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DO| 10.1007/511963.009-0215.3 more recently [7] and to others [8], [9] to create saliency

models for videos.
ABSTRACT Following a similar approach, a spatio-temporal bottom-

This paper presents a spatio-temporal saliency model th%ﬁi saliency model is proposed. This model differs from ex-

. ; X Y ."fsting ones on several points:

predicts eye movement during video free viewing. This . .

model is inspired by the biology of the first steps of the ® The model of the two outputs of the retina which pro-

human visual system. The model extracts two signals from Vides two different signals: using a retina model, the sig-

video stream corresponding to the two main outputs of the Nal processed by the static pathway differs from the one

retina: parvocellular and magnocellular. Then, both dgna ~ Processed by the dynamic pathway. The useful informa-

are split into elementary feature maps by cortical-likefdt tion is separated to provide more efficient signals to both

These feature maps are used to form two saliency maps: a Pathways [10]. _ _

static and a dynamic one. These maps are then fused int@ The compensation of the camera motion: using camera

a spatio-temporal saliency map. The model is evaluated Motion compensation, we detect only the areas that move

by comparing the salient areas of each frame predicted by against the background. Not only are moving areas de-

the spatio-temporal saliency map to the eye positions of tected, butwe define a motion contrast map by estimating

different subjects during a free video viewing experiment the module of the motion for each pixel.

with a large database (17000 frames). In parallel, thecstati ® The method of fusion of static and dynamic saliency

and the dynamic pathways are analyzed to understand what maps: a new fusion to combine the static and the dy-

is more or less salient and for what type of videos our model namic pathway outputs is proposed. This fusion mod-

is a good or a poor predictor of eye movement. ulates the different saliency maps with adaptive coeffi-
cients for each frame. These coefficients were chosen by

keywords: Saliency, Spatio-temporal model, Gaze pre- analyzing simple statistics (mean, maximum and skew-

diction, Video viewing ness) on both outputs. We classified the videos using
these statistics and we analyzed in detail to what extent
1. INTRODUCTION low-level descriptors may contribute to the guidance of

eye movement.

Usually, people do not look at every object in the visual field  For this model, we only concentrated on some basic fea-
but concentrate on some salient regions. In the visual fieldyres: signal orientations and spatial frequencies fosthiic
the spatial regions which attract attention, and therefioee  saliency, and the module of motion for the dynamic saliency.
eyes, are usually called salient. The emerging problem igye chose to concentrate only on these basic features and not
how to design a model that puts salient areas in conspicuoyg add color, stereo or other features, first, because theecho
locations. The answer relates to modeling human visual ateatures are predominant for saliency and, second, because
tention with saliency maps; this has been of growing interesye wanted to understand better how these features are corre-
to many researchers for the last few decades. The saliency glted with human eye movement and how to combine them to
a spatial location depends mainly on two factors: one istaskreate a spatio-temporal saliency map. Other featuresl coul
independent and the other is task-dependent. The first o added in further research.
is often called bottom-up and is mainly driven by low-level  The proposed model is described in section 2. Section
processes depending on the intrinsic features of the visualpresents an experiment that records the eye movements of
stimuli. The latter refers to top-down processes. It is morgifteen people looking at a large number of videos (17000
complex to model because it integrates high-level prosessgrames). In section 4, an evaluation of the proposed model is
(task, cognitive state...) [1]. _ . drawn, and after a detailed analysis of the static and dymami
Most computational models of visual attention arepathways a new fusion method is presented to combine both

bottom-up and are inspired by the concept of Feature Integutputs to create a spatio-temporal saliency map.
gration Theory (FIT) of Treisman and Gelade [2]. The first

model was described by Koch and Ullman [3]; like most of 2 MODEL

the models, it concentrates on spatial image features such a '

color, contrast, orientation... Several models [4], [ a- The proposed model is inspired by the first steps of the hu-
spired by this theory; the most popular is the one proposed byan visual system, from the retina cells to the complex cells
L. Itti et al. [6] and it has become a reference for all reskarc of the primary visual cortex. The visual information goes
on saliency. Motion feature has been added to this modehrough the retina preprocessing to the cortical-likerfitte-
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the photoreceptors which act as a low-pass filter with a high
cut-off frequency. Horizontal cells play the role of a low-

A
Interaction Motion pass filter of the photoreceptor’s output and are modeled by
| cstimaton | a gaussian filter.
A y Bipolar cells calculate the difference of the outputs of the

