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In this paper, we propose a new method to perform the first derivative estimation of a discrete intensity distribution. This approach is based on a non-additive aggregation process and provides an estimate of the gradient as intervals instead of single values. These intervals are used to threshold a gradient based edge detection and therefore discard spurious detections due to noise.

INTRODUCTION

Edges in images are areas with strong intensity contrasts. Gradient based edge detection consists of detecting maxima and minima in the image first derivative. However, edges are not the only features maximizing (or minimizing) this first derivative. Acquisition (or reconstruction) noise, digitalization and spurious local textures induce undesirable discontinuities in the intensity function.

Computation of the first derivative, in digital images, relies on the concept of fitting a continuous surface locally to the data. One of the most advanced approaches makes use of summative kernels whose role is to define a weighted neighborhood of each sampled location. This neighborhood provides an interplay between continuous and discrete. It also aims at using a hypothesized ergodicity to reduce the effect of random noise by providing regularization in the interpolation process.

Noise reduction and edge detection lead to antagonist criteria. The Canny operator was designed to be an optimal edge detector according to particular criteria. However there are other detectors around that also claim to be optimal with respect to slightly different criteria.

Estimation of the derivative of the continuous signal s resulting from the interpolation of discrete signal S via the summative kernel κ can easily be obtained by convolving S with the first derivative dκ of kernel κ. Most of the usual approaches lead to a derivative kernel that can be obtained by subtracting two usual kernels:

dκ(x) = η + (x + x ) -η -(x -x ). (1) 
Even when a supposed optimal filter is used, noisy images produce spurious discontinuities that have to be removed by a tracking process involving an arbitrary threshold depending on the image noise. The threshold arbitrariness reduces the detection robustness. Indeed, the edge detection highly relies on the appropriateness of the hypothesized optimal threshold, especially with tomographic reconstructed images whose noise is usually assumed to be Poisson distributed.

In this paper, we present a method producing a natural threshold estimation, depending on local noise level, at each sampled location. The underlying idea of this work is the following: when estimating a piece of information from a set of noisy data with a kernel-based approach, variations due to measurement errors can be estimated by slightly varying the shape (but not the size) of the kernel. Such a variation can be simply achieved by replacing the conventional summative kernel approach by a non-summative kernel approach. We come up to a gradient estimator that produces intervals instead of single values. The length of each interval is proportional to the local noise level. A location is declared not being an edge if the value 0 belongs to the estimated interval.

SUMMATIVE AND NON-SUMMATIVE KERNEL

Summative or non-summative kernels are functions that can be thought as weighted neighborhoods.

Summative kernels are IR-valued functions κ defined on a domain Ω, satisfying the summative normalization property Ω κ(ω)dω = 1.

(2)

In image processing they are usually positive and unimodal as in the rest of this paper. Positivity implies that they can be seen as probability density functions, with whom we can associate, for any A ⊆ Ω, a probability measure

P κ (A) = A κ(ω)dω.
Estimation of a given signal S in a given summative or probabilistic neighborhood κ is the expectation of this signal according to κ. That is:

E κ (S) = Ω SdP κ = Ω S(ω)κ(ω)dω. (3) 
Non-summative kernels are [0, 1]-valued functions π defined on a domain Ω, satisfying the maximitive normalization property max ω∈Ω π(ω) = 1.

(4)

They can be seen as possibility distribution functions [START_REF] Dubois | Possibility Theory An Approach to Computerized Processing of Uncertainty[END_REF], with whom we can associate, for any A ⊆ Ω, a possibility measure Π π (A) = sup ω∈A π(ω). A possibility measure is a special case of concave Choquet capacity ν. The conjugate ν c of such a capacity, defined by ∀A ⊆ Ω, ν c (A) = 1 -ν(A c ) is a convex capacity. The conjugate N π of a possibility measure Π π is a necessity measure.

