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ABSTRACT

This paper presents a spatio-temporal saliency model that
predicts eye movement during video free viewing. This
model is inspired by the biology of the first steps of the
human visual system. The model extracts two signals from
video stream corresponding to the two main outputs of the
retina: parvocellular and magnocellular. Then, both signals
are split into elementary feature maps by cortical-like filters.
These feature maps are used to form two saliency maps: a
static and a dynamic one. These maps are then fused into
a spatio-temporal saliency map. The model is evaluated
by comparing the salient areas of each frame predicted by
the spatio-temporal saliency map to the eye positions of
different subjects during a free video viewing experiment
with a large database (17000 frames). In parallel, the static
and the dynamic pathways are analyzed to understand what
is more or less salient and for what type of videos our model
is a good or a poor predictor of eye movement.

keywords: Saliency, Spatio-temporal model, Gaze pre-
diction, Video viewing

1. INTRODUCTION

Usually, people do not look at every object in the visual field
but concentrate on some salient regions. In the visual field,
the spatial regions which attract attention, and thereforethe
eyes, are usually called salient. The emerging problem is
how to design a model that puts salient areas in conspicuous
locations. The answer relates to modeling human visual at-
tention with saliency maps; this has been of growing interest
to many researchers for the last few decades. The saliency of
a spatial location depends mainly on two factors: one is task-
independent and the other is task-dependent. The first one
is often called bottom-up and is mainly driven by low-level
processes depending on the intrinsic features of the visual
stimuli. The latter refers to top-down processes. It is more
complex to model because it integrates high-level processes
(task, cognitive state...) [1].

Most computational models of visual attention are
bottom-up and are inspired by the concept of Feature Inte-
gration Theory (FIT) of Treisman and Gelade [2]. The first
model was described by Koch and Ullman [3]; like most of
the models, it concentrates on spatial image features such as
color, contrast, orientation... Several models [4], [5] are in-
spired by this theory; the most popular is the one proposed by
L. Itti et al. [6] and it has become a reference for all research
on saliency. Motion feature has been added to this model

more recently [7] and to others [8], [9] to create saliency
models for videos.

Following a similar approach, a spatio-temporal bottom-
up saliency model is proposed. This model differs from ex-
isting ones on several points:
• The model of the two outputs of the retina which pro-

vides two different signals: using a retina model, the sig-
nal processed by the static pathway differs from the one
processed by the dynamic pathway. The useful informa-
tion is separated to provide more efficient signals to both
pathways [10].

• The compensation of the camera motion: using camera
motion compensation, we detect only the areas that move
against the background. Not only are moving areas de-
tected, but we define a motion contrast map by estimating
the module of the motion for each pixel.

• The method of fusion of static and dynamic saliency
maps: a new fusion to combine the static and the dy-
namic pathway outputs is proposed. This fusion mod-
ulates the different saliency maps with adaptive coeffi-
cients for each frame. These coefficients were chosen by
analyzing simple statistics (mean, maximum and skew-
ness) on both outputs. We classified the videos using
these statistics and we analyzed in detail to what extent
low-level descriptors may contribute to the guidance of
eye movement.
For this model, we only concentrated on some basic fea-

tures: signal orientations and spatial frequencies for thestatic
saliency, and the module of motion for the dynamic saliency.
We chose to concentrate only on these basic features and not
to add color, stereo or other features, first, because the chosen
features are predominant for saliency and, second, because
we wanted to understand better how these features are corre-
lated with human eye movement and how to combine them to
create a spatio-temporal saliency map. Other features could
be added in further research.

The proposed model is described in section 2. Section
3 presents an experiment that records the eye movements of
fifteen people looking at a large number of videos (17000
frames). In section 4, an evaluation of the proposed model is
drawn, and after a detailed analysis of the static and dynamic
pathways a new fusion method is presented to combine both
outputs to create a spatio-temporal saliency map.

2. MODEL

The proposed model is inspired by the first steps of the hu-
man visual system, from the retina cells to the complex cells
of the primary visual cortex. The visual information goes
through the retina preprocessing to the cortical-like filter de-



Figure 1: Schema of the proposed spatio-temporal saliency
model

composition [10],[11]. The retina extracts two signals from
each frame that correspond to the two main outputs of the
retina [12]. Each signal is then decomposed into elementary
features by a bank of cortical-like filters [13]. These filters
are used to extract both static and dynamic information, ac-
cording to their frequency selectivity, providing two saliency
maps: a static and a dynamic one. Both saliency maps are
combined to obtain a master spatio-temporal saliency map
per video frame (Fig. 1). This map predicts the gaze direc-
tion to particular areas of the frame analyzed.

2.1 Retina model

The retina, which has been described in detail in [14], [12],
[15], is composed of different neural layers. The flow of
information goes from the photoreceptors to the horizontal
cells that provide a local average of the incoming informa-
tion. The bipolar cells take the difference of the outputs of
the photoreceptors and the horizontal cells. Amacrine cells
provide a second local average of the bipolar cells output.