Normalization Temporal photoreceptors and the horizontal cells, which corresptmd
and summation filtering a high-pass filtering of the frame. Bipolar cels retain the

P positive part of this difference while bipolar celiff retain

Static ~ Dynamic the absolute value of the negative part:

saliency map ~ saliency map

bipolar On= max{0,y — h}
bipolar Of f = max{0,h—y}

Spatio-temporal saliency map The output of the bipolar cells is given by the difference of

the bipolar cell©On and the bipolar cell©ff:

Figure 1: Schema of the proposed spatio-temporal saliency

model bipolar cells= bipolar On— bipolar Of f

The output of the ganglion cells, formed by the bipolar
cells, is used to model the parvocellular output of the eetin
composition [10],[11]. The retina extracts two signalsiiro Therefore, the “parvocellular-like” output reveals fraomn-
each frame that correspond to the two main outputs of th&ast and helps to whiten its spectrum. This output is the firs
retina [12]. Each signal is then decomposed into elementargtage of the static pathway of the model (Fig. 3(c)).
features by a bank of cortical-like filters [13]. These fiiter ) ]
are used to extract both static and dynamic information, ac2-1.2 The retina “magnocellular-like” output
cording to their frequency selectivity, providing two s8iCy ~ Human beings see stable and moving components in a mov-
maps: a static and a dynamic one. Both saliency maps affg scene effortlessly. An object tracked by the camera is
combined to obtain a master spatio-temporal saliency mageen as moving even if it is stationary on the frames. We as-
per video frame (Fig. 1). This map predicts the gaze direCsume that visual attention is attracted by motion contrast a
tion to particular areas of the frame analyzed. we define it as the motion of regions against background. The
] first step, before the retina filter, is the compensation ef th
2.1 Retina model background motion to estimate the relative motion of region

The retina, which has been described in detail in [14], [12]29ainst background.

[15], is composed of different neural layers. The flow of ~ Background is supposed to represent more than half of

information goes from the photoreceptors to the horizontathe frame’s pixels. In this case, background motion is also

cells that provide a local average of the incoming informa<alled dominant motion and is computed using the 2D mo-

tion. The bipolar cells take the difference of the outputs oftion estimation algorithm developed in [17]. This algonith

the photoreceptors and the horizontal cells. AmacrinescellProvides dominant motion compensation between two suc-

provide a second local average of the bipolar cells output. Ccessive frames by carrying out a robust multi-resolutidi es
The retina has two outputs formed by different ganglionmation of an affine parametric motion model. The parametric

cells: parvocellular output and magnocellular outputvBar model chosen here is an affine one with 6 parameters:

cellular output provides detailed information which can be) Vx=ai1+az.X+az.y

simulated by extracting the high spatial frequencies of an| Vy =a4+as.X+3as.y

image. This output enhances frame contrast, which attractshere @y,...3¢) are the estimated parameters apndvy

human gaze in static frame [16]. Magnocellular output re-are the vectorial components of the dominant motion com-

sponds rapidly and provides global information which canputed at positiorix, y) using the previous parameters.

be simulated by using lower spatial frequencies. The pro- After the camera motion compensation, the two frames

posed model (Fig. 2) decomposes the input frame into differ(the current frame and the next compensated frame) go

ent frequency bands: a high spatial frequency one to providéarough the retina filter. The bipolar cells calculate thie di

a “parvocellular-like” output and a lower spatial frequgnc ference between the photoreceptors and the horizontal cell
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Figure 3: Retina model: a) Input image, b) Horizontal cell
response, c) “Parvocellular-like” output, d) “Magnocédiu
like” output.

outputs. This difference acts as a high pass filter that white
the energy spectrum of the frame. Then, the amacrin
cells act as a low-pass filter that eliminates high frequenci
(gaussian filter). The resulting equivalent filter is a baads
filter. This output corresponds to the Magnocellular outgut
the retina and is the first stage of the dynamic pathway of th
model (Fig. 3(d)).

2.2 Cortical-like filters

Visual information is decomposed into different spatia-fr
guencies, orientations, colors and motion in the primary vi
sual cortex (V1) [18],[13],[19]. In this model, we choose

Figure 4: Configuration of Gabor filters in the frequential
domain: 6 orientations and 4 frequency bands.

mij. These maps are the equivalent of some of the elementary
features of Treisman’s Theory [2].

2.3 The static pathway
2.3.1

Neuron responses in the primary visual cortex are influenced
by other neurons as far as excitation and inhibition are con-
€erned. We considered two types of interactions based on
the range of the receptive fields. Short interactions regefo
objects belonging to a specific orientation while long inter
actions are used for contour facilitation [20].

