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Abstract—In this paper, a kinematic model of a four-wheel
skid-steering mobile robot is presented and a receding horizon
stabilizing control law for the system is developed, based on
the optimization of a quadratic cost function on the system
states and control inputs. Global asymptotic stability of the
nominal system with actuator saturation constraints is analyt-
ically proven and a simple dynamical model is constructed for
validation purposes. The robustness and performance of the
controller were tested under simulation on both models and
the results are presented and discussed.

Index Terms— Skid-steering, Non-holonomic systems, Global
stabilization, Receding Horizon Control, Quadratic optimiza-
tion, Actuator saturations.

I. INTRODUCTION

The control of non-holonomic systems has become a
widespread research topic since many underactuated me-
chanical systems, such as vehicles and robotic manipulators,
fall within this category. Extensive literature can be found
on the subject (see e.g. [9,11,12,18,19]).

The trajectory tracking problem, i.e. having the system
follow a desired path, has been tackled in several different
ways. The first main approach consists in high-level con-
trollers implemented using tools such as fuzzy logic [13,20]
but they offer, in general, little analytical performance guar-
antees. The second important approach consists in using
a Control Lyapunov Function to construct an appropriate
(i.e. stable) controller. While quite popular, e.g. [3,7, 13],
it has the inconvenient of being unable to guarantee stability
if the reference does not preserve some level of activity.
Commonly, it requires the velocity of the reference to be
different from zero at all times.

To achieve stabilization with a static reference, three main
techniques are often used. The first one consists in a time-
varying feedback in the form of a kinematic oscillator like
those used in [10, 15]. The second technique is the use of
discontinuous, time-invariant stabilization using piecewise
continuous controllers; see [2, 14]. Finally, the third approach
is Model Predictive Control (MPC, or Receding Horizon
Control) which uses piecewise constant controls. See for
instance [1,5,6,16,17].

We will focus on the MPC approach which consists in
solving, for each sample period, a finite-horizon, optimal
control problem for the open-loop system. This generates
a viable trajectory for the nominal system on which only the
first control value will be applied. By using a varying-length
horizon instead of a fixed one, final state constraints can
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be included. This ensures that, at the end of the prediction
horizon, the system will have reached a set of allowed states.
Part of the work developed was directed at proving that the
proposed MPC scheme is always able to find a solution to
the optimal control problem under the given constraints and
for finite errors in position with non-zero actuator saturation
levels.

The use of MPC was favored due to the possible inclusion
of hard-constraints (such as actuator saturations and possibly
forbidden states) as well as energetic considerations into the
calculation of the control profiles. Since a complete control
profile is calculated at each time interval, the controller is
also inherently robust with respect to previous disturbances.
The main problem tackled was assuring the robust feasibility
of the proposed algorithm (this is, that it will be able to
find a path at all times even when a disturbance seriously
disrupts the state of the system). The most evident limitation
of this approach is the associated computational cost; but
efficient routines exist to solve quadratic optimization prob-
lems and the system under consideration is not required to
be extremely fast.

The main objectives of this paper are to present a kine-
matic MPC controller along with an analytical proof of its
stability and to test its robustness w.r.t. unmodeled dynamics.
It will also be shown that the particular velocity profile cho-
sen for the angle subsystem permits bounding the prediction
horizon required to solve the optimization problem. This is
an improvement over previous approaches since it simplifies
the stability proof and implies the feasibility of finite-time
stabilization under the given conditions.

In the first section, we will develop a kinematic model for
the skid-steering vehicle. In the second section, the control
problem will be stated and the corresponding open-loop and
closed-loop control laws will be introduced. Also a sketch
of the proof of asymptotic stability for the nominal system
will be presented. In the third section, a dynamic model used
for controller validation under simulation will be obtained.
Finally, simulation results and conclusions will be presented.

II. KINEMATIC MODEL

We now consider the well-known unicycle model [3,7,
10, 13] for the kinematic analysis, based on the hypothesis
of negligible longitudinal slip in all four wheels and a rigid
structure.