The retina has two outputs formed by different ganglion
cells: parvocellular output and magnocellular output. Parvo-
cellular output provides detailed information which can be
simulated by extracting the high spatial frequencies of an
image. This output enhances frame contrast, which attracts
human gaze in static frame [16]. Magnocellular output re-
sponds rapidly and provides global information which can
be simulated by using lower spatial frequencies. The pro-
posed model (Fig. 2) decomposes the input frame into differ-
ent frequency bands: a high spatial frequency one to provide
a “parvocellular-like” output and a lower spatial frequency

Figure 2: Retina model

one to simulate the “magnocellular-like” output (Fig. 3).

2.1.1 The retina “parvocellular-like” output

First, luminance coming from the real word is captured by
the photoreceptors which act as a low-pass filter with a high
cut-off frequency. Horizontal cells play the role of a low-
pass filter of the photoreceptor’s output and are modeled by
a gaussian filter.

Bipolar cells calculate the difference of the outputs of the
photoreceptors and the horizontal cells, which corresponds to
a high-pass filtering of the frame. Bipolar cellsOn retain the
positive part of this difference while bipolar cellsOff retain
the absolute value of the negative part:

bipolar On= max{0,y−h}

bipolar O f f = max{0,h−y}

The output of the bipolar cells is given by the difference of
the bipolar cellsOnand the bipolar cellsOff :

bipolar cells= bipolar On−bipolar O f f

The output of the ganglion cells, formed by the bipolar
cells, is used to model the parvocellular output of the retina.
Therefore, the “parvocellular-like” output reveals framecon-
trast and helps to whiten its spectrum. This output is the first
stage of the static pathway of the model (Fig. 3(c)).

2.1.2 The retina “magnocellular-like” output

Human beings see stable and moving components in a mov-
ing scene effortlessly. An object tracked by the camera is
seen as moving even if it is stationary on the frames. We as-
sume that visual attention is attracted by motion contrast and
we define it as the motion of regions against background. The
first step, before the retina filter, is the compensation of the
background motion to estimate the relative motion of regions
against background.

Background is supposed to represent more than half of
the frame’s pixels. In this case, background motion is also
called dominant motion and is computed using the 2D mo-
tion estimation algorithm developed in [17]. This algorithm
provides dominant motion compensation between two suc-
cessive frames by carrying out a robust multi-resolution esti-
mation of an affine parametric motion model. The parametric
model chosen here is an affine one with 6 parameters:
{

vx = a1 +a2.x+a3.y
vy = a4 +a5.x+a6.y

where (a1,...,a6) are the estimated parameters andvx andvy
are the vectorial components of the dominant motion com-
puted at position(x,y) using the previous parameters.

After the camera motion compensation, the two frames
(the current frame and the next compensated frame) go
through the retina filter. The bipolar cells calculate the dif-
ference between the photoreceptors and the horizontal cells’



(a) (b)

(c) (d)

Figure 3: Retina model: a) Input image, b) Horizontal cell
response, c) “Parvocellular-like” output, d) “Magnocellular-
like” output.

outputs. This difference acts as a high pass filter that whitens
the energy spectrum of the frame. Then, the amacrine
cells act as a low-pass filter that eliminates high frequencies
(gaussian filter). The resulting equivalent filter is a band-pass
filter. This output corresponds to the Magnocellular outputof
the retina and is the first stage of the dynamic pathway of the
model (Fig. 3(d)).

2.2 Cortical-like filters

Visual information is decomposed into different spatial fre-
quencies, orientations, colors and motion in the primary vi-
sual cortex (V1) [18],[13],[19]. In this model, we choose
to not study color information and Gabor filters are used to
model V1 cells to extract frequencies, orientations and mo-
tion information. These filters are a good compromise of res-
olution between the frequential and spatial domains. Each
filter Gi j (Eq.1), at orientationi and at frequencyj, is de-
termined by its central radial frequencyf j and its standard

deviationsσθ
i j andσ f

i j in orientationθ j and its orthogonal ori-

entation, respectivelyi = 1, ..,Nθ , j = 1, ..,Nf and
f j

f j−1
= 2

with fNf = 0.25. We choseσθ
i j = σ f

i j , which is justified in the
next section.

The number of orientations and frequencies were respec-
tively fixed atNθ = 6 andNf = 4, for the static pathway ac-
cording to preliminary experiments (Fig. 4). For the dynamic
pathway, the spatial resolution is lower; so only the three low
frequency bands were used (f1, f2 and f3.)