€ Short interactions introduce inhibition between neurons
of neighboring orientations and overlapping receptivelfel
For the standard deviations of the cortical-like fiItersrin>

aig it is more orientation-selective but reduces the inhibitiv

interaction. So, we cho&qﬁ’ = aig. Short interactions occur
with the same pixel in different intermediate mapg. Each

Interactions between filters

to not study color information and Gabor filters are used tdPixel is excited by similar pixels in the other maps of the
model V1 cells to extract frequencies, orientations and mosame orientation but different frequencies and inhibitgd b
tion information. These filters are a good compromise of resthose of different orientations but similar frequency (F5y

olution between the frequential and spatial domains. Each The second interaction type is long range interaction

filter Gjj (Eq.1), at orientation and at frequency, is de-
termined by its central radial frequendy and its standard

deviationsoi? andoig in orientationd; and its orthogonal ori-
entation, respectively=1,...Ng, j = 1,..,N¢ and% =2

with fy, =0.25. We chosefije = Ui} , which is justified in the
next section.

The number of orientations and frequencies were respe
tively fixed atNg = 6 andNs = 4, for the static pathway ac-
cording to preliminary experiments (Fig. 4). For the dynami
pathway, the spatial resolution is lower; so only the those |

frequency bands were usefi (f, and f3.)
I

Gij(u,v) = exp{ (

\/2

62
20;;

(V= 1)
2c7i§2

with:
U = ucog &) + vsin(6)
vV =vcog8) —usin(6)

which occurs among collinear neurons beyond the receptive
fields. This type of interaction is worked out in each interme
diate map by convolution with a “butterfly” mask [20]. This
mask (Fig. 6) consists of an excitory part in the correspond-
ing orientation of the intermediate map; and an inhibitive
part in other orientations. It was normalized in such a way
that its summation was equal to one. The mask size is in-
versely proportional to the frequency of the corresponding
fitermediate mam;.

2.3.2 Normalization and summation

A region is salient if it is different from its neighbors. Téu
to strengthen the intermediate maps that have spatially dis
tributed maxima, the method proposed by ltti [6] is used.
After being normalized in0,1], each mapm; was multi-
plied by (maxmjj) —mj)? wheremaxm;) andm; are its
maximum and average respectively. Then, all values in each
map that were smaller than 20% of its maximum were set to
0.

Finally, all intermediate maps were added together to
obtain a static saliency mapls(x,y,k) for each framek

The output of each filter corresponds to an intermediate magrig. 7(a), 7(b)).
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Figure 7: Example of a natural scene (a) with its static
saliency mapMs (b) and its dynamic saliency mayy (c).

retina. The optical flow constraint creates an accuratmesti
tion only for low motion. A robust multiresolution scheme is
needed to estimate a large scale of speed. A first approxi-
mation of motion was done with frames at coarse resolution
to estimate fast motion; this displacement was then compen-
sated and the residual motion was estimated at a finer resolu-
tion.
2.4 The dynamic pathway A motion vector was defined (per pixel) by its module,

. . - . . corresponding to the speed, and its angle, corresponding to
Dynamic saliency is linked to motion and particularly 10 the motion direction. As we assume the motion saliency map
the motion of a region against the background. They , region is linked to its speed against background, we only

speed of moving region against background was computégseq the module of this motion vector to define the dynamic
using a motion estimator on compensated frames at tr‘g\a"ency of the area.

“Magnocellular-like” output of the retina.

Figure 6: Butterfly mask used for long interactions.

2.4.1 Motion estimation 2.4.2 Temporal filtering
A differential approach, described in detail in [21], wasdis
It relies on the assumption of luminance constancy.

The motion at locatiorfx,y) in framet is given by vector
V(x,y,t) which satisfies the optical flow constraint equation

A temporal median filter was applied to remove noise. |If
a pixel had a motion in one frame but not in the previous
ones, it is most probably noise resulting from the motion es-
timation. This temporal filter was applied on five successive
frames (the current frame and the four previous ones) and

(Ea. 2) the filter was reinitialized after each shot cut to avoid-arti
al(x,y,t facts. A dynamic saliency madq(x,y,k) was obtained for
OHX,y.1) .V (X, y,t) + % =0 (2)  each frame (Fig. 7(a), 7(c)).

wher.el(x,y,t) is the luminance of the pixel at the position 5 5 Fusion
(x,y)in the framet.