The equation describing the evolution of the system is:
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Where u is the linear velocity of the system and v its
angular velocity.

Since it is known that this system does not satisfy the
Brockett conditions, there exists no stabilizing continuous
state feedback [4]. More details on the obstruction can be
found in [19] and [18].

A. Stabilizing Control Law Synthesis

Given a position reference q,., I considered constant in the
case of stabilization, it is possible to define the position error
of the robot in the relative frame of reference x,¢;Gy,e; as
follows:
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To simplify the notation, this vector (in the relative coor-
dinate system) will be referred to as the error vector; thus
avoiding the inclusion of the “rel” subindexes.

Based on the approach proposed in [1,5,16] we will set to
develop a model predictive receding horizon stabilizing con-
trol. Since finding the optimal solution of the global problem
is quite complex; we will separate it into two subsystems: (6)
and (x,7)7, and then find an appropriate trajectory for each
one. We will not in general obtain a globally optimal path;
but it can be computed faster. Furthermore, we can obtain
interesting energetic properties while taking into account
from the beginning the boundedness of control inputs.

1) Open-loop Control Problem: Considering the system
as defined in (1) our goal is then to find, at time ¢y, an open-
loop control strategy that drives it from an initial state q, to a
final state q in a time At > 0. Therefore, we will define the
control law in the interval [tg, to + At]. We also consider a
sampling period 7" such that At = NT; N € ZT, T € R™.
By taking the control inputs as constant during each period
T, we can fully define the control law with two vectors:
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Vj < Umags Vi, 7. We will now deviate from the procedure
used in other papers by defining a simpler structure for the
control vector U that allows us to analytically ensure some
properties for the found paths.

For the control of the 6 subsystem, we want to find U
such that the angle is driven from an initial condition 6 to
a final one 6;. Without loss of generality we will consider
0 f= 0.

Since the controls are defined as constant during each
period T, the system, with ¢ = (x,3)7 accepts the following

Where u;, v; verify that —upmaer < Ui < Umazs —VUmaz <

discretization:
¢ - ¢ sin (0 + viT) — sin O
ktl = Sk cos By, — cos (0, + v, T) Uk
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Where & denotes a sum of angles, with the result being
always in (—m, x]. It follows then that the value of § at the
final time can be expressed as:

On =00 [T T TV (5)

Where we will require 0 = 6;. To avoid singularities
where the angle vanishes too quickly (therefore loosing all y
controllability) we will force 6 to drift initially for 6 sampling
periods. We can define then, for a given set of parameters
(N, T, 00,9, ), a single well-characterized trajectory for the

0 subsystem whenever the corresponding ’%‘ < Vmaa
as follows:
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Notice that no viable trajectories will be found if
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Once the V' vector is determined, the evolution of the (
subsystem can be found to be, from (4) and (3):
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Where the coefficients s;, c; are defined as follows:

1
i = —[sin(0; +vT) —sinb;
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If v; ; = 0O the coefficients are calculated using L’Hopital’s
rule as:

s; = T cosb; c; =Tsinb; )

The necessary computation of the 6 trajectory from the
control profile can be done by applying equation (4).

Now we can define a path for the (x,y) subsystem as the
solution of the following quadratic optimization problem:

UN.T,¢,V) = {[|uo w uN—ﬂT’CNZO}
N-1
0 = e Y (06 00

Where O,p > 0 are weighting parameters; the control
inputs are subject to the saturation constraints previously
defined for all w;; and the final state, calculated with the
formula stated in (7), is equal to the desired ( = 0.



Now we can define a set of profiles constituted as:

C(NmamvTa 0074076max36) =
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This set contains all viable control profiles that drive the
system from the given condition at time O to the desired final
condition = 0 in time less or equal N.

2) Closed-loop Control Law: We will now proceed to
define a closed-loop control algorithm for the system and
state our main result.

