions 

can be so far away from the set point in the phase plane to be unimportant in practice. We must 

quantify the stability of the various attractors to finite-amplitude perturbations by constructing their 

basins in the phase plane, that is to say the set of all points that asymptotically approach the 

attractor under forward iteration. This problem will be thoroughly analyzed in section 5. 
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Fig. 8 : Parameter plane (p=1.2 s=0.5) Fig. 9 : Parameter plane (p=1.2 s=3) 
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Fig.10 : Parameter plane (p=5 s=0.5) Fig.11 : Parameter plane (p=5 s=1.5) 

 

1
1

a1

a2

()

Fig.12 : Parameter plane (p=1.2 s=8) 
 

In the bifurcation diagram of Fig. 14, which is an enlargment of Fig.8, the regions of admissibility 

of periodic orbits can be seen, with their corresponding rotation numbers (cf. Fig.14, which shows 
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an enlargment of Fig. 8) [Taralova-Roux, 1996]. The parameter plane is divided into regions where 

all the orbits associated with any rotation number may exist. The structure of the graph is similar to 

the well-known Arnold tongues structure [Boyland, 1986] [Ogorzalek & Galias, 1991] [Galias Z., 

1995] [Kocarev & al., 1994] [Chua & al. , 1990]. The sequence of periodic orbits is separated by 

one or more chaotic states, as the periodic window is embedded within some chaotic regimes. The 

system exhibits as a whole a very rich dynamical behaviour. 

From the bifurcation diagrams, it can be seen that, by changing the DPCM parameters, we might set 

the system to qualitatively different types of behaviour, in which case the system settles to a 

different attractor. The change can be more or less important with regard to the kind of bifurcation 

which occurs. A complete understanding of such qualitative changes means knowing the 

topological changes in the structure of the phase portrait at the bifurcation threshold. 

4.2. ANALYTICAL STUDY OF FIXED POINTS 

The fixed points and period 2 orbits of the DPCM system can be analyzed theoretically. The 

regions where one or more stable fixed points exist are given by the blue color in Fig. 9-12. (dark 

blue in Fig. 9-11-12 and light blue in Fig.10). From the theoretical study it follows that the map 

(11) admits at most three fixed points which are called Q1, Q2, and Q3. These fixed points undergo 

the bifurcations recalled in section 2, but in the way defined in the PWL case. Here, the fixed point 

Q3 plays a fundamental role. The coordinates of the fixed points satisfy XX T  and are 

analytically given by:  
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The analogous expressions for Q1 and Q2 lead us to consider the symmetry of the regions 

 
p

xs:DD
1

 , 37   (cf. Fig. 4) where the fixed points Q1 and Q2 are defined. It is easy to check 

that the existence of the fixed point Q1 implies the existence of the other fixed point Q2 and vice 

versa.. In [Macchi & Uhl, 1993] it has been shown that the optimal estimation of the input signal s 

is achieved for a1+a2=1. According to (17),  the same result can be observed for the fixed point Q3 

as its coordinates for this case are xQ3 = yQ3 = s. 

Let us consider separately the case when one or several fixed points appear. A particularity of the 

piece-wise linear case is that one or several fixed points appear/disappear in general in a different 

way than in the differentiable case. The algorithm for their numerical calculation is given in section 

4.4. 

From a mathematical point of view the formulas for the analytical calculation (17) can always be 

applied, but do not necessarily give rise to a fixed point for the map (11). A necessary condition for 

the resulting fixed point to exist, is that its coordinates must belong to the corresponding region D7, 

D3 or D5 (cf. Fig.4) which condition is given by the constraints (17a), (17b) and (17c). 

Let us consider now the point Q3 . It undergoes a Neïmark-Sacker bifurcation (4) when a2 crosses 

the value -1. The corresponding curve is denoted by 1
1 and is shown in Fig. 8-12. On this curve, the 

determinant of the Jacobian matrix associated with (4) at Q3 is equal to one, with complex 

conjugated eigenvalues.  