For each frame, the optical flow constraint was applied tolhe saliency maps obtained at the outputs of the static and
each output of the cortical-like filters, with the same radiathe dynamic pathways do not have the same range of val-
frequency, leading to an over-determined system of equa‘€s. To carry out the fusion, the raw saliency information,
tions allowing the aperture problem to be overcome. For eacw_ithout normalization, was retained to take advant_ageief th
pixel (x,y), @ motion vecto(vy, vy) was computed, solving the difference and to promote the more accurate saliency map.
system (Eq. 3) with a least square estimation using Biweightiowever, the range of values of the static saliency map and

Tuckey’s function. the dynamic one is compatible. Neither of these two kinds of
maps had systematically outperforming values. For th&stat
Qo Q) saliency map the normalization was done on the intermedi-
: : [ Vx } _ : 3) ate mapsm j, the maximum of static saliency values were
9y v I w ; around 1.7 and could go up to 2.7. The dynamic saliency
Qn, O Qp, maps, had to respect the theorem of shannon in the temporal

b a(1+G,) . o domain, the maximum speed would be limited, considering
whereQj” = =55, Gi. is one of the cortical-like filter at the ' the frame rate. The maximum of dynamic saliency values
orientationi, andl is the “Magnocellular-like” output of the was around 2.7 and could reach 9.



23 to 40 years old). All participants had normal or corrected
to normal vision, and were not aware of the purpose of the
experiment. They were asked to look at videos without any
particular task.

Apparatus and experimental design
Eye tracking was performed by an Eyetracker Eyelink Il (SR
Research). During the experiment participants were gittin
@) (®) with their chin supported in front of a ZTolor monitor (75
Hz refresh rate) at a viewing distance of 57 cm(&®BQ¢°
usable field of view). A 9-point calibration was carried out
every five stimuli and a control drift was done before each
stimuli.

Stimuli
This experiment is inspired by an experiment of Carmi and
Itti [23]. Fifty-three videos (25 fps, 720 576 pixels/frames)
were selected from heterogeneous sources including movies
TV shows, TV news, animated movies, commercials, sport,
Figure 8: Examples of fused saliency maps: Niean (b)  music clips. These 53 videos gathered indoor, out-door, day
Mmax and (c)Mgang Of a natural scene (Fig. 7(a)). The NSS time and night-time sources. The 53 videos were cut every 1-
are respectively 1.07, 0.67 and 2.20. 3 seconds (1.86 0.61) into324 clip snippetsThe length of
the clip snippet was chosen randomly, the only constraist wa
to obtain a snippet without any shot cuts. These clip snip-
pets were then strung to forg0 clipsof 30 seconds (30.20

Three different fusions were proposed: + 0.81). Each clip contained at most one clip snippet from
e a mean fusion, taking the pixel average of the two each continuous source. The choice of the clip snippets and
saliency maps: their duration were random to prevent subjects anticigatin
Mmean= Ms;Md shot cuts. As the proposed model is bottom-up, clip snippets
« amaxfusion, taking for each pixel the maximum of the Were used to minimize potential top-down influence on eye

two saliency maps: movements. Stimuli (17000 frames) were presented on gray

Mmax= Max(Ms, Mg) level without audio as the model did not consider color and
o a pixel by pixel multiplicative fusion corresponding to a @udio information. _

logical andt Human eye position density maps

Mang = Ms X Mg We recorded and analyzed the eye positions. The eyetracker

records the eye position at 500 Hz. The eyetracker records
rﬁo eye positions per frame for the two eyes. The median of
Il these positions was taken (with X-axis median and Y-axis
median) for each subject and for each frame. For each frame
points of all the subjects were gathered. Then we applied

Examples of these fusions are given in Fig. 8. Migean
fusion modulates one map with the other. If an area is salie
for the static map but not for the dynamic one, the fusio
saliency is lower than it was in the static one. For .

fusion, an area has the highest saliency between static a . ; : .
dynamic maps and is less selective. In Mg there are a 2D gaussian function to each point to obtain the human eye

small salient regions, which could be spread all over th%)osition density mapMn(x, y, k). The standard deviation of
saliency map. This multiplicative fusion is the most setect he gaussian was chosen to have a diameter at half the height

one. In this case, an area needs to be salient simultaneoudlf/iNe 9aussian equal tod) of visual angle.
in the static and the dynamic maps to be salient in the fused
map. The usually useMnean[22] and Mmax give saliency 4. RESULTS

maps that are close. For the latter, results are presented wi " L .
the Mang fusion only as it gives the best results experimen-we analyzed the eye positions rather than the fixation points

