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Abstract

In this paper, we deal with the so-called Markovian Arrival process (MAP). An
MAP is thought of as a partially observed Markov process, so that the Expectation-
Maximization (EM) algorithm is a natural way to estimate its parameters. Then,
non-linear filters of basic statistics related to the MAP must be computed. The
forward-backward principle is the basic way to do it. Here, bearing in mind a filter-
based formulation of the EM-algorithm proposed by Elliott, these filters are shown
to be the solution of non-linear stochastic differential equations (SDEs) which allows
a recursive computation. This is well suited for processing large data sets. We also
derive linear SDEs or Zakai equations for the so-called unnormalized filters.

Key-Words Hidden Markov process, Point process, Innovations method, Zakai’s
filter, Queuing theory, Software reliability

1 Introduction

A major issue in stochastic modeling is to calibrate the models from data. Here, we
focus on a class of Markovian models known as the Markovian Arrival Processes (MAP)
(e.g. see Neuts (1989), Asmussen (2000)). An MAP is formally defined as a bivariate
Markov process (Nt, Xt)t≥0 where (Nt)t≥0 is a counting process of “arrivals”, (Xt)t≥0 is a
Markov process with a finite state space, say {1, . . . , n}, and the transition probabilities
of (Nt, Xt)t≥0 satisfy the following additivity property: for any k = 0, 1, i, j = 1, . . . , n,
m ∈ N and 0 ≤ s < t

P{Nt = k +m,Xt = j | Ns = m,Xs = i} = P{Nt −Ns = k,Xt = j | Xs = i}.
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The other transition probabilities are zero. The property above implies that the entries
of the generator A of (Nt, Xt)t≥0 satisfy similar conditions: for k = 0, 1, i, j = 1, . . . , n
and m ∈ N

A
(
(k +m, j), (m, i)

)
= A

(
(k, j), (0, i)

)
:= Dk(j, i)

and the other entries are zero. The equalities above define two n × n-matrices D0, D1.
The non-negative numbers D0(j, i), D1(j, i) (j 6= i) represent the rates at which (Xt)t≥0

jumps from state i to j with no arrival and one arrival respectively. The non-negative
entry D1(i, i) is the rate at which one arrival occurs, (Xt)t≥0 staying in state i. Note
that the Markov process (Xt)t≥0 has the generator Q = D0 +D1. Listing the state space
N× {1, . . . , n} in lexicographic order, the generator of an MAP has the form

A =




D0 0 · · ·

D1 D0
. . .

0 D1
. . .

...
. . . . . .




. (1)

The so-called Markov Modulated Markov Process is the special instance of an MAP
obtained in setting

D1 := Diag(λ(i)) D0 := Q−Diag(λ(i))

where Diag(λ(i)) is a diagonal matrix with ith diagonal entry λ(i) andQ is the generator of
the Markov process (Xt)t≥0. In this model, the arrival instants constitute a Poisson process
with intensity λ(i) during a sojourn time of (Xt)t≥0 in state i. The main properties of
such a class of processes may be found in Fischer and Meier-Hellstern (1993), for instance.

MAPs have been introduced in queuing theory in order to consider Markovian input
streams for queuing systems with non-independent inter-arrival durations. The Markov
property allows to deal with analytically tractable models. This class of models has gained
widespread use in stochastic modeling of communication systems, in reliability for systems
and many other applications areas (e.g see Neuts (1995) for an extensive bibliography).
Our motivation for dealing with MAPs originates in the software reliability modeling using
an “architecture-based” approach. Indeed, a standard model in this context was provided
by Littlewood (1975). It has inspired most other works (see Goseva-Popstojanova and
Trivedi (2001) for a recent survey). The failure process associated with such a kind of
models turns to be a point process associated with a specific MAP. Thus, in our context
of software reliability modeling, (Nt)t≥0 is the counting process of failures and (Xt)t≥0

is interpreted to be a Markovian model of the flow of control between the modules of a
software.

Although of widespread use for more than twenty years now, the statistical analysis
and specifically fitting of MAPs to data, has been discussed only recently. This is a major
issue, especially in software reliability modeling where, to the best of our knowledge, little
has been done for the statistical estimation of the parameters of the architecture-based
models. Since an MAP is specified by the matrices D0, D1, the fitting of MAPs to data
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requires the estimation of the non-negative parameter vector

θ = {Dk(j, i), k = 0, 1 i, j = 1, . . . , n}. (2)

The only available data is the observation of arrivals. In that perspective, the process
(Nt, Xt)t≥0 can be thought of as a partially observed Markov process or a hidden Markov
process. The observed process is the counting process of arrivals (Nt)t≥0 and the state or
hidden process is the finite Markov process (Xt)t≥0. The EM-algorithm is a standard way
to estimate the parameters of hidden Markov processes. Specifically, it has been used by
Rydén (1996) for the Markov Modulated Poisson Process, by Asmussen (1996) for the
Phase-Type distributions, by Breuer (2002), Klemm et al. (2003) for general MAPs. The
numerical experiments reported in their studies show that the EM-algorithm works well
in general. All these works use the standard forward-backward principle which is based
on data processing in batch. Due to the backward pass through the data, the storage cost
is linear in the number of observations. Elliott et al. (1995) has proposed a filter-based
EM-algorithm where the standard forward-backward form of the E-step of the algorithm
is replaced by a single forward pass procedure. The main advantages are that “on-line”
estimation is allowed and the storage cost does not depend on the number of observations
so that very large data sets can be processed. To implement the filter-based approach,
finite-dimensional recursive filters for various statistics related to MAPs must be found
(if there exist). The aim of this paper is to provide such finite-dimensional filters.