Gi j (u,v) = exp

{
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2
+

v′2

2σθ
i j

2

)}

(1)

with:
{

u′ = ucos(θi)+vsin(θi)
v′ = vcos(θi)−usin(θi)

The output of each filter corresponds to an intermediate map

Figure 4: Configuration of Gabor filters in the frequential
domain: 6 orientations and 4 frequency bands.

mi j . These maps are the equivalent of some of the elementary
features of Treisman’s Theory [2].

2.3 The static pathway

2.3.1 Interactions between filters

Neuron responses in the primary visual cortex are influenced
by other neurons as far as excitation and inhibition are con-
cerned. We considered two types of interactions based on
the range of the receptive fields. Short interactions reinforce
objects belonging to a specific orientation while long inter-
actions are used for contour facilitation [20].

Short interactions introduce inhibition between neurons
of neighboring orientations and overlapping receptive fields.
For the standard deviations of the cortical-like filters, ifσθ

i j >

σ f
i j it is more orientation-selective but reduces the inhibitive

interaction. So, we choseσθ
i j = σ f

i j . Short interactions occur
with the same pixel in different intermediate mapsmi j . Each
pixel is excited by similar pixels in the other maps of the
same orientation but different frequencies and inhibited by
those of different orientations but similar frequency (Fig. 5).

The second interaction type is long range interaction
which occurs among collinear neurons beyond the receptive
fields. This type of interaction is worked out in each interme-
diate map by convolution with a “butterfly” mask [20]. This
mask (Fig. 6) consists of an excitory part in the correspond-
ing orientation of the intermediate mapmi j and an inhibitive
part in other orientations. It was normalized in such a way
that its summation was equal to one. The mask size is in-
versely proportional to the frequency of the corresponding
intermediate mapmi j .

2.3.2 Normalization and summation

A region is salient if it is different from its neighbors. Thus,
to strengthen the intermediate maps that have spatially dis-
tributed maxima, the method proposed by Itti [6] is used.
After being normalized in[0,1], each mapmi j was multi-
plied by (max(mi j )−mi j )

2 wheremax(mi j ) andmi j are its
maximum and average respectively. Then, all values in each
map that were smaller than 20% of its maximum were set to
0.

Finally, all intermediate maps were added together to
obtain a static saliency mapMs(x,y,k) for each framek
(Fig. 7(a), 7(b)).



Figure 5: Short interactions for intermediate mapsmi j .

Figure 6: Butterfly mask used for long interactions.

2.4 The dynamic pathway

Dynamic saliency is linked to motion and particularly to
the motion of a region against the background. The
speed of moving region against background was computed
using a motion estimator on compensated frames at the
“Magnocellular-like” output of the retina.

2.4.1 Motion estimation

A differential approach, described in detail in [21], was used.
It relies on the assumption of luminance constancy.

The motion at location(x,y) in framet is given by vector
V(x,y,t) which satisfies the optical flow constraint equation
(Eq. 2)

∇I(x,y, t).V(x,y, t)+
∂ I(x,y, t)

∂ t
= 0 (2)

where I(x,y,t) is the luminance of the pixel at the position
(x,y) in the framet.

For each frame, the optical flow constraint was applied to
each output of the cortical-like filters, with the same radial
frequency, leading to an over-determined system of equa-
tions allowing the aperture problem to be overcome. For each
pixel (x,y), a motion vector(vx,vy) was computed, solving the
system (Eq. 3) with a least square estimation using Biweight
Tuckey’s function.
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whereΩp
i = ∂ (I∗Gi.)

∂ p , Gi. is one of the cortical-like filter at the
orientationi, andI is the “Magnocellular-like” output of the
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Figure 7: Example of a natural scene (a) with its static
saliency mapMs (b) and its dynamic saliency mapMd (c).

retina. The optical flow constraint creates an accurate estima-
tion only for low motion. A robust multiresolution scheme is
needed to estimate a large scale of speed. A first approxi-
mation of motion was done with frames at coarse resolution
to estimate fast motion; this displacement was then compen-
sated and the residual motion was estimated at a finer resolu-
tion.

A motion vector was defined (per pixel) by its module,
corresponding to the speed, and its angle, corresponding to
the motion direction. As we assume the motion saliency map
of a region is linked to its speed against background, we only
used the module of this motion vector to define the dynamic
saliency of the area.

2.4.2 Temporal filtering

A temporal median filter was applied to remove noise. If
a pixel had a motion in one frame but not in the previous
ones, it is most probably noise resulting from the motion es-
timation. This temporal filter was applied on five successive
frames (the current frame and the four previous ones) and
the filter was reinitialized after each shot cut to avoid arti-
facts. A dynamic saliency mapMd(x,y,k) was obtained for
each framek (Fig. 7(a), 7(c)).