The fixed point Q3 is a stable focus above the 1
1 curve and repulsive focus below. The set of points 

(a1,a2) forming the Neïmark-Sacker bifurcation curve for Q3 is given by line : 

–2 < a1 < 2, a2= –1      (18) 

Parametric equations of flip and Neïmark-Sacker (4) bifurcation curves of the (a1,a2) plane related 

to cycles of order k are given by :  
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X being the coordinates vector of a cycle point and Si being a multiplier of the k-cycle. Bifurcation 

curves are numerically obtained in the (a1,a2) plane using Newton method. 
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4.3. GRAPHICAL STUDY OF PERIOD TWO POINTS 

Writing the map T2 in the following form,  






),(

),(
)(2

kk

kk

yx

yx
XXT




      (21) 

the periodic orbits of period two satisfy the conditions 

0),(),(  kkkk yxyx       (22) 

Let us represent these conditions graphically in the phase plane for the particular parameter values 

for which (22) is verified (Fig. 13). 

The period-2 orbit exists when the two curves (22) intersect each other. For the example 

considered, they coincide over a line segment. It can be proved that the slope of this segment is 

equal to -1. Therefore an infinity of period two points exists for all starting conditions on the red-

blue overlapping segment (recall that xn+1 = yn). In this particular case, bifurcation occurs with 

multipliers equal to one, and, because of the infinity of solutions, is called a “degenerate” solution. 

Each starting condition taken in the overlapping segment corresponds to a different period two 

orbit. After the bifurcation, the period-2 orbits disappear, since the condition (22) is not satisfied 

anymore. The same phenomenon (infinity of appearing periodic orbits) can be generalized for 

higher order periodic orbits.  

 

Fig.13 : Degenerated solutions with multiplier equal to one 
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4.4. NUMERICAL STUDY AND ALGORITHM FOR THE BIFURCATION CURVES 

CALCULATION 

Numerical calculation techniques are used to examine the behaviour of fixed and periodic points as 

a parameter is varying and to follow their bifurcations in the (a1, a2) parameter plane. The 

bifurcation structure of the map (11) is established with the help of numerical methods. Indeed, the 

analytical study can be done easily only for the fixed points and the period 2 orbits of the map (11). 

For a cycle of order k, when k2, many analytical difficulties arise related to the exponentially 

growing number of the different determinations regions for the map Tk, k = 1, 2, …, which require 

the use of numerical methods.  

Looking back at the bifurcation diagrams a question arises : why is it necessary to calculate these 

bifurcation curves if we have already undertaken the parameter plane scanning? The answer is that 

bifurcation curves give more precise and detailed information about the areas with different kinds 

of behaviour, this is particularly important when these curves overlap. In terms of phase space 

interpretation, it means that two or more different stable types of behaviour may coexist, and the 

resulting phenomenon is known as multistability. This is one of the aspects of the richness of the 

non-linear systems. 

 

Fig. 14 : Enlargment of Fig. 8 with the  
corresponding rotation numbers (p=1.2 s=0.5). 

In the differentiable case, in order to obtain the bifurcation curves in the parameter plane, we have 

to calculate the bifurcation curve 0),( 21 aaG  satisfying 
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This is quite natural, since a state bifurcates (e.g. from stable to unstable) when its multipliers cross 

the unit circle. On the other hand, for a piece-wise linear map, cycles can appear or disappear 

without having their multipliers crossing through +1, as has been mentioned at the beginning of 

section 3, i.e. a criterion of the type (23) would not be useful to calculate the bifurcation curves.   

In our PWL case the aim is the same as before , i.e. to find  

0),( 21 aaG      (24) 

but satisfying 
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where ED denotes the set defined by (11a) and (11b). This condition replaces the standard one 

because in the PWL map periodic orbits arise when a point of the cycle hits the lines ED. A 

numerical algorithm has been developed based on the conditions (25), and the obtained bifurcation 

curves with the corresponding rotation numbers are presented in Fig. 14. Note that the color scheme 

has been changed with respect to Fig. 8 in order to achieve better contrast; the bifurcation curves (in 

black) correspond to orbits with different period and rotation number (4/13; 3/10; 2/7; 3/11), 

embedded in the chaotic regime (in light yellow).  

Such “saussage-like shape” of the bifurcation curves has been already observed for digital filters 

[Ogorzalek, 1992]. 

The ordering of the rotation numbers is similar to that of the bifurcation structure “boxes in files” 

(also called Arnold tongues structure) for the one dimensional case arising at the Neïmark-Saker 

bifurcation, the frontier of each “box” being a bifurcation curve (see [Mira, 1987] for more details). 