The paper is organized as follows. In Subsection 2.1, the basic material on stochas-
tic calculus needed throughout the paper is introduced. Next, the EM-algorithm and
the forward-backward strategy are discussed for MAPs. In Subsection 2.3, the filters as-
sociated with the statistics of interest for using the EM-algorithm are shown to be the
solutions of non-linear stochastic differential equations (SDEs). In Subsection 2.4, the
so-called unnormalized/Zakai filters are proved to be the solution of linear SDEs. These
SDEs allow a recursive computation of filters involved in the re-estimation formulas of the
parameters in (2). They are the main contributions of the paper. The forward-backward
and filter-based strategies are briefly compared in Subsection 2.5. Concluding comments
are reported in Section 3.

2 Finite-dimensional filters

Main notation and convention

• Vectors are column vectors. Row vectors are obtained by means of the transpose
operator (·)⊤. The ith component of any vector v is denoted by v(i).

For any pair of vectors u, v ∈ Rn, 〈u, v〉 = u⊤v, is the usual scalar product in Rn.

1 is a n-dimensional vector with each entry equals to one.

• For any right-continuous with left-hand limits (rcll) function t 7→ ft, the left-hand
limit at t of f is denoted by ft− and ∆ft := ft − ft− for t > 0 is the jump of the
function at time t. We set ∆f0 := f0.
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• The state space of the Markov process (Xt)t≥0 is assumed to be X := {ei, i =
1, . . . , n}, where ei is the ith vector of the canonical basis of Rn.
With this convention, the indicator function 1{Xt=ei} of the set {Xt = ei} is the ith
component of vector Xt, that is 〈Xt, ei〉. In other words, for any time t, the vector
Xt is the n-dimensional vector

Xt =
(
1{Xt=ei}

)n
i=1

.

Therefore, the sum of the components of vector Xt, 〈1, Xt〉, is equal to 1 for any
time t.

• All processes are assumed to be defined on the same probability space (Ω,F ,P). The
internal filtrations of processes (Nt)t≥0 and (Nt, Xt)t≥0 are denoted by FN := (FN

t )t≥0

and F := (Ft)t≥0 respectively, where FN
t := σ(Ns, s ≤ t) and Ft := σ(Ns, Xs s ≤ t).

These filtrations are assumed to be complete, that is F0,F
N
0 contain all the sets of

P-probability zero of F .

• For any integrable F-adapted random process (Zt)t≥0, the conditional expectation

E[Zt | F
N
t ] is denoted by Ẑt and (Ẑt)t≥0 is called the filter associated with the process

(Zt)t≥0.

2.1 Basic material on the observed/hidden processes

In this paper, we are concerned with the following basic statistics of an MAP

L1,ji
t :=

∑

0<s≤t

∆Ns〈Xs, ej〉〈Xs−, ei〉 =

∫ t

0

〈Xs, ej〉〈Xs−, ei〉 dNs

j 6= i L0,ji
t :=

∑

0<s≤t

(1−∆Ns)〈Xs, ej〉〈Xs−, ei〉

O(i)
t :=

∫ t

0

〈Xs−, ei〉 ds.

(3)

For i 6= j, the first – second – statistic is the number of jumps of (Xt)t≥0 from state ei to
state ej coming with one – no – jump of the counting process over the interval ]0, t]. L1,ji

t

can also be thought of as the number of arrivals coming with a jump of (Xt)t≥0 from state
ei to ej over the interval ]0, t]. L

1,ii
t is the number of arrivals up to time t, (Xt)t≥0 staying

in state ei at each arrival instant. The third statistic is the sojourn time of (Xt)t≥0 in the
state ei in the interval [0, t]. This family of statistics is introduced because their filters
appear in the re-estimation formulas (10) used for estimating the parameters of an MAP
with the EM-algorithm.

The basic material below can be found in Bremaud (1981), Klebaner (1998) for in-
stance. We report here a F-semi-martingale (or Doob-Meyer here) representation of
the counting processes (Nt)t≥0, (L

0,ji
t )t≥0, (L

1,ji
t )t≥0. It is clear from their definition that

(Nt)t≥0, (L
0,ji
t )t≥0, (L

1,ji
t )t≥0 are counters of specific transitions in (Nt, Xt)t≥0. Now, the
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F-semi-martingale decomposition of the number of transitions Nt(y, x) of (Nt, Xt)t≥0 from
state x to state y at time t is known to be

Nt(y, x) =

∫ t

0

A(y, x) 1{(Ns−,Xs−)=x} ds+Mt(y, x)

where (Mt(y, x))t≥0 is a F-martingale and A is the generator of (Nt, Xt)t≥0. Then, it
is easily deduced from the special structure of A (see (1)) that the F-semi-martingale
decomposition of the counting processes above are

Nt =

∫ t

0

λs ds+Mt with λs := 〈1, D1Xs−〉 (4)

Lk,ji
t =

∫ t

0

Dk(j, i)〈Xs−, ei〉 ds+MLk,ji

t k = 0, 1 (5)

where j 6= i for k = 0, and (M)t≥0, (M
Lk,ji

)t≥0 are F-martingales. The process (λt)t>0 is
the so-called stochastic intensity of (Nt)t≥0with respect to the filtration F.

The basic F-semi-martingale decomposition of the Markov process (Xt)t≥0 is

Xt = X0 +

∫ t

0

QXs− ds+MX
t (6)

where (MX
t )t≥0 is a F-martingale (and a martingale with respect to the internal filtration

of (Xt)t≥0 as well). We recognize in (4) and (6) a standard representation of a continuous-
time hidden Markov process, with (Xt)t≥0 as state process and (Nt)t≥0 as observed process.
The observation and state “noises” (Mt)t≥0, (M

X
t )t≥0 are correlated here.