tall for two reasons. First, we had more data when choosing all
V. S ;
the eye positions, and so we could extract one point per frame
and per subject. Second, in most of the cases, eye positions
3. EXPERIMENT and fixations are very close except during smooth pursuit.
The goal of this part is to compare the results given bySo by retaining all the eye positions we obtained data even
our model to the human eye position density map obtaineduring smooth pursuit. The aim is to compare the salient
through an eye movement experiment. Both bottom-up andreas given by the model, with the fixated areas.
top-down influence eye position. The bottom-up saliency Various criteria have been proposed and used for this
model proposed is used to quantify the contribution of low-comparison: the Kullback-Leibler distance [25] or the Re-
level saliency to eye movements. To better prevent top-downeiver Operator Curve (ROC) [26] (others examples can be
processes, we did not use classical videos but instead wle usiund in [23], [8], [27]). In this paper, we chose to focus
small clips, as was done by Itti [23]. The aim is to removeon the correlation coefficient and the Normalized Scanpath
all semantic content from videos as far as possible. Foy thaSaliency (NSS) [28]. This last criteria was especially de-
videos were split into small clips and these clips, fromatiff  signed to study eye movement data and so, the corresponding
ent video sources, were put together [24]. results can be easily interpreted. The correlation coeffici
Participants and the NSS lead to the same conclusion on the data analysis.
Fifteen human observers (3 women and 12 men, aged frotdowever, the correlation coefficient is very dependent en th



standard deviation of the gaussian applied to gaze positiolNSS value is given for three models of saliency maps (static,
to compute the human eye position density map. The NS8ynamic and the fusion of both) in comparison with real eye

was therefore preferred. The NSS criteria is a Z-scorep (alsmovements and the partially randomized eye movements, in
called standard score). This Z-score expresses the divegge Table 1.

of the experimental result from the model mean as a number

of standard deviations of the model. The larger the value af Saliency maps Ms | Mg | Mang
Z, the less probable it is that the experimental result istdue Real eye movements 0.68| 0.87 | 0.96
chance. The NSS is computed using the equation: Partially randomized eye movement$.33 | 0.14 | 0.14

Table 1: Mean NSS value on all the clips for the three models
NSSK) — Mn(X,Y,K) X Mm(X,¥,K) — Mm(X,y,K) (4) Of saliency maps (static, dynamic and multiplicative fugio
OMm(x,y;k)

, . . ComparingMgng With real eye movement gives the best
where My(x,y,k) is the human eye position density map resyits. The mean of the saliency values at the eye position
normalized to obtain unit mean, amdkn(x,y,k) the model a5 around one standard deviation away from the mean of
saliency map. The model saliency map can be the static, dyjiency values on the whole frame. As expected, NSS values
namic or fused maps. This is equivalent to nqrmallze eache higher when comparing the three models with real eye
saliency map to have a zero mean and a unit standard dgjoyements than when comparing with partially randomized
viation and to retain, on the normalized saliency map, theye movements (F(1,84968)=10497.0Z0).
value corresponding to gaze locations of subjects and ther' ¢ \ye analyze what happened with the partially random-
to average the retained values over subjects. If the mean gfgq eye movements, the mean NSS value for the static
the saliency values at eye position is equal to the mean Qyjiency map is more than twice the mean NSS value for the
saliency value on the whole frame (the NSS is null), thergjynamic saliency map. This can be explained by the fact
is no link between eye position and saliency. If the mean,; the static and the dynamic saliency maps have differen
of the saliency values at eye position is lower than the meagphearance. For most of the frames, the static saliency map
of saliency values on the whole frame (the NSS is negativehighiights areas spread over the whole frame. In fact all,
eye position tends to be on non-salient regions. If the meaghe frames represent naturalistic scenes with textureal are
of the saliency values at eye position is higher than the mea@, the contrary, the dynamic saliency map can exhibit small
of sallenqy values on the Wholg frame. (the NSS is positive)gng compact areas corresponding to moving objects. By so
eye position tends to be on salient regions. doing, random eye position is, on average over all frames,
more likely to be on a salient region in the static saliency
map than in the dynamic saliency map. If all the subjects
The NSS was computed for each frame of every clip (17000ad the same eye movement pattern, the results may be more
frames). In order to test if our model is a good predictorclosely linked to this pattern than to the actual saliency on
of human eye movements, the mean NSS value is calcuhe videos. By testing our model with partially randomized
lated using the model saliency map (static, dynamic, fusioeye movements, we can see that there is no such common
of both) and the experimental data. To compare our modadye scan path, and that the high mean NSS is caused by the
we used two sets of experimental data. For the first set, weelevance of the saliency model and not a plausible strategy
associated to each frame of a clip snippet the corresponaf eye position during video viewing.
ing eye movement of subjects when they were looking at Moreover the dynamic pathway gives better results than
the videos. This first set is called the real eye movementdhe static one (F(1,28328)=275.40=0). The fusion gives
in opposition to the second set called the partially randomthe best result (F(2,42482)=276.0&®), both pathways are
ized eye movements. For this second set, we associated teeded to obtain improved results.