This ordering strictly depends on the degree of complexity Dc of the box and is a function of its 

rotation number. Two neighbouring boxes with rotation numbers b/c and d/e which have the same 

degree of complexity Dc will satisfy the equation 1 becd . All boxes with rotation numbers 1/k 

have degree of complexity Dc =1. Between any two boxes 1/k and 1/(k+1) there exists an infinite 

file of boxes with degree of complexity Dc =2. In the example of Fig. 14, the sequence of rotation 

numbers 4/13; 3/10; 2/7; 3/11 is part of a file with degree of complexity Dc =2, and is embedded 

between the boxes 1/3 and 1/4 with degree of complexity Dc =1. In general, between any two boxes 

with degree of complexity Dc there is an infinite file of boxes with degree of complexity Dc +1 and 
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so on. This bifurcation structure is fractal; therefore stable orbits with any period and any rational 

rotation number could be obtained and their location in the parameter plane could be predicted.   

5. STUDIES IN THE PHASE PLANE. BASINS. 

Once the attractor(s) and the type of each are known, one would like to associate each attractor with 

the set of all starting conditions leading to it; i.e. the basin of attraction. This notion concerns the 

analysis of the system behaviour in the phase plane via the phase portrait. For a given point of the 

parameter plane (a1, a2), several different stable behaviours could coexist, this is one example of the 

richness of non-linear systems. The state vector trajectory depends on its initial conditions; 

furthermore, realizations starting from nearly the same initial condition may result in (extremely) 

different final states. The explanation of this phenomenon is related to the basin boundaries and will 

be given below. This notion is related to the robustness of the phase portrait against sufficiently 

small perturbations of the parameters.  

In this section, the first and second paragraphs are devoted to the description of attractors issued 

from Neïmark-Sacker bifurcations and the third one to comments about basins and their boundaries. 

5.1. NEÏMARK-SACKER BIFURCATION OF A FIXED POINT 

The study of the different attractors reveals extremely interesting phenomena associated with the 

piece-wise linear structure of the quantizer characteristic. One of them concerns the bifurcation (4). 

In PWL maps, the case related to an irrational rotation number   does not give rise to a 

differentiable ICC but to an ICC, which can be called a Weakly Chaotic Ring (WCR) as in [Mira & 

al. , 1996], the Lyapunov exponent of which is slightly positive. When parameters are varied, from 

the bifurcation (4), the Lyapunov exponent increases and the WCR leads to a stronger chaotic 

attractor. Let us explain the specific phenomenon in the PWL case. 

The most important difference with respect to the differentiable case is the appearance of an ICC in 

the vicinity of the Neïmark-Sacker bifurcation (Fig. 15a) with a large amplitude i.e. far away from 

the destabilized focus. This sudden change does not occur in the differentiable case, when the 

invariant closed curve grows continuously around the focus point. The peculiarity is based on the 

same phenomenon that has already been pointed out above: the fact that at least two points of the 

attractor belong to two different regions. Physically this phenomenon is expressed by large 

amplitude oscillations in the immediate neighborhood of the focus-type steady state. This drastic 

change in the system behaviour affects the good functioning of the system, and is specific to the 

piece-wise linear character of the quantizer. 
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If we consider a region Di  in the phase plane, where each point has only one rank-one preimage, 

thus locally we are in presence of a typical linear case. In the linear case, the only possible 

singularities are the fixed points (attractive or repulsive) and the closed invariant curves resulting 

from complex multipliers with modulus =1 (center fixed point). In the PWL case, the ICC arises at 

a contact with the lines defined by (11a)(11b) (LCa and LCb limiting Z3 are images of the lines 

(11a)). This implies the ICC to be nondifferentiable at at least one point. But the image of an 

angular point is another angular point and the ICC is invariant under T. As the accumulation of 

points is everywhere dense, the ICC is constituted by an infinity of angular points. It seems to be a 

fractal curve in the sense that the curve is not differentiable in any point. Moreover, this property of 

nondifferentiability is due to the crossing of the ICC through LC-1 curve. This is the reason why we 

call it a WCR, as in [Mira & al. , 1996]. In Fig.15a, the WCR has just appeared (Neïmark-Sacker 

bifurcation arises for a2=-1.0), touching the lines (11a-b). 