The following results will be used throughout the proofs.

(R1) The stochastic integrals in this paper are Lebesgue-Stieltjes integrals. We report

here the product rule for two rcll processes (Z
(1)
t )t≥0, (Z

(2)
t )t≥0 having finite variations

on the bounded intervals, i.e. having locally finite variations,

Z
(1)
t Z

(2)
t = Z

(1)
0 Z

(2)
0 +

∫ t

0

Z
(1)
s−dZ

(2)
s +

∫ t

0

Z
(1)
s−dZ

(2)
s +

∑

0<s≤t

∆Z(1)
s ∆Z(2)

s

= Z
(1)
0 Z

(2)
0 +

∫ t

0

Z
(1)
s−dZ

(2)
s +

∫ t

0

Z(1)
s dZ(2)

s .

Since any rcll process (Zt)t≥0 has finitely many jumps on finite intervals for almost
all ω ∈ Ω, the following standard Lebesgue integrals

∫ t

0

Zsds or

∫ t

0

Zs−ds

are interchangeably used.
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(R2) For any integrable process (Zt)t≥0 such that
∫ t

0
E
[
|Zs|

]
ds < +∞, we have that

̂∫ t

0

Zs ds−

∫ t

0

Ẑs ds

defines a FN -martingale.

(R3) Let (Ht)t≥0 be a F-predictable process and (Mt)t≥0 be a F-martingale of integrable

variation on any bounded intervals. If
∫ t

0
E
[
|Zs| |dMs|

]
< +∞ for any t, then

(
∫ t

0
HsdMs)t≥0 is a F-martingale. Note that any left-continuous F-adapted process

is F-predictable. The same statement holds replacing everywhere the filtration F by
FN .

(R4) For any F-martingale (Mt)t≥0, (M̂t)t≥0 is a FN -martingale.

2.2 The EM-algorithm and the forward-backward strategy

We briefly describe the EM-algorithm for our continuous-time hidden Markov model. We
refer to Breuer (2002), Klemm et al. (2003) for full details. For a fixed parameter vector
θ as defined by (2), the underlying probability measure and the associated expectation
are denoted by Pθ and Eθ respectively. X0 or its probability distribution x0 is assumed
to be known. The observed data are supposed to be the arrival times {t0, . . . , tK}, where
we set t0 := 0. Without loss of generality, we assume in this subsection that t := tK . The
likelihood of the observed data is under Pθ

l(θ,N) := 1⊤

(
1∏

l=K

D1 exp
(
D0(tl − tl−1)

)
)
x0 (7)

and is called the observed/incomplete data likelihood. Now, suppose that the complete
data {Ns, Xs, s ≤ t} are available. Then, the complete data likelihood function is, under
Pθ,

L(θ;N,X) :=
n∏

i,j=1,

D1(j, i)
L
1,ji
t

n∏

i,j=1,j 6=i

D0(j, i)
L0,ji
t

n∏

i=1

eD0(i,i)O
(i)
t

n∏

i=1

〈x0, ei〉
〈X0,ei〉. (8)

It can be shown that a new estimate θ̃ := {D̃k(j, i), i, j = 1, . . . , n; k = 0, 1} satisfying

l(θ̃, N) ≥ l(θ,N), is obtained as a result of the two following steps.

1. E-step.

Compute the so-called pseudo-log-likelihood Q(· | θ) defined by

Q(θ∗ | θ) := Eθ

[
logL(θ∗;N,X) | FN

t

]
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with θ∗ := {D∗
k(j, i), i, j = 1, . . . , n; k = 0, 1}. It is easily seen from (8) that

Q(θ∗ | θ) =
n∑

i,j=1,j 6=i

logD∗
0(j, i) L̂

0,ji
t +

n∑

i,j=1

logD∗
1(j, i)L̂

1,ji
t +

n∑

i=1

D∗
0(i, i)Ô

(i)
t +K (9)

where K is a constant that does not depend on the parameters, and

k = 0, 1, L̂k,ji
t := Eθ[L

k,ji
t | FN

t ], Ô(i)
t := Eθ[O

(i)
t | FN

t ]

are the filters associated with the statistics defined in (3).

2. M-step.

Determine θ̃ maximizing the function in (9) under the constraints that
∑n

j=1(D
∗
0(j, i)+

D∗
1(j, i) = 0, i = 1, . . . n. Using the Lagrange multipliers method, it is shown that, for

i, j = 1, . . . , n,

D̃1(j, i) =
L̂1,ji

t

Ô(i)
t

and D̃0(j, i) =
L̂0,ji

t

Ô(i)
t

with i 6= j. (10)

Therefore, the idea is to pick up an initial value θ(0) for the parameter and to iterate
1-2 as long as a stopping criterion is not satisfied. As a result, we obtain a sequence
(θ(m))m≥0 of estimates corresponding to non-decreasing values of the observed likelihood
function (with equality iff θ(m+1) = θ(m) under mild conditions). Note that the zero entries
of Dks are preserved by the procedure above.

Remark 1 We mention that formulas (10) are intuitively supported by the fact that,
canceling the conditional expectation operation, we retrieve the estimators that we would
obtained applying the standard Maximum Likelihood method to the complete data like-
lihood (8), that is if the complete data were observed.

