$\Gamma$-convergence for strongly local Dirichlet forms in perforated domains with homogeneous Neumann boundary conditions - Archive ouverte HAL
Chapitre D'ouvrage Année : 2007

$\Gamma$-convergence for strongly local Dirichlet forms in perforated domains with homogeneous Neumann boundary conditions

Résumé

We consider homogenization problems with holes for strongly local Dirichlet forms in the cases of Dirichlet and Neumann homogeneous conditions on the boundaries of holes. The main difficulties arise from the absence of a group structure on the underlying space, then from the non-periodic distribution of the holes and from the absence of classical extension results in the holes. The complete proofs of the results will appear in a forthcoming paper
Fichier non déposé

Dates et versions

hal-00368524 , version 1 (16-03-2009)

Identifiants

  • HAL Id : hal-00368524 , version 1

Citer

Marco Biroli, Nicoletta Tchou. $\Gamma$-convergence for strongly local Dirichlet forms in perforated domains with homogeneous Neumann boundary conditions. Ermanno Lanconelli, Annamaria Montanari, Sergio Polidoro. Subelliptic PDE's and applications to geometry and finance, Seminario Interdisciplinare di Matematica, pp.57-67, 2007, Lecture Notes of Seminario Interdisciplinare di Matematica. ⟨hal-00368524⟩
253 Consultations
0 Téléchargements

Partager

More