yn

xn
xn

yn

Fig. 15a : Invariant closed curve in the vicinity of the 
Neïmark-Sacker bifurcation, a2 = -1.00000001 

Fig. 15b : When tuning one parameter (a2), the 
nondifferentiability of the WCR clearly appears. 
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a1= -0.26. a2=-1.00000001 p=1.2 s=3.0 

xn

yn

 
Fig. 15c : The Weakly Chaotic Ring (WCR) 

a1= -0.26. a2=-1.00000001 p=1.2 s=3.0 

xn

yn

 
Fig. 15d : Enlargment of Fig.15c 

 a1= -0.26. a2=-1.00000001 p=1.2 s=3.0 

 
Fig. 15e : Enlargment of Fig.15d 

 

 

 

 

Fig. 15f : Time representation of the WCR  
(a1 = -.26, a2 = - a2 = 1.00000001, p = 1.2, s = 3) 

A WCR can only exist in a region where at least two different determinations are needed. In the 

considered case, a WCR intersects a Z3 zone. Being an attractor, it is delimited by the critical lines 

and their iterates [Mira & al., 1996]. Since the analytical expressions of the critical lines are known, 

we are able to predict the maximum amplitude of the chaotic oscillations when the WCR becomes a 

stronger chaotic attractor. 

In the Figs.15c-15e, three consecutive enlargments of the WCR are presented, which reveal its 

typical characteristic of self-similarity at different scales. The fractal property and the self-similarity 

of the attractor in Fig. 15a may let us think it is a chaotic attractor, and not a simple closed invariant 

curve. One of the characteristics of the chaotic attractor is that for two nearly identical conditions 

the two resulting motions may diverge at an exponential rate. Of course if the starting conditions 

were precisely the same, then the deterministic nature of the equation guarantees that the motions 

are identical for all time. But since some uncertainty in the starting condition is inevitable with real 

chaotic waveform 

iterate n 

yn
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physical systems, the divergence of nominally identical motions cannot be avoided in the chaotic 

regime. Fig. 15f shows the corresponding chaotic waveform in the (n, yn) plane. 

5.2. NEÏMARK-SACKER BIFURCATION OF CYCLES 

Let us now consider the Neïmark-Sacker bifurcation for period-k cycles. As mentioned previously, 

when a2=-1 a Neïmark-Sacker bifurcation (4) occurs. Unlike the differentiable case, here an infinite 

number of elliptic orbits can appear [Taralova-Roux & Fournier-Prunaret, 1996b], with periodicity 

corresponding to the periods of the different stable orbits before the bifurcation. This situation is 

analogous to the one which occurs in the model of analogue-to-digital and digital-to-analogue 

converters [Feely & Chua, 1991] [Feely & Fitzgerald, 1996] [Feely & al., 2000].  

The case s=0 is particularly studied, since according to the use of the DPCM when the input is zero, 

the decoded output should be zero as well; in fact, our results demonstrate that the inherent 

nonlinearity of the quantizer may provoke unwanted oscillations at the output whose shape in the 

time domain is similar to that of Fig.15f even with the simple piece-wise linear model (Fig. 2b). 

The parameter p is chosen large enough (p=60), because in this case the model is very close to the 

model given by Fig.2a, (staircase characteristic); the behaviour of the system is similar to that of a 

staircase characteristic with two steps (quantizer with one bit). 

For the chosen parameter values, in the phase plane (xn,yn), we observe elliptic-like orbits, since xn 

and yn correspond to two consecutive estimations of the input signal (xn is the memorised yn value 

after one iteration).The infinite number of such elliptic orbits at the bifurcation is due to the fact 

that each different initial condition inside the region in which the map is linear gives rise to a 

different elliptic trajectory, with the same periodicity (locally we have center-type orbits). The 

largest ellipse is the one in contact with the lines (11a-b). An infinity of such elliptic orbits exists 

for the same periodic point of periodicity k. Since the phenomenon of elliptic-like behaviour takes 

place for all periodic points of order k (k=1,2,8,24 in Fig. 24), the starting conditions where the 

system is initialized determine then which discrete elliptic region will capture the system 

trajectories. The set of all elliptic regions is enclosed inside a trapping region, also called an 

absorbing area. This area captures all system trajectories after a finite number of iterations. In our 

case, the borders of the absorbing area are completely defined by the critical curve segments and 

their first iterates.  