Remark 2 In software reliability context, a priori estimates for θ using procedures re-
ported in Goseva-Popstojanova and Trivedi (2001) can be obtained. They are based on
data collected at earlier phases of the software life cycle (validation phases, integration
tests,. . . ). These estimates might appear to be rough estimates especially when the soft-
ware is in operation. This motivates a re-estimation of the parameters by EM when failure
data are collected during the operational life of the software.

Remark 3 In this paper, the number of hidden states n is assumed to be known. This
is adequate, for example, in speech recognition where the hidden states are the elements
of a finite alphabet, in architecture-based software reliability modeling where the hidden
states are the modules of a piece of software. However, in many applications, this is not
the case. A generic situation is when a partially observed model is used as a statistical
model for fitting to empirical time series. Estimation of the number of hidden states is
known to be a hard problem. It is not intended to address this fundamental issue here. In
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the context of hidden Markov chains, the so-called “order estimation problem” is surveyed
in (Ephraim and Merhav 2002, Section VIII). Recent progress in this direction is reported
in Boucheron and Gassiat (2005). We refer the reader to these papers and the references
therein for details.

This iterative procedure requires the computation of the conditional expectations
in (10). For hidden Markov models, the “forward-backward” formulation of the EM-
algorithm – also referred to as the Baum-Welch formulation – is the standard way to do
it. This is what is done in the previously mentioned works. The basic idea is to write
these conditional expectations using Fubini’s theorem as

L̂1,ji
t =

∫ t

0

P{∆Ns = 1, Xs− = ei, Xs = ej | F
N
t }ds Ô(i)

t =

∫ t

0

P{Xs = ei | F
N
t }ds

L̂0,ji
t =

∫ t

0

P{∆Ns = 0, Xs− = ei, Xs = ej | F
N
t }ds

so that the conditional probabilities under the integral sign must be evaluated. The prob-
abilities P{Xs = ei | FN

t }, s < t are known as the state smoothers and are computed
according the “forward-backward” strategy. The other conditional probabilities are de-
duced from these state smoothers. The final form of the EM-algorithm is given by Figure 1
(see Klemm et al. (2003)).

Bearing in mind the filter-based approach pioneered by Elliott et al. (1995), it is ex-
pected that the conditional expectations in (10) are solution of finite-dimensional recursive
equations, that is finite-dimensional filters exist. The main contribution of the paper is
to provide such finite-dimensional filters in Theorem 4 and finite-dimensional unnormal-
ized/Zakai filters in Theorem 6. It is clear from the second and third lines of the algorithm
in Figure 1 that a forward and a backward pass through the data are required. In con-
trast, a single pass – a forward pass – through the data set is needed for the filter-based
approach. We get back to the comparison of the two strategies in Subsection 2.5.

2.3 Stochastic differentials equations for the filters

In fact, we show that the filters defined, for every t, by

Ô(i)X t := E
[
O(i)

t Xt | F
N
t

]
and L̂k,jiX t := E

[
Lk,ji

t Xt | F
N
t

]
, k = 0, 1

turn to be finite-dimensional. Then, since the sum of the components of vector Xt is equal
to 1 for any t, the filters that we are interested in, are obtained as follows

Ô(i)
t = 〈1, Ô(i)X t〉, and L̂k,ji

t = 〈1, L̂k,jiX t〉.

We know from (4) that the F-stochastic intensity of the counting process (Nt)t≥0 is given,
for t > 0 by λt = 〈1, D1Xt−〉. Then, it can be deduced from Bremaud (1981) that the

FN -stochastic intensity (λ̂t)t>0 of (Nt)t≥0 is, for t > 0,

λ̂t := 〈1, D1X̂t−〉, (11)
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f0(x) := exp(D0x) and f1(x) := D1 exp(D0x); for l = 1, . . . ,K, ∆tl := tl − tl−1 with t0 := 0.

Forward. α0 := x0, c0 := 1, for l = 1, . . . ,K, αl := f1(∆tl)αl−1, cl := 1⊤αl

Backward. β⊤
K+1 := 1⊤, and for l = K, . . . , 1 β⊤

l := β⊤
l+1f1(∆tl)

For i, j = 1, . . . , n:

L
0,ji
0 := 0, L1,ji

0 := 0 and for l = 1, . . . ,K:

L
0,ji
l := L

0,ji
l−1 + β⊤

l+1

∫ tl

tl−1

f1(tl − s) ej D0(j, i) e
⊤
i f0(s− tl−1) ds αl−1

L
1,ji
l := L

1,ji
l−1 + β⊤

l+1ej D1(j, i) e
⊤
i f0(∆tl)αl−1

O
(i)
l := O

(i)
l−1 + β⊤

l+1

∫ tl

tl−1

f1(tl − s)ej e
⊤
i f0(s− tl−1) ds αl−1

Ô(i)
tK =

O
(i)
K

cK
L̂0,ji
tK

=
L0,ji
K

cK
L̂1,ji
tK

=
L
1,ji
K

cK

Comment. Once normalized to 1, the forward quantities αl, l = 0, . . . ,K give the state filter at
times t0, . . . , tK

X̂tl = E[Xtl | F
N
tl
] = (P{Xtl = ei | F

N
tl
})ni=1 =

αl

cl
l = 0, . . . ,K.

Comment. The conditional probability P{Xtl = ei | F
N
tK
} for l = 0, . . . ,K − 1 are given by

P{Xtl = ei | F
N
tK
} =

β⊤
l ei e

⊤
i αl∑n

j=1 β
⊤
l ej e⊤j αl

Figure 1: Forward-Backward implementation of the filters
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that is the process defined for t ≥ 0 by

Nt := Nt −

∫ t

0

λ̂s ds (12)

is a FN -martingale. (Nt)t≥0 is called the innovations martingale.