2.5 Fusion

The saliency maps obtained at the outputs of the static and
the dynamic pathways do not have the same range of val-
ues. To carry out the fusion, the raw saliency information,
without normalization, was retained to take advantage of this
difference and to promote the more accurate saliency map.
However, the range of values of the static saliency map and
the dynamic one is compatible. Neither of these two kinds of
maps had systematically outperforming values. For the static
saliency map the normalization was done on the intermedi-
ate mapsmi, j , the maximum of static saliency values were
around 1.7 and could go up to 2.7. The dynamic saliency
maps, had to respect the theorem of shannon in the temporal
domain, the maximum speed would be limited, considering
the frame rate. The maximum of dynamic saliency values
was around 2.7 and could reach 9.
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Figure 8: Examples of fused saliency maps: (a)Mmean, (b)
Mmax and (c)Mand of a natural scene (Fig. 7(a)). The NSS
are respectively 1.07, 0.67 and 2.20.

Three different fusions were proposed:
• a mean fusion, taking the pixel average of the two

saliency maps:
Mmean=

Ms+Md
2

• a maxfusion, taking for each pixel the maximum of the
two saliency maps:
Mmax= Max(Ms,Md)

• a pixel by pixel multiplicative fusion corresponding to a
logicaland:
Mand = Ms×Md

Examples of these fusions are given in Fig. 8. TheMmean
fusion modulates one map with the other. If an area is salient
for the static map but not for the dynamic one, the fusion
saliency is lower than it was in the static one. For theMmax
fusion, an area has the highest saliency between static and
dynamic maps and is less selective. In theMand there are
small salient regions, which could be spread all over the
saliency map. This multiplicative fusion is the most selective
one. In this case, an area needs to be salient simultaneously
in the static and the dynamic maps to be salient in the fused
map. The usually usedMmean [22] andMmax give saliency
maps that are close. For the latter, results are presented with
the Mand fusion only as it gives the best results experimen-
tally.

3. EXPERIMENT

The goal of this part is to compare the results given by
our model to the human eye position density map obtained
through an eye movement experiment. Both bottom-up and
top-down influence eye position. The bottom-up saliency
model proposed is used to quantify the contribution of low-
level saliency to eye movements. To better prevent top-down
processes, we did not use classical videos but instead we used
small clips, as was done by Itti [23]. The aim is to remove
all semantic content from videos as far as possible. For that,
videos were split into small clips and these clips, from differ-
ent video sources, were put together [24].

Participants:
Fifteen human observers (3 women and 12 men, aged from

23 to 40 years old). All participants had normal or corrected
to normal vision, and were not aware of the purpose of the
experiment. They were asked to look at videos without any
particular task.

Apparatus and experimental design:
Eye tracking was performed by an Eyetracker Eyelink II (SR
Research). During the experiment participants were sitting
with their chin supported in front of a 21′′ color monitor (75
Hz refresh rate) at a viewing distance of 57 cm (40◦ × 30◦

usable field of view). A 9-point calibration was carried out
every five stimuli and a control drift was done before each
stimuli.

Stimuli:
This experiment is inspired by an experiment of Carmi and
Itti [23]. Fifty-three videos (25 fps, 720×576 pixels/frames)
were selected from heterogeneous sources including movies,
TV shows, TV news, animated movies, commercials, sport,
music clips. These 53 videos gathered indoor, out-door, day-
time and night-time sources. The 53 videos were cut every 1-
3 seconds (1.86± 0.61) into324 clip snippets. The length of
the clip snippet was chosen randomly, the only constraint was
to obtain a snippet without any shot cuts. These clip snip-
pets were then strung to form20 clipsof 30 seconds (30.20
± 0.81). Each clip contained at most one clip snippet from
each continuous source. The choice of the clip snippets and
their duration were random to prevent subjects anticipating
shot cuts. As the proposed model is bottom-up, clip snippets
were used to minimize potential top-down influence on eye
movements. Stimuli (17000 frames) were presented on gray
level without audio as the model did not consider color and
audio information.

Human eye position density maps:
We recorded and analyzed the eye positions. The eyetracker
records the eye position at 500 Hz. The eyetracker records
20 eye positions per frame for the two eyes. The median of
all these positions was taken (with X-axis median and Y-axis
median) for each subject and for each frame. For each frame
the points of all the subjects were gathered. Then we applied
a 2D gaussian function to each point to obtain the human eye
position density map,Mh(x,y,k). The standard deviation of
the gaussian was chosen to have a diameter at half the height
of the gaussian equal to 0.5◦ of visual angle.

4. RESULTS

We analyzed the eye positions rather than the fixation points
for two reasons. First, we had more data when choosing all
the eye positions, and so we could extract one point per frame
and per subject. Second, in most of the cases, eye positions
and fixations are very close except during smooth pursuit.
So by retaining all the eye positions we obtained data even
during smooth pursuit. The aim is to compare the salient
areas given by the model, with the fixated areas.