Just after the bifurcation, these elliptic orbits give rise to sets of cyclic WCR with periodicity 

corresponding to that before the bifurcation (in the considered case (Fig. 25) we observe two 

chaotic rings of period 1, one set with period 2, one of period 8 and one of period 24).  
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Again, the borders of the domains of existence of the set of chaotic rings are completely defined by 

the critical curve segments and their first iterates (cf. Fig. 25). The WCR coexist until a2=-1.003; 

after this value, the chaotic sets merge into a unique chaotic attractor which disappears in turn by a 

classical bifurcation (contact of the chaotic attractor with its own basin). This latter phenomenon 

has also been observed in the model of a sigma-delta modulator [Feely & al., 2000]. 

xn

yn

 

Fig. 24 : a1=0.25 a2=-1.00 p=60 s=0.0. Two 
periodic orbits of order 1, one of period 2, one 
of period 8 and one of period 24 can be 
observed. 

xn

yn

 

Fig. 25 : a1=0.25 a2=-1.001 p=60 s=0.0, after the 
Neïmark-Sacker bifurcation. 

5.3. MULTISTABILITY AND BASINS EVOLUTION 

In general multistability is intrinsic to many nonlinear systems of interest to electronic and system 

engineers. For an appropriate choice of the operating conditions in a DPCM transmission system 

coexistence of up to four attractors has been observed. The existence of different attracting steady 

states destroys the global stability of the operating steady state, particularly if their basins are 

strongly intermingled. We then study in the phase plane the evolution of the attractors and that of 

their basins and demonstrate the applicability of the critical lines tool in the case of DPCM map. 

Detailed phase plane study has been performed below the line of Neïmark bifurcation (boxes-in-

files bifurcation structure as the one observed on Fig. 14) for constant 2a  and variable a1, and vice 

versa in order to analyse separately the influence of the predictor parameters on the system 

behaviour. Unlike the previous studies of similar systems [Ogorzalek, 1991], chaotic behaviour is 

very often observed due to the boxes’ overlap. In our next examples, chaotic attractors have been 

obtained by numerical simulations. The figures show that up to four distinct attractors may coexist, 

a result which has not been observed in previous differentiable models of the system (only three 

coexisting attractors have been observed). It is important to analyse whether this functioning mode 
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is inauspicious or not for the system, as each of these modes is strongly stable and does not provoke 

in itself a bad functioning.  

The width of the corresponding box is important as well, because the existence of a given periodic 

point-type attractor is guaranteed inside the tongue, but small changes in the predictor parameters 

may change the functioning point moving it into a region with an unpredictable or chaotic 

behaviour. In this sense regions with several coexisting attractors in general have to be avoided, 

because higher order periodic points imply finer Arnold tongues bifurcation curves, and are 

therefore prone to switch to an unwanted dynamical behaviour with higher probability under slight 

parameter changes. 

In order to better understand this phenomenon, let us consider a small window inside the Arnold 

tongues (recall that the Neïmark-Sacker bifurcation occurred at a2=-1). The case of two distinct 

attractors, a stable period-11 focus and a stable period-26 node, is shown in Fig.16a; a2 is fixed 

slightly below 1
1 , so slightly below the stability triangle (section 4.1) and a1 is varied. Each initial 

condition plotted in red corresponds to trajectories converging towards the period-11 focus, and 

each initial condition taken from the region in grey gives rise to trajectories converging towards the 

period-26 node. So the red domain is the basin of the period-11 focus and the grey one is that of the 

period-26 node. Between the basins of attraction there is a separator curve, and it is clear that two 

rather close starts straddle this separator and that their evolution is uncertain. This problem can 

spread to the whole phase plane after a small parameter tuning (Fig. 16b) that makes the basin’s 

boundary become uncertain in a larger part of the phase plane : the basin of the period-11 focus is 

spread in a countable number of nonconnected components all over the basin of the period-26 node. 