a frame the eye movement of subjects when they were look- The model is also compared to simple heuristics as it
ing at another clip snippet. We only kept the frame positioris usually done in the literature [23], [16]. This compari-
inside a clip snippet. This second comparison is to ensurson tests if our model is more accurate in predicting sajienc
that our model predicts the salient areas of specific framéan a simple model only based on low level image descrip-
and not simply predicts subjects eye movements without antors such as luminance. Two static naive heuristics and one
correlation with the content of the frame. If our model is adynamic naive heuristic were tested. The two static naive
good predictor of salient areas and because the NSS valbeuristics were the entropy and the standard deviati@D

was defined to compare computational saliency map witlof pixels’ luminance. The image was split into patches of
eye movements, we should observe low values of NSS whett x 16 pixels and the entropy or standard deviation was
comparing our model with partially randomized eye move-computed on each patch. This value was propagated on the
ments and high NSS values when comparing our model witkkorresponding pixels of the patch to form an entropy sajienc
real eye movements. Using partially randomized eye movemapMsny and a luminance standard deviation saliency map
ments also prevents the effect of central bias of eye positioMgnsp A gaussian filter was applied to each map to spread
on model evaluation [26]. Partially randomized eye movethe patch border effect. The dynamic naive heuriifig,
ments were obtained using subject eye position and not usingas the absolute difference of the pixels of two consecutive
random sampling: the same bias as real eye movement wkames. This difference highlights the moving pixels. Note
then observed. Thus, the difference of NSS between real eykat no dominant motion compensation was done before. In
movement and partially randomized eye movement is not dufact, we just wanted to compare our model with a simple
to the fact that subjects are more likely to stare at the centenaive heuristic and so without using motion 2D [17] which is
of the image than to look at the image randomly. The meamn elaborate preprocessing.

4.1 Global analysis



The mean NSS value is given for the saliency map ob- S

tained for the three simple heuristics in comparison with '
real eye movements, in Table 2. The proposed fused 12
saliency model (meaNSS= 0.96 (Table 1)) gives more ac- ,
curate saliency prediction than the simple heuristicsetest

(F(3,56658)=1046.64:50). ) e

0.6 M
Saliency map MsnH | Msnsp | Mgn 04 %ﬁ\\, .y o ]
Real eye movements 0.54 | 0.44 | 0.54 o T e A
Table 2: Mean NSS value on all the clips for two static naive ° M M,

heuristics (entropyH and standard deviatio8D of pixels’ 02— frames
luminance) and one dynamic naive heuristic (absoluterdiffe
ence of the pixels of two consecutive frames)
Figure 9: NSS as a function of frame. NSS is averaged on
All these observations were in agreement with our expec324 clip snippets for different saliency maps: stafig dy-
tation and means that our model can predict real eye movéiamicMq, fusion of bothMang, static with partially random-
ments. Research had shown that motion is the feature thiged eye movementdy, dynamic with partially randomized
attracts the human gaze the most. This has been shown eg€ movementMy
perimentally but also using saliency models [23], [29]. As
expected, the NSS value is higher when comparing dynamic ‘
saliency to static. However, we need to take into account vaties
both pathways to obtained the highest NSS value. 5000