Theorem 4 Let us consider the FN -stochastic intensity (λ̂t)t>0 of (Nt)t≥0 and the inno-
vations martingale (Nt)t≥0 defined in (11) and (12) respectively.

1. Filter for the state. We have for any t ≥ 0

X̂t = X̂0 +

∫ t

0

QX̂s− ds+

∫ t

0

D1X̂s− − X̂s−λ̂s

λ̂s

dNs. (13a)

2. Filter for the sojourn time in ei. We have for any t ≥ 0

Ô(i)X t =

∫ t

0

[
QÔ(i)Xs− + 〈X̂s−, ei〉 ds ei

]
ds+

∫ t

0

D1Ô(i)Xs− − Ô(i)Xs−λ̂s

λ̂s

dNs.

(13b)

3. Filter for the numbers of specific jumps of the MAP. We have for any t ≥ 0

L̂0,jiX t =

∫ t

0

[QL̂0,jiXs− +D0(j, i)〈X̂s−, ei〉ej]ds+

∫ t

0

D1L̂0,jiXs− − L̂0,jiXs−λ̂s

λ̂s

dNs

(13c)

L̂1,jiX t =

∫ t

0

[
QL̂1,jiXs− +D1(j, i)〈X̂s−, ei〉ej

]
ds

+

∫ t

0

D1(j, i)〈X̂s−, ei〉 ej +D1L̂1,jiXs− − L̂1,jiXs−λ̂s

λ̂s

dNs.

(13d)

We mention that equation (13a) turns to be one of the main ingredient of the proof in
Gravereaux and Ledoux (2004) of the (optimal) convergence rate of an MAP to a Poisson
process when the arrivals are rare. We see that the stochastic differential equations in
Theorem 4 are non-linear, so that the numerical procedure used for solving these equations
has to be carefully implemented. For instance, we recall that negative probabilities may
be obtained as a result of the numerical computation of the state filter of a Markov process
observed in an additive Brownian noise – also called Wonham’s filter – with an Euler-
Maruyama discrete-time approximation (see (Kloeden et al. 1994, Chap 6)). The purpose
of the next subsection is to derive linear SDEs from which the filters may be obtained.
Such linear SDEs are more suited to numerical computation.

Remark 5 A filter for the number of transitions N
X,ji
t of (Xt)t≥0 from state ei to ej

(i 6= j) up to time t can be derived as those of Theorem 4. Indeed, we obtain an

10



SDE for N̂X,jiX t := E
[
N

X,ji
t Xt | FN

t

]
from Theorem 4 using the fact that N̂X,jiX t =

L̂0,jiX t + L̂1,jiX t for i 6= j. Then, the sum of he components of the vector N̂X,jiX t gives
the filter associated with N

X,ji
t . Since D0 + D1 = Q, the transition rates of (Xt)t≥0 can

be estimated by the EM-algorithm using

Q̃1(j, i) =
N̂X,ji

t

Ô(i)
t

as re-estimation formula.

Proof. A proof of (13a) may be found in Gravereaux and Ledoux (2004). In the

sequel, (Mt)t≥0 – (M̂t)t≥0 – will denote a generic F-martingale – FN -martingale. The

proof of (13b) is as follows. The product rule (R1) with the fact that (O(i)
t )t≥0 has no

jump give

O(i)
t Xt =

∫ t

0

O(i)
s− dXs +

∫ t

0

Xs− dO(i)
s (14)

=

∫ t

0

QO(i)
s−Xs− ds+

∫ t

0

〈Xs−, ei〉ei ds+Mt from (6),(3) and (R3). (15)

Taking the conditional expectation with respect to FN
t on each side of the equation above,

and using (R2) and (R4), we obtain

Ô(i)X t =

∫ t

0

QÔ(i)Xs− ds+

∫ t

0

〈X̂s−, ei〉 ei ds+ M̂t. (16)

The integral representation of FN -martingales says us that (e.g. see Bremaud (1981))

M̂t =

∫ t

0

G(i)
s dNs (17)

where (G
(i)
t )t≥0 is a FN -predictable process which is called the innovations gain. Thus,

the proof will be complete if we show that

G(i)
s =

D1Ô(i)Xs− − Ô(i)Xs−λ̂s

λ̂s

. (18)

The product Nt × Ô(i)X t has the following form from the product rule (R1)

NtÔ(i)X t =

∫ t

0

Ns− dÔ(i)Xs +

∫ t

0

Ô(i)Xs− dNs +
∑

0<s≤t

∆Ns∆Ô(i)Xs.

Since ∆Ô(i)Xs = G
(i)
s ∆Ns = G

(i)
s ∆Ns from (16),(17),(12) and (∆Ns)

2 = ∆Ns, the last

term in the right-hand side of the inequality above is
∫ t

0
G

(i)
s dNs. Then, we deduce from

11



(12),(16) and (R3) that

NtÔ(i)X t =

∫ t

0

Ns−[QÔ(i)Xs− + 〈X̂s−, ei〉 ei] ds+ M̂t

+

∫ t

0

Ô(i)Xs−λ̂s ds+

∫ t

0

G(i)
s λ̂s ds+ M̂t. (19)

Next, the product Nt ×O(i)
t Xt is rewritten from the rule product (R1) and the fact that

(O(i)
t )t≥0 has no jump as

NtO
(i)
t Xt =

∫ t

0

Ns− d(O(i)X)s +

∫ t

0

O(i)
s−Xs dNs

=

∫ t

0

Ns−[QO(i)
s−Xs− + 〈X̂s−, ei〉 ei] ds+

∫ t

0

O(i)
s−Xs dNs +Mt

from (15) and (R3). Let us compute the last integral in the right-hand side of equality
above. Since