Various criteria have been proposed and used for this
comparison: the Kullback-Leibler distance [25] or the Re-
ceiver Operator Curve (ROC) [26] (others examples can be
found in [23], [8], [27]). In this paper, we chose to focus
on the correlation coefficient and the Normalized Scanpath
Saliency (NSS) [28]. This last criteria was especially de-
signed to study eye movement data and so, the corresponding
results can be easily interpreted. The correlation coefficient
and the NSS lead to the same conclusion on the data analysis.
However, the correlation coefficient is very dependent on the



standard deviation of the gaussian applied to gaze positions
to compute the human eye position density map. The NSS
was therefore preferred. The NSS criteria is a Z-score, (also
called standard score). This Z-score expresses the divergence
of the experimental result from the model mean as a number
of standard deviations of the model. The larger the value of
Z, the less probable it is that the experimental result is dueto
chance. The NSS is computed using the equation:

NSS(k) =
Mh(x,y,k)×Mm(x,y,k)−Mm(x,y,k)

σMm(x,y,k)
(4)

where Mh(x,y,k) is the human eye position density map
normalized to obtain unit mean, andMm(x,y,k) the model
saliency map. The model saliency map can be the static, dy-
namic or fused maps. This is equivalent to normalize each
saliency map to have a zero mean and a unit standard de-
viation and to retain, on the normalized saliency map, the
value corresponding to gaze locations of subjects and then
to average the retained values over subjects. If the mean of
the saliency values at eye position is equal to the mean of
saliency value on the whole frame (the NSS is null), there
is no link between eye position and saliency. If the mean
of the saliency values at eye position is lower than the mean
of saliency values on the whole frame (the NSS is negative),
eye position tends to be on non-salient regions. If the mean
of the saliency values at eye position is higher than the mean
of saliency values on the whole frame (the NSS is positive),
eye position tends to be on salient regions.

4.1 Global analysis

The NSS was computed for each frame of every clip (17000
frames). In order to test if our model is a good predictor
of human eye movements, the mean NSS value is calcu-
lated using the model saliency map (static, dynamic, fusion
of both) and the experimental data. To compare our model
we used two sets of experimental data. For the first set, we
associated to each frame of a clip snippet the correspond-
ing eye movement of subjects when they were looking at
the videos. This first set is called the real eye movements,
in opposition to the second set called the partially random-
ized eye movements. For this second set, we associated to
a frame the eye movement of subjects when they were look-
ing at another clip snippet. We only kept the frame position
inside a clip snippet. This second comparison is to ensure
that our model predicts the salient areas of specific frame
and not simply predicts subjects eye movements without any
correlation with the content of the frame. If our model is a
good predictor of salient areas and because the NSS value
was defined to compare computational saliency map with
eye movements, we should observe low values of NSS when
comparing our model with partially randomized eye move-
ments and high NSS values when comparing our model with
real eye movements. Using partially randomized eye move-
ments also prevents the effect of central bias of eye position
on model evaluation [26]. Partially randomized eye move-
ments were obtained using subject eye position and not using
random sampling: the same bias as real eye movement was
then observed. Thus, the difference of NSS between real eye
movement and partially randomized eye movement is not due
to the fact that subjects are more likely to stare at the center
of the image than to look at the image randomly. The mean

NSS value is given for three models of saliency maps (static,
dynamic and the fusion of both) in comparison with real eye
movements and the partially randomized eye movements, in
Table 1.

Saliency maps Ms Md Mand
Real eye movements 0.68 0.87 0.96

Partially randomized eye movements0.33 0.14 0.14

Table 1: Mean NSS value on all the clips for the three models
of saliency maps (static, dynamic and multiplicative fusion)

ComparingMand with real eye movement gives the best
results. The mean of the saliency values at the eye position
was around one standard deviation away from the mean of
saliency values on the whole frame. As expected, NSS values
are higher when comparing the three models with real eye
movements than when comparing with partially randomized
eye movements (F(1,84968)=10497.07; p≡0).

If we analyze what happened with the partially random-
ized eye movements, the mean NSS value for the static
saliency map is more than twice the mean NSS value for the
dynamic saliency map. This can be explained by the fact
that, the static and the dynamic saliency maps have different
appearance. For most of the frames, the static saliency map
highlights areas spread over the whole frame. In fact all,
the frames represent naturalistic scenes with textured area.
On the contrary, the dynamic saliency map can exhibit small
and compact areas corresponding to moving objects. By so
doing, random eye position is, on average over all frames,
more likely to be on a salient region in the static saliency
map than in the dynamic saliency map. If all the subjects
had the same eye movement pattern, the results may be more
closely linked to this pattern than to the actual saliency on
the videos. By testing our model with partially randomized
eye movements, we can see that there is no such common
eye scan path, and that the high mean NSS is caused by the
relevance of the saliency model and not a plausible strategy
of eye position during video viewing.

Moreover the dynamic pathway gives better results than
the static one (F(1,28328)=275.40; p≡0). The fusion gives
the best result (F(2,42482)=276.06; p≡0), both pathways are
needed to obtain improved results.