It is difficult to predict even quantitatively whether the trajectories of the system will be captured 

by the period-26 node or by the period-11 focus, because all initial conditions are tangible 

numerically with finite precision. In this case the boundary is said to be fuzzy. This terminology is 

introduced in [Mira & al., 1987]; fuzzy is equivalent to fractal. In the considered case both cycles 

are stable, but the problem can become more intricate when the basin of the attractor is 

disconnected with divergent regions inside [Gicquel, 1995].  

When the parameter a1 increases, a forth multistability case (Fig.17) appears. As already 

mentioned, this fact implies that in the parameter plane four boxes overlap.  

Besides the stable periodic points, many other unstable periodic points exist as well. Saddle points 

have the peculiarity that in many cases their stable manifolds (associated with the multiplier |S|<1) 

limit the basins of attraction [Mira & al., 1996] (Fig.18). On the contrary, the unstable manifolds 

(associated with the multiplier |S|>1) converge towards the attractors. In the case under 
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consideration, we can observe a chaotic transient due to the existence of a strange repellor (Fig. 19) 

which, under a slight parameter change, (Fig.20a & 20b) becomes a strange (chaotic) attractor when 

no stable cycle exists. From Fig. 20a another interesting feature of the critical lines tool is 

emphasized: its iterates (in green) limit the strange attractor (in red). When the parameters are 

varied, this attractor undergoes quantitative changes in its form and shape and coexists with other 

stable periodic orbits (Fig.21).  

Similar complex phenomena occur on the symmetric region for positive a1 values (Fig.23); as an 

example, a fuzzy frontier in the case of coexisting period-17 focus and 21 node is given. Although 

the cycle orders are different from those of Fig.17, if we compare the two figures we can see that 

the basin structure remains qualitatively the same. 

node 26

focus 11

 a1=-.82 a2=-1.19486 p=1.2 s=8

xn

yn

Fig. 16a : Period-11 focus and  
period-26 node coexist. 

node 26

focus 11

a1=-.82150 a2=-1.19486 p=1.2 s=8

xn

yn

Fig.16b : After slightly tuning the parameter a1, the 
boundary between the basins becomes fuzzy. 

 a1=-.26 a2=-1.19486 p=1.2 s=8

xn

yn

Fig. 17 : Four attractors coexist, some of the basins 
are separated by a fuzzy boundary. 

Saddles
   15

  stable
manifold

a1=-.26 a2=-1.19486 p=1.2 s=8

unstable
manifold

xn

yn

Fig. 18 : The basin frontier is formed by the stable 
manifolds (cyan and red colours) of the two period-
15 saddles. The unstable manifold is plotted in 
yellow. 
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Saddle
   19

 a1=-26 a2=-1.19486 p=1.2 s=8

xn

yn

 
Fig. 19 : A strange repellor exists 

 a1=-.22 a2=-1.195 p=1.2 s=8

xn

yn

 
Fig. 20a : The chaotic attractor (in red) is delimited 
by segments of critical lines and their iterates. 

 a1=-.2 a2=-1.195 p=1.2 s=8

xn

yn

 
Fig. 20b : The strange repellor has become a chaotic 

attractor. 

a1=-.3221 a2=-1.19486 p=1.2 s=8

Focus 11

Node 11

xn

yn

Fig. 21 Chaotic attractor coexists with two periodic 
orbits, the basin boundaries are fractal.

Node 26

 a1=-.321 a2=-1.19486 p=1.2 s=8

Node 11

Focus 11

xn

yn

Fig.22 : Two period-11 orbits with the same rotation 
number : they belong to the same “tongue”. 

focus

 a1=.2482  a2=-1.19486 p=1.2 s=8

node

xn

yn

Fig. 23 : Fuzzy frontier for positive a1. 

In all cases of fuzzy frontier, the frontiers of the different basins bound regions which are 

intermingled one inside the other in a fractal structure, covering a whole region in the phase plane. 
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Then the problem of the initialization is extended to this region, as shown on Figs.16,17,21,22,23. 

Let us consider in details Fig. 17. The grey color corresponds to the initial conditions leading to 

divergent trajectories, the white to the basin of the period-15 focus and the region (in red) inside to 

the 3 intermingled basins of a period-15 node, a period-15 focus and a period-19 node. The set of 

these three basin boundaries is fuzzy. In the considered case it is difficult to predict whether the 

trajectories of the system will be captured by the period-19 node, the period-15 node or by the 

period-15 focus. This type of frontier means that the system evolution is unpredictable, and is 

caused by the finite precision achieved in the state vector initialization. It should be emphasized 

that, unlike the stochastic systems, as a result of the deterministic nature of our model in the ideal 

case, two identical starting conditions would generate identical trajectories.  