∑
j〈Xs, ej〉 =

∑
k〈Xs−, ek〉 = 1, and ∆Ns〈Xs, ej〉〈Xs−, ek〉 = ∆L1,jk

s we find
that
∫ t

0

O(i)
s−Xs dNs =

∑

0<s≤t

O(i)
s−Xs∆Ns =

∑

j

ej
∑

k

∫ t

0

O(i)
s− dL1,jk

s

=

∫ t

0

O(i)
s−

∑

j

ej
∑

k

D1(j, k)〈Xs−, ek〉 ds+Mt from (5) and (R3)

=

∫ t

0

O(i)
s−D1Xs− ds+Mt.

Then, we deduce from the last equality that

NtO
(i)
t Xt =

∫ t

0

Ns−[QO(i)
s−Xs− + 〈Xs−, ei〉 ei] ds+

∫ t

0

D1O
(i)
s−Xs− ds+Mt.

Taking the conditional expectation on both sides of the previous formula and using (R2)

and (R4), a second decomposition of the semi-martingale (NtÔ(i)X t)t≥0 is

NtÔ(i)X t =

∫ t

0

Ns−[QÔ(i)Xs− + 〈X̂s−, ei〉 ei] ds+

∫ t

0

D1Ô(i)Xs− ds+ M̂t. (20)

We know that the locally finite variations part of the decomposition of a special semi-
martingale is unique. Then, we identify the corresponding terms in the decompositions
(19) and (20), that is the Lebesgue integrals. The expression (18) of the gain G(i) follows
easily.

The formulas (13c,13d) are shown in the same way. We only provide the main steps

of the computation for (L̂1,jiX t)t≥0. The product rule (R1) and formulas (4)–(6) allow us
to write

L1,ji
t Xt =

∫ t

0

[QL1,ji
s− Xs− ds+D1(j, i)〈Xs−, ei〉 ej] ds+Mt.

12



Taking the conditional expectation with respect to FN
t on both sides of the equations

above, using (R2),(R4) and the representation theorem of the FN -martingales, we obtain

L̂1,jiX t =

∫ t

0

[QL̂1,jiXs− +D1(j, i)〈X̂s−, ei〉 ej] ds+

∫ t

0

G(L)
s (dNs − λ̂s ds) (21)

where G(L) is the innovations gain.

A first FN -representation of the semi-martingale NtL̂1,jiX t is obtained from (R1),(21),
(4) and (R3)

NtL̂1,jiX t =

∫ t

0

Ns−[QL̂1,jiXs− +D1(j, i)〈X̂s−, ei〉 ej] ds+

∫ t

0

L̂1,jiXs−λ̂s ds

+

∫ t

0

G(L)
s λ̂s ds+ M̂t.

(22)

Next, the product Nt × (L1,ji
t Xt) may be rewritten using (R1) as

NtL
1,ji
t Xt =

∫ t

0

Ns−[QL1,ji
s− Xs− +D1(j, i)〈Xs−, ei〉 ej] ds

+

∫ t

0

D1(j, i)〈Xs−, ei〉 ds ej +

∫ t

0

D1L
1,ji
s− Xs− ds+Mt.

Conditioning with respect to FN
t on both sides of the previous formula and using (R2)

and (R4) lead to a second decomposition of the special semi-martingale (Nt ×L1,ji
t Xt)t≥0

NtL̂1,jiX t =

∫ t

0

Ns−[QL̂1,jiXs− +D1(j, i)〈X̂s−, ei〉 ej] ds

+

∫ t

0

D1(j, i)〈X̂s−, ei〉 ej ds+

∫ t

0

D1L̂1,jiXs− ds+ M̂t. (23)

The final form of the gain G(L) is obtained by identifying the terms with locally finite

variations in the decompositions (22) and (23). The innovation form of the filter L̂1,jiX t

in (13d) is deduced by replacing the gain G(L) in (21). �

2.4 Zakai filters

In this part of the paper, we derive the so-called Zakai filters associated with the statistics
in (3). A technique of change of measure is used. We recall some basic facts which are
borrowed from (Bremaud 1981, Chap VI) for instance. Assume that

µ(i) := 〈1, D1ei〉 > 0, i = 1, . . . , n.

Then, we have

0 < min
i

µ(i) ≤ λt = 〈1, D1Xt−〉 ≤
∑

i

µ(i)

13



so that
1∑
i µ(i)

≤
1

λt

≤
1

mini µ(i)
. (24)

Let us consider the likelihood ratio

Lt := exp

(∫ t

0

ln
1

λs

dNs +

∫ t

0

(λs − 1) ds

)
=
∏

0<s≤t

(
1

λs

)∆Ns exp

(∫ t

0

(λs − 1) ds

)

which is a solution of the equation

Lt = 1 +

∫ t

0

Ls−(
1

λs

− 1) (dNs − λsds).

Then, (Lt)t≥0 is a (P,F)-martingale from (24) and (R3). A new probability measure P0

on (Ω,∨t≥0Ft) is defined by
dP0

dP

∣∣∣∣
Ft

:= Lt.

It results from Girsanov’s theorem that, under P0, (Nt)t≥0 is a F-homogeneous Poisson
process with intensity λs ≡ 1. Therefore, the process (nt)t≥0 defined by

nt := Nt − t (25)

is a (P0,F)-martingale and must be thought of as the innovations martingale associated
with (Nt)t≥0 under the new probability measure P0.