4500

4.2 Temporal analysis

The previous results are an average over all frames. It can
be interesting to see if there is an evolution of the NSS value
during clip snippets. Such a study was carried out prevjousl 3000
for static images [27], [30] and for videos [8], [23]. Becaus
the proposed model is a bottom-up one, it can only predict
human gaze for the first fixations of subjects when looking 2000
at a static image or for the first few frames when looking . rames
at a video. Figure 9 presents the NSS value as a function L
of frame position inside a clip snippet for the static satien
mapsMsg, the dynamic oneMy and the fusion of bottVgng
with real eye movements. We also present the results for p
tially randomized eye movements for the static pathhy
and for the dynamic onkly. The curves with partially ran-
domized eye movements do not have the same shape as the
curves with real eye movements, as the first ones hardly vatynareN is the number of subjectsj, ; is the distance be-
with time. These curves present very low NSS values tha{,een the eye position of subjeic'ar{(]d i. A low value of
are typical of no correspondence between the model and thgspersion corresponds to close fixations by subjects. Low
experimental data. All the other curves obtained for real ey, 5),,e5 of dispersion are more probably explained by bottom-
movements have the same shape. The maximum NSS valyg jnfluences: the saliency is given by the intrinsic feaure
is reached for all the curves (Fig. 9) at about th&' #&me,  of the stimuli and is the same for all observers. On the other
which corresponds to 520 ms, then curves decrease slowlyang, the top-down processes involve the cognitive state an
The shape of these curves can be explained by the fact that,ik prior knowledge of each subject, and tend to be different
the beginning, only bottom-up influences occurred, folldwe for different subjects. The dispersion curve is in accocgan
by top-down processes. Studies have found that bottom-Ugjth the NSS curve. With bottom-up influence, subjects look
influences act faster than top-down processes [1], [31]. Ift salient regions and the dispersion of their gaze decsease
this is the case, we should observe that bottom-up influenceg NSS increases. Top-down processes occur too, and dis-
occur before top-down processes. In [30], [23] saliency efpersjon increases as subjects gaze at different regior, NS
fects were stronger just after the stimuli onset than later o gecreases.
while in [26] no saliency dependencies on time were found.  pyying the first few frames, NSS is low and dispersion
Our results are in accordance with [30], [23]. ___is high. This can be explained by the fact that after each
We analyze the bottom-up influence with another indicashot cut, the gaze stays at the previous position during a few
tor: the dispersion of eye position between subjects. Thigames and then moves to a salient region. We can assume
dispersion is plotted for all the clip snippets (Fig. 10).€Th that there is some time shifting between the time a region,
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-igure 10: DispersioD of eye positions as a function of
rame. The dispersion is averaged on 324 clip snippets

dispersiorD is defined by: present on the screen, is salient and the time this region is
fixed by subjects. Figure 11 shows NSS as a function of time

D= 1 z d2. for the dynamic saliency map without and with an offset, i.e.
NZ, &, a shift of three frames (=120 ms) between the saliency map



NSS

values
1.4

0.8

0.6

0.4 (MM,

02 (2) M with offset |

o . . . . . .
0 10 20 30 40 50 60 70 frames

Figure 11: NSS as a function of frame for the dynamic
saliency map with and without offset. )

Figure 12: Examples of a natural scene (a) with a dynamic
and the fixation considered (the NSS of the first frame ofaliency map (b) with low skewness (1.00) and a natural
a clip snippet was computed considering the third fixatiorscene (c) with a dynamic saliency map (d) with high skew-
frame). With the offset, the curve is shifted to the left, athi ness (8.62)
means a greater correspondence between the human fixations
and the saliency model earlier in the clip. This result was
expected as we know there is a saccade latency around 150 . o
ms. ¢ for the dynamic mapa frame would be salient if its dy-

The duration of preponderance of bottom-up influences hamic saliency map has small and compact areas. The
on static images usually reach 150 to 300 ms after stimulus saliency of the frame would be linked to the number and
onset [32], [33]. If we take into account the offset, the first ~ the size of the salient areas in its corresponding dynamic
maximum of the NSS curve corresponds to the first mini- saliency map.

mum of the dispersion curve and is about 8 frames; this cor- Tg test these two hypotheses, we introduced two statis-
responds to 320 ms which is above the usual reported timges: the maximum and the skewness of the saliency map
of 150ms for static images. However, video stimuli are useq24]. The maximum is characteristic of the static map. The
instead of stillimages, and to our knowledge, no time valuegkewness is characteristic of the dynamic saliency mapy The
for the predominance of bottom-up influences using vide&hould indicate the saliency prediction efficiency of theoma

stimuli were p_revioushly reporte(ii. function of the f In fact, we observed that a dynamic saliency map with a
The evolution of the NSS value as a function of the frame,;g, skewness corresponds, in general, to a map with only
position inside a snippet fits well with the fact that (1) our gmail and compact areas. Whereas a dynamic saliency map

model is a bottom up model so it can only predict eye movey iy 4 jow skewness value corresponds to a map with spread
ments for the first frames, and (2) the dispersion of the eyg,jient areas, or to a map with a small salient area but with

positions of subjects increases with frame position (Fl. 1 giterent motion values (different gray levels). Theseabs