Fig. 22 shows the basins of attraction of three different periodic orbits. The basins of both period-11 

orbits (in red and magenta) are non-connected and form a set of islands inside the basin of the 

period-26 node (in dark grey) which is multiply connected (connected with holes). The period-11 

focus and the period-11 node possess the same rotation number; a peculiarity of Arnold tongues 

structure can be brought out: each tongue is associated to a fixed rotation number [Boyland, 1986] 

[Mira, 1987], but each tongue can correspond to the existence of one or more attractive orbit (with 

the same period); in this case, two stable periodic orbits of period-11 coexist.  

After decreasing a1, a cascade of bifurcations occurs, giving rise to a chaotic attractor (Fig. 21). All 

basin frontiers become fuzzy. The phase portrait has changed drastically, although the global form 

of the basin has been kept. The period-26 node has disappeared, and the two period-11 orbits 

coexist with the chaotic attractor (whose basin is in black). The critical lines and their forward 

iterates delimit the latter.  

It is worth noting the very small change in the parameter a1 leading to the different phase portraits 

of Fig.21 and Fig.22. Despite the existence of stable areas for other fixed parameter vector values, 

the closeness of different tongues affects the stability of the encoder. 

6. CONCLUSION 

Our objective in this work has been to investigate the nonlinear dynamics of the DPCM system, 

resulting from the piece-wise modelling of the quantizer and to compare that model with the 

previously studied differentiable one. Through the parameter and phase plane study, different 

aspects of the dynamics of the DPCM system have been analyzed. Such a study is important to 

understand the real system, because bifurcations can be observed when parameters are varied and it 

is possible that parameter values change during the use of the system. Due to the very high 

parameter sensitivity shown in our paper, it is possible to observe chaotic behaviour, even when not 
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expected. Nevertheless, the obtained results are robust in the sense that it can be expected that 

higher order transmission systems (with higher order predictor) display similar behaviour and that 

unpredictability and sensitivity with respect to initial conditions may be ubiquitous in the 

application of DPCM transmission techniques. Simulation and expectations from theoretical results 

support this observation. As seen at the system output, chaos with small amplitude (of the order of 

the noise in the system) can easily be mistaken for random noise. New phenomena arising from the 

chosen model have been summarized. The influence of changes of filter parameters on system 

dynamics has also been studied and the following results have been obtained : 

1) As in the differentiable case : 

- the dynamics of the system are extremely complex, and are characterized by 

extraordinary sensitivity to small changes of parameters,  

- exact conditions for bifurcation instabilities and qualitative descriptions of the 

transient dynamics have been given, 

- the parameter bifurcation diagram reveals a typical devil's staircase structure (or 

boxes in files),  

- similar types of bifurcations occur, whatever the value of the constant input 

signal s ; other studies have been done with a sinusoidal input signal which have 

shown analogous bifurcations [Rouabhi, Fournier-Prunaret, 1999], 

- multistability has been brought out, 

- stable chaotic behaviour can be observed, 

- it is possible to tune the predictor parameters in such a way that oscillations of 

any chosen period could be generated (because of the boxes in files structure), 

2) Unlike the differentiable case : 

- classical bifurcations occur in a non traditional way, 

- up to 4 coexisting attractors in our study can coexist, some of them having the 

same rotation number, (only three were obtained in the differentiable case), 

-  instead of differentiable Invariant Closed Curves, Weakly Chaotic Rings have 

been observed, due to the piece-wise linear structure of the model, 

- the maximum amplitude of these chaotic oscillations can be predicted 

analytically.  



33 

Further studies should be devoted to analyze under what conditions robustness and even optimal 

performances can be guaranteed, despite the presence of nonlinearities and the lack of exact 

parameter and state vector initializations.  

In fact it may be argued that it is exactly the nonlinear interaction between the signal estimation and 

the quantified error that give the whole system a measure of robustness. Further studies in this 

direction, comparing the DPCM and the Sigma-Delta modulator, under development. 
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