Next, set

Lt :=
1

Lt

. (26)

(Lt)t≥0 is a solution of the equation

Lt = 1 +

∫ t

0

Ls−(λs − 1) dns (27)

and is a (P0,F)-martingale. We know that P ≪ P0 and

dP

dP0

∣∣∣∣
Ft

= Lt.

Under the mild condition stated at the beginning of this subsection, P and P0 are equiv-
alent probability measures. The expectation with respect to P0 is denoted by E0[·]. Any
FN -conditional expectation, under P, of an integrable F-measurable random variable, may
be computed from Bayes formula (e.g. see Elliott et al. (1995))

E[Z | FN
t ] =

E0[ZLt | F
N
t ]

E0[Lt | FN
t ]

P a.s. (28)

14



The above equation allows us to derive the Zakai filters E0[ZLt | F
N
t ] by the formula

E0[ZLt | F
N
t ] = E[Z | FN

t ] E0[Lt | F
N
t ]. (29)

The following final fact is used to derive the Zakai filters associated with the statistics
defined in (3). It is known from (Bremaud 1981, R 8, p 174) that L̂0

t := E0[Lt | FN
t ]

satisfies the equation

L̂0
t = 1 +

∫ t

0

L̂0
s−(λ̂s − 1) dns (30)

where λ̂t is the FN -stochastic intensity of (Nt)t≥0 given in (11).

Theorem 6 The processes (nt)t≥0 and (Lt)t≥0 are defined in (25) and (26) respectively.
For any F-adapted integrable process (Zt)t≥0, σ(Zt) denotes the conditional expectation
E0[ZtLt | F

N
t ].

1. Zakai filter for the state. We have for any t ≥ 0

σ(Xt) = X̂0 +

∫ t

0

Qσ(Xs−) ds+

∫ t

0

(D1 − I)σ(Xs−) dns. (31a)

2. Zakai filter for the sojourn time in ei. We have for any t ≥ 0

σ(O(i)
t Xt) =

∫ t

0

[
Qσ(O(i)

s−Xs−) + 〈σ(Xs−), ei〉 ei
]
ds+

∫ t

0

(D1 − I)σ(O(i)
s−Xs−) dns.

(31b)

3. Zakai filter for the numbers of specific jumps for the MAP. We have for
any t ≥ 0

σ(L0,ji
t Xt) =

∫ t

0

[
Qσ(L0,ji

s− Xs−)+D0(j, i)〈σ(Xs−), ei〉 ej
]
ds+

∫ t

0

(D1−I)σ(L0,ji
s− Xs−) dns

(31c)

σ(L1,ji
t Xt) =

∫ t

0

[
Qσ(L1,ji

s− Xs−) +D1(j, i)〈σ(Xs−), ei〉 ej
]
ds

+

∫ t

0

[
(D1 − I)σ(L1,ji

s− Xs−) +D1(j, i)〈σ(Xs−), ei〉 ej
]
dns.

(31d)

Proof. Let G
(i)
s be the innovations gain defined in (18). We find from the product

rule (R1) and using (30),(13b) and (R3), that

L̂0
t Ô

(i)X t =

∫ t

0

L̂0
s− dÔ(i)Xs +

∫ t

0

Ô(i)Xs− dL̂0
s +

∑

0<s≤t

∆L̂0
s∆Ô(i)Xs

=

∫ t

0

L̂0
s−

[
QÔ(i)Xs− + 〈X̂s−, ei〉

]
ds+

∫ t

0

L̂0
s−G

(i)
s (dNs − λ̂s ds)

+

∫ t

0

Ô(i)Xs−L̂
0
s−(λ̂s − 1) dns +

∫ t

0

G(i)
s L̂0

s−(λ̂s − 1) dNs

=

∫ t

0

L̂0
s−

[
QÔ(i)Xs− + 〈X̂s−, ei〉

]
ds+

∫ t

0

L̂0
s−G

(i)
s λ̂sdns +

∫ t

0

Ô(i)Xs−L̂
0
s−(λ̂s − 1)dns.

15



Since we know from (18) that G
(i)
s λ̂s = D1Ô(i)Xs− − Ô(i)Xs−λ̂s, we obtain after some

simplifications that

L̂0
t Ô

(i)X t =

∫ t

0

[
QL̂0

s−Ô
(i)Xs− + 〈L̂0

s−X̂s−, ei〉
]
ds+

∫ t

0

(D1 − I)L̂0
s−Ô

(i)Xs− dns.

Using (29) and the notation introduced in Theorem 6, the equation above has the final
form (31b). The other formulas are obtained in a quite similar way. �

SDEs in Theorem 6 are standard linear ordinary differential equations (ODE) between
two jumps of (Nt)t≥0. Therefore, a basic way to deal with the equations (31a-31d) is to
integrate the linear ODEs over the interval of time between two jumps and to update the
solution at the endpoint of the interval. For instance, the state filter σ(Xt) is solution of

d

dt
qt = (Q−D1 + I)qt = (D0 + I)qt, qtl−1

:= σ(Xtl−1
)

in the interval [tl−1, tl[, where (tl)l∈N is the sequence of times of jump of (Nt)t≥0 (t0 := 0).
Then, the solution at time of jump tl is updated as follows

∆σ(Xtl) = (D1 − I)σ(Xtl−) =⇒ σ(Xtl) = D1σ(Xtl−).