The model is also compared to simple heuristics as it
is usually done in the literature [23], [16]. This compari-
son tests if our model is more accurate in predicting saliency
than a simple model only based on low level image descrip-
tors such as luminance. Two static naive heuristics and one
dynamic naive heuristic were tested. The two static naive
heuristics were the entropyH and the standard deviationSD
of pixels’ luminance. The image was split into patches of
16× 16 pixels and the entropy or standard deviation was
computed on each patch. This value was propagated on the
corresponding pixels of the patch to form an entropy saliency
mapMsnH and a luminance standard deviation saliency map
MsnSD. A gaussian filter was applied to each map to spread
the patch border effect. The dynamic naive heuristicMdn
was the absolute difference of the pixels of two consecutive
frames. This difference highlights the moving pixels. Note
that no dominant motion compensation was done before. In
fact, we just wanted to compare our model with a simple
naive heuristic and so without using motion 2D [17] which is
an elaborate preprocessing.



The mean NSS value is given for the saliency map ob-
tained for the three simple heuristics in comparison with
real eye movements, in Table 2. The proposed fused
saliency model (meanNSS= 0.96 (Table 1)) gives more ac-
curate saliency prediction than the simple heuristics tested
(F(3,56658)=1046.64; p≡0).

Saliency map MsnH MsnSD Mdn
Real eye movements 0.54 0.44 0.54

Table 2: Mean NSS value on all the clips for two static naive
heuristics (entropyH and standard deviationSD of pixels’
luminance) and one dynamic naive heuristic (absolute differ-
ence of the pixels of two consecutive frames)

All these observations were in agreement with our expec-
tation and means that our model can predict real eye move-
ments. Research had shown that motion is the feature that
attracts the human gaze the most. This has been shown ex-
perimentally but also using saliency models [23], [29]. As
expected, the NSS value is higher when comparing dynamic
saliency to static. However, we need to take into account
both pathways to obtained the highest NSS value.

4.2 Temporal analysis

The previous results are an average over all frames. It can
be interesting to see if there is an evolution of the NSS value
during clip snippets. Such a study was carried out previously
for static images [27], [30] and for videos [8], [23]. Because
the proposed model is a bottom-up one, it can only predict
human gaze for the first fixations of subjects when looking
at a static image or for the first few frames when looking
at a video. Figure 9 presents the NSS value as a function
of frame position inside a clip snippet for the static saliency
mapsMs, the dynamic onesMd and the fusion of bothMand
with real eye movements. We also present the results for par-
tially randomized eye movements for the static pathwayMs′

and for the dynamic oneMd′ . The curves with partially ran-
domized eye movements do not have the same shape as the
curves with real eye movements, as the first ones hardly vary
with time. These curves present very low NSS values that
are typical of no correspondence between the model and the
experimental data. All the other curves obtained for real eye
movements have the same shape. The maximum NSS value
is reached for all the curves (Fig. 9) at about the 13th frame,
which corresponds to 520 ms, then curves decrease slowly.
The shape of these curves can be explained by the fact that, at
the beginning, only bottom-up influences occurred, followed
by top-down processes. Studies have found that bottom-up
influences act faster than top-down processes [1], [31]. If
this is the case, we should observe that bottom-up influences
occur before top-down processes. In [30], [23] saliency ef-
fects were stronger just after the stimuli onset than later on,
while in [26] no saliency dependencies on time were found.
Our results are in accordance with [30], [23].

We analyze the bottom-up influence with another indica-
tor: the dispersion of eye position between subjects. This
dispersion is plotted for all the clip snippets (Fig. 10). The
dispersionD is defined by:

D =
1

N2 ∑
i, j<i

d2
i, j

Figure 9: NSS as a function of frame. NSS is averaged on
324 clip snippets for different saliency maps: staticMs, dy-
namicMd, fusion of bothMand, static with partially random-
ized eye movementsMs′ , dynamic with partially randomized
eye movementsMd′

Figure 10: DispersionD of eye positions as a function of
frame. The dispersion is averaged on 324 clip snippets

whereN is the number of subjects,di, j is the distance be-
tween the eye position of subjecti and j. A low value of
dispersion corresponds to close fixations by subjects. Low
values of dispersion are more probably explained by bottom-
up influences: the saliency is given by the intrinsic features
of the stimuli and is the same for all observers. On the other
hand, the top-down processes involve the cognitive state and
the prior knowledge of each subject, and tend to be different
for different subjects. The dispersion curve is in accordance
with the NSS curve. With bottom-up influence, subjects look
at salient regions and the dispersion of their gaze decreases
as NSS increases. Top-down processes occur too, and dis-
persion increases as subjects gaze at different regions, NSS
decreases.