Algorithm 1:

0: Given the required initial parameters 7', Umazs Umaas
B, O, p, q and the system current position; take an
initial prediction horizon ¢y = N,,q,T where:

1 us TTe
Ninaz = ’VT max (’Umaz ’ 2(lfsin (7’67"”[1”““ ))umaw> —‘
1 d(b.,
N [ ( 77)}
T ﬂvmam
Where d(-,-) is an appropriate metric for $!, (in this

case the smallest angle between 6. and m); and r, =
H(‘/'Ce7 ye)T”. Also set:

™
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1: Calculate the set of control profiles C as defined in
(11). If C = 0 go back to Step O (for instance, if 6
vanishes too quickly due to the effect of disturbances).

2: Define the “best” control profile (Uopt,f/opt) as the
control profile (U, V) € C that minimizes:

N—-1
pUTU + Y ¢log

=0

JU,V)=qVTV +

With O, p,q > 0.

3: The control law is given, at any time by applying the
first element of Uopt and Vopt, reducing N by one (if
N > 1) and going back to Step 1.

In order to treat the case of stabilization around a non-zero
reference, a coordinate change such that q;..; = 0 has to be
applied to the system.

Lemma 1: Choosing the initial prediction horizon from
Step 0 of the algorithm; we will always find a nonempty
C provided that 8T vy, is neither zero nor a multiple of
2.

Proof: We will invert the problem and characterize a
region of the state space that can be reached in a time smaller
or equal to the prediction horizon, and then show that it
includes the reference. Within the limits of this proof, we
will still consider 6,.; = 0 but take (o = 0 instead.

Since we can reach, with our choice of d,,,,, an angle at a
distance of at most € from 7 (this error is in turn bounded by
% since it is at most half a step of the initial turning
phase). We shall consider that we start from 7 at a time

(6 + 1)T and then observe the effects of the initial error in
the range of the system.

From that point on, a control with no initial angle drift
will follow; which implies a constant v = WA_%.

At any time instant, we can define the radius of curvature
of the path being followed by the cart as: p; =

For this value of v, let us analyze the paths that can be
followed starting from the initial position (A in figure 1).
We know the algorithm will steadily bring 6 from 7 to O
with no overshoot (with |u| constant); which in fact tells us
that the followed path will have a length of 7p, being p the
corresponding radius of curvature. Considering at most one
inflection point in the sign of u, the resulting path can be
thought of as following first an arc in a circle of radius p
tangent to the initial conditions of the vehicle subtending
an angle ¢ (AE or AE’ in figure 1); then changing to
another circle, tangent to the first at the inflection point, and
following it for an angle ¢ (ED or E’D). Here ¢+ =,
as clearly seen in the figure.

Fig. 1. Path respecting all the constraints and therefore belonging to C.

We can compute for any curvature radius, with the given
constant v, the time required to follow the path while
respecting saturation constraints:

1
=T [T max (57, 72) W

Also, since the maximum time required to get to the
necessary initial angle condition is when a turn of 7 is
performed, the time to reach the delta used in this proof

is: 1 d(8,. )
P?Tr
t B T’7 ﬁvmax —‘

In the figure it is clear that B, F¥ and C' are collinear (for
B and C are the centers of two circles tangent at F) and that
AB is parallel to C'D (they are both vertical lines); therefore
we can easily deduce that |AD| = | BC| and, from analogous
reasoning, equal also to |B’C’|. Since the distance between
B and C is clearly twice the radius of the circles we can
then say that the time required to get from point A to any
point D that lies in a circle of radius 2p by following this
kind of path is the sum of both computed times.

Considering an initial distance of ¢ between the final
obtained angle and the desired 7 is analogous to considering

(12)

13)



the reference as forming an angle +e with respect to the
horizontal (as portrayed in figure 1 with the point D’). By
applying the triangle inequality, we know that |AD'| >
|AD| — |DD'|; and therefore we can bound the reachable
radius in time ¢; + ¢, by noting that [DD’| = 2psin (5) and
|AD| = 2p.