In this special case, it is easily seen that (31a) has an explicit solution given for t > 0 by

σ(Xt) = exp(t) exp
(
D0(t− tNt

)
)
D1 exp

(
D0(tNt

− tNt−1)
)
· · ·D1 exp

(
D0t1

)
X̂0

and the vector of conditional probabilities X̂t is for t > 0

X̂t =
exp

(
D0(t− tNt

)
)
D1 exp

(
D0(tNt

− tNt−1)
)
· · ·D1 exp

(
D0t1

)
X̂0

1⊤ exp
(
D0(t− tNt

)
)
D1 exp

(
D0(tNt

− tNt−1)
)
· · ·D1 exp

(
D0t1

)
X̂0

.

Assume that K jumps of (Nt)t≥0 have been observed at times 0 < t1 < · · · < tK and set
t0 := 0. The solutions of (31a-31d) may be computed on the grid Π := {0, t1, . . . , tK}
from the recursive formulas in Figure 2. We are now in position to discuss the comparison
between the two procedures reported in Figures 1,2.

2.5 Comments on the comparison of the forward-backward and
filter-based strategies

The two procedures involve the computation of the matrix exponential functions f0, f1 as
well as their integrals. The uniformization method is known to be efficient for computing
transient measures of continuous-time Markov processes involving matrix exponentials.
This method is based on the following decomposition of the matrix exponential of a sub-
generator D0 (i.e. i 6= j D0(i, j) ≥ 0 and (1⊤D0)(i) ≤ 0 for any i).

exp(D0t) =
+∞∑

k=0

exp(−ut)
uk

k!
P k with P := I +

1

u
D0, and u > max

i
(−D0(i, i)).
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f0(x) := exp(D0x) and f1(x) := D1 exp(D0x); for l = 1, . . . ,K, ∆tl := tl − tl−1 with t0 := 0.

for l = 1, . . . ,K

σ(Xtl) = f1(∆tl)σ(Xtl−1
)

σ(L0,ji
tl

Xtl) = f1(∆tl)σ(L
0,ji
tl−1

Xtl−1
) +

∫ tl

tl−1

f1(tl − s)ej D0(j, i) e
⊤
i f0(s− tl−1) ds σ(Xtl−1

)

σ(L1,ji
tl

Xtl) = f1(∆tl)σ(L
1,ji
tl−1

Xtl−1
) + ej D1(j, i) e

⊤
i f0(∆tl)σ(Xtl−1

)

σ(O
(i)
tl
Xtl) = f1(∆tl)σ(O

(i)
tl−1

Xtl−1
) +

∫ tl

tl−1

f1(tl − s)eie
⊤
i f0(s− tl−1) ds σ(Xtl−1

)

Comment. The factor exp(∆tl) is omitted in the equations above, because the estimates at a
fixed instant of D0, D1 from (10) only require the knowledge of the filters up to a constant.

Figure 2: Recursive implementation of the filters

The numerical interests are in the facts that (1) matrix P is a non-negative (primitive)
matrix, so that only non-negative real numbers are involved in the computations, (2) a
robust computation of the Poisson probabilities may be carried out and (3) the level of
truncation of the series above may be a priori controlled. We refer to Stewart (1994) for
complete details.

Now we turn to the differences between the two procedures. The weakness of the
filter-based approach is its computational cost. Indeed, we have to deal with a specific
recursive equation for each statistic involved in the re-estimation formulas (10). So that,
the computational cost is O(n4) in the number of parameters to be estimated. The
corresponding cost for the forward-backward strategy is only O(n2). However, when
fitting data to an MAP model, the experiments clearly show that the number n of states
to be considered for the hidden Markov process (Xt)t≥0 should be relatively small (n is
not found to be greater than 3 in Klemm et al. (2003)). Then, it can be expected in some
practical situations than the difference of computational complexity will be not too large.

It is clear from Figure 1 that the sequence of vectors αl, l = 0, . . . , K provided by the
forward recursion have to be stored before performing the backward recursion. Therefore,
the storage cost is O(K) in the number of observed data. Now, the storage cost for the
recursive procedure in Figure 2 does not depend on the number K of observations. We
only have to store the previous estimate of each statistics. From this point of view, the
filter-based approach must be preferred to the forward-backward one when processing
large data-sets. This is the case in the experiments reported in Klemm et al. (2003),
where trace files of 200, 000 arrivals are considered. Thus, a recursive implementation
of the EM-algorithm has the advantage that the number of observations is not fixed so
that on-line estimation may be considered, and this number may be as large as possible.
Finally, the various filters in the filter-based scheme are decoupled and are suitable for
parallel implementation on a multiprocessor system.
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Large experiments on the use of the EM-algorithm have been carried out in Lang
and Arthur (1996), Asmussen et al. (1996), Rydén (1996), Klemm et al. (2003) with
the forward-backward strategy. Since the differences between the two procedures are
mainly on the order of complexity, here it is not intended to provide further numerical
experiments. The appealing properties and main drawbacks of the EM-algorithm in
estimation problem are well-known. The implementation is relatively easy, the algorithm
is robust but its convergence – if convergence takes place – is slow. We refer to Wu (1983)
for a discussion on the convergence rate of EM.

3 Conclusion

When only the counting process is observed in a Markovian Arrival Process, parameter
estimation may be carried out with the help of the EM-algorithm. Then, filters for various
statistics associated with this model must be computed. With a view to implementing the
filter-based strategy popularized by Elliott, the filters and an unnormalized/Zakai form
of the filters are shown to be the solution of stochastic differential equations. As a result,
we obtain recursive computational procedures for filtering. The case of batch arrivals,
that is of BMAPs, may easily be included in the discussion. We just have to consider the
observation process (Nt)t≥0 as a multivariate point process of arrivals.
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