During the first few frames, NSS is low and dispersion
is high. This can be explained by the fact that after each
shot cut, the gaze stays at the previous position during a few
frames and then moves to a salient region. We can assume
that there is some time shifting between the time a region,
present on the screen, is salient and the time this region is
fixed by subjects. Figure 11 shows NSS as a function of time
for the dynamic saliency map without and with an offset, i.e.
a shift of three frames (=120 ms) between the saliency map



Figure 11: NSS as a function of frame for the dynamic
saliency map with and without offset.

and the fixation considered (the NSS of the first frame of
a clip snippet was computed considering the third fixation
frame). With the offset, the curve is shifted to the left, which
means a greater correspondence between the human fixations
and the saliency model earlier in the clip. This result was
expected as we know there is a saccade latency around 150
ms.

The duration of preponderance of bottom-up influences
on static images usually reach 150 to 300 ms after stimulus
onset [32], [33]. If we take into account the offset, the first
maximum of the NSS curve corresponds to the first mini-
mum of the dispersion curve and is about 8 frames; this cor-
responds to 320 ms which is above the usual reported time
of 150ms for static images. However, video stimuli are used
instead of still images, and to our knowledge, no time values
for the predominance of bottom-up influences using video
stimuli were previously reported.

The evolution of the NSS value as a function of the frame
position inside a snippet fits well with the fact that (1) our
model is a bottom up model so it can only predict eye move-
ments for the first frames, and (2) the dispersion of the eye
positions of subjects increases with frame position (Fig. 10).

4.3 Detailed analysis of the two pathways

The proposed model is a good predictor of the eye move-
ments of subjects when looking freely at clip snippets. How-
ever, this model is a better predictor for the first frames of a
snippet. It can be interesting to inquire now what is more at-
tractive in the static saliency map and what is more attractive
in the dynamic saliency map.

As we said before, the static and the dynamic saliency
maps do not have the same appearance. On one side, the
static saliency map exhibits a large number of salient ar-
eas, corresponding to textured areas, which are spread over
the whole image. On the other side, the dynamic saliency
map can exhibit only small and compact areas corresponding
to moving objects. Concerning the question “what is more
salient in the static and the dynamic pathways?” we can sup-
pose:
• for the static map: a frame would be salient if its static

saliency map has a high value and not if its static saliency
is spread. The saliency of a frame would be correlated
with the maximum of its corresponding static saliency
map.

(a) (b)

(c) (d)

Figure 12: Examples of a natural scene (a) with a dynamic
saliency map (b) with low skewness (1.00) and a natural
scene (c) with a dynamic saliency map (d) with high skew-
ness (8.62)

• for the dynamic map: a frame would be salient if its dy-
namic saliency map has small and compact areas. The
saliency of the frame would be linked to the number and
the size of the salient areas in its corresponding dynamic
saliency map.

To test these two hypotheses, we introduced two statis-
tics: the maximum and the skewness of the saliency map
[24]. The maximum is characteristic of the static map. The
skewness is characteristic of the dynamic saliency map. They
should indicate the saliency prediction efficiency of the map.

In fact, we observed that a dynamic saliency map with a
high skewness corresponds, in general, to a map with only
small and compact areas. Whereas a dynamic saliency map
with a low skewness value corresponds to a map with spread
salient areas, or to a map with a small salient area but with
different motion values (different gray levels). These obser-
vations correspond to the fact that skewness is a measure of
the degree of asymmetry of a distribution; here, the distrib-
ution of the gray values of dynamic saliency map pixels is
considered. If a frame contains a small moving area, its dy-
namic saliency map would exhibit only a small area. Its dis-
tribution would have a high and sharp peak close to zero and
another peak, smaller and wider, close to the motion value;
this would induce a mean greater than the mode and so, a
high skewness. On the other hand, for a frame with a lot of
moving areas, the dynamic saliency map distribution would
still have a peak close to zero but would have another more
spread out peak around the motion value (more spread than in
the previous example); this would reduce the asymmetry and
so decrease the skewness. The skewness is also decreased in
the case of a small area with a diffuse motion. These exam-
ples are illustrated in figure 12.

Using these two statistics, on the static saliency map,
in one part, and on the dynamic saliency map, in a second
part, we classified our videos into four groups: 1)high skew-
ness high maximum, 2) high skewness low maximum, 3)
low skewness high maximum, 4) low skewness low maxi-
mum. Each snippet is labeled 1) 2) 3) or 4) on static saliency