. . vations correspond to the fact that skewness is a measure of
4.3 Detailed analysis of the two pathways the degree of asymmetry of a distribution; here, the distrib
The proposed model is a good predictor of the eye movedtion of the gray values of dynamic saliency map pixels is
ments of subjects when looking freely at clip snippets. How-considered. If a frame contains a small moving area, its dy-
ever, this model is a better predictor for the first frames of anamic saliency map would exhibit only a small area. Its dis-
snippet. It can be interesting to inquire now what is more attribution would have a high and sharp peak close to zero and
tractive in the static saliency map and what is more attracti another peak, smaller and wider, close to the motion value;
in the dynamic saliency map. this would induce a mean greater than the mode and so, a
As we said before, the static and the dynamic salienchigh skewness. On the other hand, for a frame with a lot of
maps do not have the same appearance. On one side, tim@ving areas, the dynamic saliency map distribution would
static saliency map exhibits a large number of salient arstill have a peak close to zero but would have another more
eas, corresponding to textured areas, which are spread owgread out peak around the motion value (more spread than in
the whole image. On the other side, the dynamic saliencyhe previous example); this would reduce the asymmetry and
map can exhibit only small and compact areas correspondirgp decrease the skewness. The skewness is also decreased in
to moving objects. Concerning the question “what is morehe case of a small area with a diffuse motion. These exam-
salient in the static and the dynamic pathways?” we can supples are illustrated in figure 12.
pose: Using these two statistics, on the static saliency map,
o for the static map a frame would be salient if its static in one part, and on the dynamic saliency map, in a second
saliency map has a high value and not if its static saliencpart, we classified our videos into four groups: 1)high skew-
is spread. The saliency of a frame would be correlateshess high maximum, 2) high skewness low maximum, 3)
with the maximum of its corresponding static saliencylow skewness high maximum, 4) low skewness low maxi-
map. mum. Each snippet is labeled 1) 2) 3) or 4) on static saliency
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Figure 13: NSS as a function of frame for clip snippets cat-
egorized using maximum and skewness for static salienc

map ¥igure 14: NSS as a function of frame for clip snippets cate-

gorized using maximum and skewness for dynamic saliency
map

map (Fig. 13) and on the dynamic one (Fig. 14). The NSS
is plotted as a function of frame for the four categories of
shippets. If our hypotheses are verified, we should observe
the highest NSS values for the videos with a high maximum
value for the static saliency map and the highest NSS values
for the videos with a high skewness value for the dynamic
saliency map. The static pathway is more predictive for-snip
pets with high maximum in static saliency (maximum of the
curve above 0.8). The main information is given by the maxi-
mum saliency; if a frame has a high maximum saliency value,
there is an attractive region in this frame. On the other hand
if the frame has a low maximum saliency the most attractive
region is less attractive than in the previous frame (Fig. 15
The dynamic pathway is more predictive for snippets with
higher skewness (maximum above 1.1). The dynamic map
Ma (X, Y, k) gives motion information, but now the salient re-
gions may be small (Fig. 12 a, c). If there is only a small
moving region, the saliency must be concentrated on this re-
gion. If there is only a dynamic salient region, the gaze bf al
the subjects would be concentrated there. However if there
are several regions with equivalent dynamic saliency, sub-

jects’ gaze would be spread over these different regions. Thrigure 15: Examples of a natural scene (a) with a static
fact that NSS is higher with lower motion (low maximum) saliency map (b) with low maximum (1.53) and a natural

can be explained by the fact that if the speed of the movingcene (c) with a static saliency map (d) with high maximum
region is too high it is difficult to track it [34]. 2.03)

A fusion taking advantage of the characteristics of the(
static and the dynamic saliency maps is then proposed
(Fig. 16):

Mskew-max = aMs+ BMg + yMs x My

(d)

with:

B = skewnegdMy)

o = maxMs)
{ y = maxMs).skewnegdvly)

The static pathway is modulated by its maximum value R
o. The dynamic saliency map is modulated by its skew- @) (b)
ness valug3. The reinforcement termy gives more impor-
tance 1o the areas that are sallenfc both In a static and (.jﬁgure 16: Example of a natural scene (a) with its saliency
namic way, and so to the small moving region with high static =M (b)
saliency. This fusion has a mean NSS=1.01 and is signifi- PMskew-max
cantly above théVizng fusion (mearNSS= 0.96 (Table 1))
(F(1,28308)=10.54; p=0012).




5. CONCLUSION improve video compression or be added to camera motion
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