Using the original distance from the reference and equat-
ing it to the reachable radius; the upper bound for the
necessary time horizon that assures a suitable path to reach
any point at a distance < r., and thus the reference, is found
to be Nyaud . |

Theorem 2: For the system defined in (1) and subject to
saturation constraints —U;er < U < Umaz> —Vmaz < U <
Umaaz; let Q. f be a desired final value in the configuration
space of the system and q,, the state of the system at time
kT. Then, Algorithm 1 defines a control law that stabilizes
the system around q,.. .

Proof: 'Taking Lemma 1, we will use J (f]opt,f/opt)
as a candidate Lyapunov function (where (Uom, Vopt) is the
optimal path last chosen by the algorithm). We can appreciate
that it is positive definite at all times and zero if and only if
the final state can be reached without control action (meaning
that we are already there and the error is zero). Furthermore,
whenever the error is different from zero, the function is
obviously strictly decreasing at all times; since from any
time, and by following the same path as the previous instant,
all the terms in J (0Opt, Vopt) at time k + 1 were present at
time k, plus a non-negative term (due to the quadratic nature
of the weighting function). The only exception is when the
algorithm chooses a different path, but it implies then that a
smaller J(-) was found; therefore the function .J (Uopt, Vopt)
is still strictly decreasing.

We can further say that .J (Uopt, Vopt) will reach zero in
finite time following directly from Lemma 1 if the initial er-
ror was bounded. This proves the global asymptotic stability
of the nominal system under the defined control law. [ ]

III. DYNAMIC MODELING FOR CONTROLLER
VALIDATION

In order to test the controller under simulation, a dynamic
model of the system was developed by taking into account
an approximation of Coulomb friction and point contact for
the wheel-ground interaction, as well as first-order actuator
dynamics. The model was also simplified by reducing the
vehicle (originally four-wheeled) to a two-wheeled version,
still based on skid-steering, see figure 2. The center of gravity
lies exactly between both wheels in the common axis.

Fig. 2. Top view of the simplified system.

The Coulomb friction model was approximated as in [8]

by a linear region with a high slope A\. As A goes to
infinity the model behaves as Coulomb friction; otherwise, a
small slippage is required to equilibrate external forces. The
equation describing the friction coefficients (ratio between
friction and normal forces at the contact point) is then:

(s) = {‘9A
:umaw

Where s is the relative velocity of the contact surfaces,
and ft;q. 1S the maximum value of the friction coefficient

The friction coefficients are computed with (14) where, for
each wheel, s is obtained as the resulting vector of velocities
w.r.t. the ground in the x,¢;Gy,.; coordinate system. This
velocity, for the right wheel is calculated as:

sl = \/(5en —wnR)? + 5

Segr = Szt cd
Se| cosf sinf| |z
[SJ - [ sinf cos 0] [y}

Where R is the radius of the wheels; wg is the angular
velocity of the right wheel; c is half the distance between
the tires; and z, v, 0 are the current velocities of the system
in global coordinates. The left wheel analysis is completely
analogous. The corresponding friction forces acting on the
left and right wheels f7 and fr are computed by multiplying
ur, g by the normal force.

The accelerations are, therefore:

if [sA] < timaas

14
if |SA| > tmax 14

(15)

i ~ 0 0| [ fr, + fr.
gl=10 & Of| fr,+fr, (16)
0 0 0 % fR,,C*fLmC

Where m is the system mass and I the moment of inertia
around G. The accelerations are integrated to obtain the
system velocities and integrated again to obtain the position.

Control variables » and v from section II are translated to
desired angular velocities for the wheels as follows:

U —;cv wr, = U Rcv a7

First order actuator dynamics are considered for the track-
ing of these desired angular velocities, product of a low-level
controller at each wheel which will not be addressed here.

WRaes =

IV. SIMULATION RESULTS

The control algorithm was implemented in Matlab and
tested on the proposed dynamic model. The controller pa-
rameters for the different cases were obtained by tuning the
parameter in order to obtain good performances.