Figure 13: NSS as a function of frame for clip snippets cat-
egorized using maximum and skewness for static saliency
map

map (Fig. 13) and on the dynamic one (Fig. 14). The NSS
is plotted as a function of frame for the four categories of
snippets. If our hypotheses are verified, we should observe
the highest NSS values for the videos with a high maximum
value for the static saliency map and the highest NSS values
for the videos with a high skewness value for the dynamic
saliency map. The static pathway is more predictive for snip-
pets with high maximum in static saliency (maximum of the
curve above 0.8). The main information is given by the maxi-
mum saliency; if a frame has a high maximum saliency value,
there is an attractive region in this frame. On the other hand,
if the frame has a low maximum saliency the most attractive
region is less attractive than in the previous frame (Fig. 15).
The dynamic pathway is more predictive for snippets with
higher skewness (maximum above 1.1). The dynamic map
Md(x,y,k) gives motion information, but now the salient re-
gions may be small (Fig. 12 a, c). If there is only a small
moving region, the saliency must be concentrated on this re-
gion. If there is only a dynamic salient region, the gaze of all
the subjects would be concentrated there. However if there
are several regions with equivalent dynamic saliency, sub-
jects’ gaze would be spread over these different regions. The
fact that NSS is higher with lower motion (low maximum)
can be explained by the fact that if the speed of the moving
region is too high it is difficult to track it [34].

A fusion taking advantage of the characteristics of the
static and the dynamic saliency maps is then proposed
(Fig. 16):

Mskew−max= αMs+βMd + γMs×Md

with:
{ α = max(Ms)

β = skewness(Md)
γ = max(Ms).skewness(Md)

The static pathway is modulated by its maximum value
α. The dynamic saliency map is modulated by its skew-
ness valueβ . The reinforcement termγ gives more impor-
tance to the areas that are salient both in a static and dy-
namic way, and so to the small moving region with high static
saliency. This fusion has a mean NSS=1.01 and is signifi-
cantly above theMand fusion (meanNSS= 0.96 (Table 1))
(F(1,28308)=10.54; p=0.0012).

Figure 14: NSS as a function of frame for clip snippets cate-
gorized using maximum and skewness for dynamic saliency
map

(a) (b)

(c) (d)

Figure 15: Examples of a natural scene (a) with a static
saliency map (b) with low maximum (1.53) and a natural
scene (c) with a static saliency map (d) with high maximum
(2.03)

(a) (b)

Figure 16: Example of a natural scene (a) with its saliency
mapMskew−max (b)



5. CONCLUSION

This study presents a new bottom-up saliency model inspired
by the biology of the first steps of the human visual sys-
tem. The model presents a simulation of the two pathways
(magnocellular and parvocellular) of the human visual sys-
tem based on their main known properties. These two path-
ways can be seen as static and dynamic pathways. A video,
coming through the model, is split into spatial and motion in-
formation. This split starts with the two main outputs of the
retina and continues with the cortical cells, sensitive to differ-
ent spatial frequencies for the different pathways. At the out-
put of each pathway, a saliency map is extracted. The static
and the dynamic saliency maps are fused to create a spatio-
temporal saliency map. The model associates a saliency map
to each frame of a video. This map is used to predict the
areas that would be gazed at by people when looking at the
videos.

In order to test the exactness of the proposed model, we
ran an experiment to record eye movements of subjects when
looking freely a large base of videos. We did not use “clas-
sical” videos, but instead, inspired by Itti’s experiment,we
used small clip snippets [23]. This allowed us to compare
experimental data with our model, which is a bottom-up one.
In fact, the model can predict the gaze of people for the first
few frames of a video. Different comparisons to validate
the model were carried out. First, the output of the model
was compared with subject’s gaze and with partially random
gazes. We also compared the model with other simple heuris-
tics. Each comparison showed that our model is significantly
better than the others.

Moreover, we studied the evolution of the model predic-
tion as a function of time (for frames inside each small clip
snippet). The model is more accurate at the beginning of a
clip snippet. This expected result can be explained by two
facts: (1) our model is a bottom up model, which means that
it can only predict the fixations of people for the first frames
of a clip, (2) for the first frames all the subjects were looking
at the same locations (the dispersion between their fixation
points was weak) but they were looking at different locations
at the end of a clip snippet (higher dispersion).

We showed that the dynamic map is more predictive than
the static one. However the fusion of both maps gives the best
results. We also showed that the static saliency covers spread
areas on a frame, on the contrary, the dynamic saliency map
gives motion information on areas that can be small. If there
was only a small moving region, the saliency would be con-
centrated on this region. The maximum is then more relevant
for the analysis at the static saliency maps and the skewness
is more relevant for dynamic saliency maps. These charac-
teristics are then used to compute a new fusionMskew−max
taking advantage of both pathways. Saliency maps are mod-
ulated with maximum and skewness information and a rein-
forcement term that gives more importance to the areas that
are salient both in statically and dynamically, so to the areas
with localized moving region with high static saliency.

In this model, we chose to concentrate only on basic fea-
tures that are predominant for static saliency. The efficiency
of these features has been shown and we understood the im-
portance of each feature better. In future work it would be
interesting to add more features such as color or a spatially
varying sampling of the retina depending on eye positions
to reinforce our model. The model could also be used to

improve video compression or be added to camera motion
analysis [35] to help select frames for a summary of the
video.
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