The implementation of the algorithm incorporates a tol-
erance level below which, no control action will be taken.
This is, when:

q; Wa, <c¢ (18)

Where W is a weighting matrix. In this case, for validation
100 0 O

purposes, we have selected W = 0 100 O]; and
0 0 10

€ = 0.001. This means that we accept a maximum error of
approximately 3 [mm] in position or 0.6 [deg] in orientation.



Kinematic a=b=0.25 [m],
¢=0.20 [m], R =0.108 [m]
Dynamic | m = 14 [kg], I = 0.07 [kg - m?]
Friction A = 1000, tmaz = 0.6
(rubber on wet asphalt)
Actuators Umaz = 0.56 [m/s],
Umaz = 0.56 [rad/s],
7 = 0.0625 [s]
. 05 0
Regulation p=q=10= 0 05
B3=0.5T=1.5[g]

TABLE I
PARAMETERS USED FOR THE SIMULATIONS

A. Stabilization

Case 1: For the first proposed scenario with the dynamic
model, the initial position of the robot is q, = (0, 3,0)7 and
it should, of course, reach the position q,.; = (0,0,0)7.
This is a difficult case since the reference is completely
parallel to the initial condition. The trajectories followed
by both the kinematic and dynamic models of the vehicle
can be seen in Figure 3(a). The difference between these
trajectories is quite small. The steady state errors are found
to be 1.7 [mm] in z, 0 [mm)] in y and 3.7 x 10~* [rad] in 0;
which fall within accepted levels. The final state is reached in
approximately 31.5 seconds, as seen in Figure 3(b) and (c).
Notice in Figure 3(d) that the control values remain within
the preestablished limits at all times. The cost function, as
appreciated in Figure 3(e), is always decreasing, as expected.
Case 2: Also, in Figure 4, the capacity of the regulator to
stabilize the system around a non-zero reference was tested.
The initial posture was q, = (0, 1,0)7 and the reference was
chosen as q; = (—0.5,-0.5, —%’“)T. In Figure 4(a), a top-
view of the trajectory followed by the system is presented.
In this case, the final position was reached in 21.2 [s], as
seen in 4(b) and (c), while the final errors in position were
1.2 [mm] in @, 2.1 [mm] in y and 9 x 10~* [rad] in theta;
again within tolerated levels. In Figure 4(d), control values
are inside the permitted range and the cost function in 4(e)
is decreasing.

V. CONCLUSIONS

In this paper, a Model Predictive Control scheme was
proposed for a Skid-Steering Mobile Robot permitting the
asymptotic stabilization of the system around an arbitrary
reference position. Furthermore, asymptotic stability of the
nominal system under this scheme was analytically proven,
as well as the existence of solutions in finite time for bounded
position errors and non-zero saturation levels by using an
approach based on the specific choice of the angular velocity
profile. The computational cost was reduced by separating
the system into two subsystems before solving the (convex)
optimization problem.

As seen in simulation results, the overall performance of
the controller is comparable to that obtained by the use of
a kinematic oscillator (see for instance [10]) but with the

advantages of incorporating actuator saturation constraints
and energetic considerations into the computation of the sys-
tem trajectory. Robustness of the controller w.r.t. unmodeled
dynamics was tested under simulation with both the ideal
kinematic model and a more complete dynamic one.

REFERENCES

[1] M. Alamir and N. Marchand, Constrained minimum-time-oriented
feedback control for the stabilization of nonholonomic systems in
chained form, Journal of Optimization Theory and Applications 118
(2003), 229-244.

[2] A. Astolfi, Exponential stabilization of a wheeled mobile robot via
discontinuous control, Journal of Dynamic Systems, Measurements
and Control 121 (1999), 121-126.

[3] Salim Belkhous, Adel Azzouz, Maarouf Saad, Chahe Nerguizian,
and Vahe Nerguizian, A novel approach for mobile robot navigation
with dynamic obstacles avoidance, Journal of Intelligent and Robotic
Systems (2005).

[4] R. W. Brockett, Asymptotic stability and feedback stabilization, Dif-
ferential Geometric Control Theory, 1983, pp. 181-191.

[5] Ahmed Chemori and Nicolas Marchand, Global discrete time stabi-
lization of the PVTOL aircraft based on a fast predictive controller,
IFAC World Congress, 2008.

[6] S. Jakubek, M. Seyr, and G. Novak, Autonomous mobile robot pro-
pioceptive navigation and predictive trajectory tracking, International
Journal of Control 81 (2008), 989-1001.

[7] Yutaka Kanayama, Yoshihiko Kimura, Funio Miyazaki, and Tetsuo
Noguchi, A stable tracking control method for an autonomous mobile
robot, Proceedings of the IEEE International Conference on Robotics
and Automation, 1990.

[8] Ryo Kikuuwe, Naoyuki Takesue, Akihito Sano, Hiromi Mochiyama,
and Hideo Fujimoto, Fixed-step friction simulation: From classical
coulomb model to modern continuous models, International conference
on intelligent robots and systems, 2005.

[9] Ilya Kolmanovsky and N. Harris McClamroch, Developments in non-
holonomic control problems, IEEE Control Systems (1995), 20-36.

[10] Krzysztof Kozlowski and Dariusz Pazderski, Modeling and control of
a 4-wheel skid-steering mobile robot, International Journal of Applied
Mathematics and Computer Science 14 (2004), 477-496.

[11] David A. Lizrraga, Obstructions to the existence of universal stabilizers
for smooth control systems, Mathematics of Control, Signals, and
Systems 16 (2003), 255-277.

[12] Alessandro De Luca and Giuseppe Oriolo, Modeling and control of
nonholonomic mechanical systems, Kinematics and dynamics of multi-
body systems, 1995, pp. 277-342.

[13] Elie Maalouf, Maarouf Saad, and Hamadou Saliah, A higher level path

tracking controller for a four-wheel differentially steered mobile robot,

Robotics and Autonomous Systems 54 (2006), 23-33.

Nicolas Marchand and Mazen Alamir, Discontinuous exponential

stabilization of chained form systems, Automatica 39 (2003), 343—

348.

[15] Dariusz Pazderski, Krzysztof Kozlowski, and W. E. Dixon, Tracking
and regulation control of a skid steering vehicle, ANS tenth interna-
tional topical meeting on robotics and remote systems, 2004.

[16] G. Poulin, A. Chemori, and N. Marchand, Minimum energy oriented
global stabilizing control of the PVTOL aircraft, International Journal
of Control 80 (2007), 430-442.

[17] Arthur Richards and Jonathan P. How, Model predictive control
of vehicle maneuvers with guaranteed completion time and robust
feasibility, Proceedings of the American Control Conference, 2003,
pp. 4034-4040.

[18] Eduardo D. Sontag, Mathematical control theory, deterministic finite
dimensional systems, 2nd ed., Springer-Verlag, 1998.

, Stability and stabilization: Discontinuities and the effect of
disturbances, Proceedings of NATO Advanced Study Institute: Non-
linear Analysis, Differential Equations, and Control, 1998, pp. 551-
597.

[20] Amel Zerigui, Xiang Wu, and Zong-Quan Deng, A survey of rover
control systems, IJCSES International Journal of Computer Sciences
and Engineering Systems Vol.1, No.2 (2007), 105-109.

[14

[19]



yiml

staes

Fig. 3. Stabilization around zero: (a) Top view of the trajectory followed by
the dynamic and kinematic models; (b) Evolution of the = and y positions
over time; (¢) Evolution of the orientation angle; (d) Applied control signals;

(e)

(e) Evolution of the cost function J(Uopt, Vopt)-
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Fig. 4. Stabilization around a non-zero reference: (a) Top view of the
trajectory followed by the dynamic model; (b) Evolution of the = and y
positions over time; (c) Evolution of the orientation angle; (d) Applied
control signals; (¢) Evolution of the cost function J (Uopz, Vgpt).