Those two kinds of neighborhood definitions (summative and non-summative) are linked by the fact that a concave capacity ν can encode a special family of probability measures (or equivalently additive measures), noted core(ν c ) and defined by

core(ν c ) = {P κ | ∀A ⊆ Ω, ν c (A) ≤ P κ (A) ≤ ν(A)}. (5)
Now when the summative neighborhood is replaced by a capacity, estimation (3) is replaced by an estimation involving the Choquet integral [2, 3]

C ν (S) = (C) Ω Sdν = +∞ 0 ν({ω : S(ω) > α})dα. (6)
The encoding property of a capacity ν (5) is transferred to the estimation as stressed by these equations:

C ν c (S) = inf κ|Pκ∈core(ν c ) E κ (S), (7) 
C ν (S) = sup κ|Pκ∈core(ν c ) E κ (S). (8) 
See [4] proposition 3 for a proof of (7) and [2] proposition 10.3 for a proof of (8).

As mentioned above, a possibility measure is a special case of concave capacity. A transformation from probability to possibility which, for any summative kernel κ, results in a non-summative kernel π satisfying the consistency (or domination) principle: ∀A ⊆ Ω, P κ (A) ≤ Π π (A), induced by (5), is proposed by Dubois et al. in [5].

Any summative kernel κ, which is centered, bounded and symmetric on the interval [-∆, ∆] satisfies:

∀A ⊆ Ω, P κ (A) ≤ Π T (A), (9) 
with T the triangular possibility distribution on [-∆, ∆]. This justifies our choice for the use of the triangular possibility distribution for the interplay between continuous and discrete.

A last point is the extension to higher dimensions of possibility measures domination (for instance triangular) over probability measures. For the dimension of 2, on a space Ω 1 × Ω 2 , a product of marginal possibility measures Π 1 and Π 2 is defined in [START_REF] Dubois | Possibility Theory An Approach to Computerized Processing of Uncertainty[END_REF] by

∀(A, B) ⊆ Ω 1 × Ω 2 , Π 12 (A, B) = min(Π 1 (A), Π 2 (B)).
Suppose that marginally, Π 1 ≥ P 1 and Π 2 ≥ P 2 , with P 1 and P 2 probability measures on, respectively, Ω 1 and Ω 2 . Then Π 12 dominates P 12 defined by

∀(A, B) ⊆ Ω 1 × Ω 2 , P 12 (A, B) = P 1 (A)P 2 (B).
min(Π 1 (A), Π 2 (B)) ≥ min(P 1 (A), P 2 (B)) ≥ P 1 (A)P 2 (B), because P ≤ 1. Therefore, by definitions of P 12 and Π 12 , Π 12 (A, B) ≥ P 12 (A, B).

DERIVATION WITH NON-SUMMATIVE KERNEL

As presented in section 1, most of the usual derivative kernels can be obtained by subtracting two summative kernels η + and η -. Convolving signal S with the derivative kernel given by expression ( 1) is equivalent to summing up the convolution of S with the kernel η + and the convolution of the opposite of S with kernel η -:

DS(x) = (η + (x + x ) -η -(x -x )) * S(x) = η + (x + x ) * S(x) + η -(x -x ) * (-S(x)) Therefore let κ + (x) = η + (x + x ) and κ -(x) = η -(x -x ).
The estimate of DS(x), derivative of S at location x, is given by: While the signal to be processed being discrete, a kernel has to ensure the interplay between continuous and discrete. In our approach, this interplay makes use of triangular fuzzy numbers. The continuous signal is supposed to be known on imprecise locations defined by the fuzzy partition (H i ) i∈{1,...,N } depicted on Figure [START_REF] Dubois | Possibility Theory An Approach to Computerized Processing of Uncertainty[END_REF]. We aim at transferring the discrete knowledge of the signal to any weighted neighborhood W out of the partition. This transfer is ensured by using a Choquet integral. The signal being discrete, expression (6) can be simply computed by: S). We propose to use the pignistic transfer to define the capacity used in Equation ( 11). This capacity is concave and its expression is:

DS(x) = E κ + (S) + E κ -(-S) (10) 
C ν W (S) = N n=1 S (n) [ν W (A (n) ) -ν W (A (n+1) )], (11 
ν W (A (n) ) = |W A (n) | |W A (1) | . ( 12 
)
Expression (10) leads to an imprecise estimation of the first derivative of S:

[DS, DS] = [-C ν + W (-S), C ν + W (S)] + [-C ν - W (S), C ν - W (-S)] = [-C ν + W (-S) -C ν - W (S), C ν + W (S) + C ν - W (-S)].
Since the capacity ν W is concave, this interval contains all estimates of the derivative provided by a probability density function dominated by ν W (i.e. all probability density functions defined by a kernel dominated by the possibility distribution defined by W ). While the length of this interval increases with the noise level, this derivative can be supposed to be null if 0 ∈ [DS, DS].

EDGE DETECTION WITH NON-SUMMATIVE KERNEL BASED GRADIENT

The discrete image representation introduces an imprecision on the grey level localization. Let P i,j be the pixel located at (i, j) on the image. Its grey level localization is unknown within the 2D interval

[i -∆ h , i + ∆ h ] × [j -∆ v , j + ∆ v ],
where ∆ h (resp. ∆ v ) is half the width of the horizontal (resp. vertical) sampling. This imprecision is due to the spatial sampling and can be modeled by using a fuzzy partition [6]. Each pixel of the image is considered as a bi-dimensional imprecise quantity. The 1-D triangular fuzzy numbers presented in section 2 are extended in 2D pyramidal fuzzy numbers (Figure 2(a)) considering the t-norm min (cartesian product of two 1-D triangular fuzzy numbers), providing a strong fuzzy partition of the image. As shown in section 2, the domination property still holds. Therefore, the properties presented in section 3 can be easily extended to provide an imprecise estimation of the gradient. We present this approach with the x-derivative. Let κ(x, y) = κ x (x)κ y (y) be a separable kernel used to perform the derivation, the 2D extension of expression (1) is given by: Therefore, an estimate of the derivative of the 2D signal S along the x-axis (GS x ) can be given by simply adding the convolution of S with the summative kernel κ +

δ δx (κ(x, y)) = δ δx (κ x (x)κ y (y)) = δ δx (κ x (x))κ y (y) = (η + (x + x ) -η -(x -x ))κ y (y).
x to the convolution of (-S) with the summative kernel κ -

x :

GS x = E κ + x (S) + E κ - x (-S). (13) 
If ν + x (resp. ν - x ) is a concave capacity that dominates the kernel κ +

x (resp. κ - x ) then the domination can be easily transferred to the estimation process by using the Choquet integral (11). Then, the imprecise estimation of GS x is a simple 2D extension of the approach presented in section 3. It involves two pyramidal non-summative kernels depicted on Figure 2(b) dominating a family of kernels κ +

x and κ - x . Imprecise estimation of GS y is achieved in the same way.

Within this approach, the edge detection is performed on the median estimate of the gradient [GS x , GS x ]×[GS y , GS y ]. An extremum of this function is discarded if

(0, 0) ∈ [GS x , GS x ] × [GS y , GS y ].

EXPERIMENTAL RESULTS

In this section, we compare our approach with the Canny-Deriche [7], Shen-Castan [8] and Prewitt approaches. This comparison uses the artificial image depicted in Figure 3(a). This image has been corrupted with two kinds of noise. We have applied first a Gaussian noise with an increasing variance σ (Figure 3(b)) to test the robustness of the edge detection to the noise level and then a Poisson noise to highlight the robustness of the method when the noise level varies.

The operators performances are quantified by the parameter P 1 defined by Fram and Deutsch in [9]. P 1 measures the sensitivity of the detector in presence of noise. P 1 = 1 if the detecting of edges is optimal.

In a first experiment, edges are detected without any threshold. Figure 4(a) shows that all approaches except ours fail when σ > 3. In a second approach, we have applied an arbitrary threshold chosen, for each method, to provide the best result within the P 1 -criterion. When edge detection is applied on tomographic images, the threshold based approach usually fails because the noise is not uniformly distributed in the image. The noise in reconstructed tomographic images is usually assumed to be Poisson distributed . In the last experiment, we have corrupted the test image with a Poisson noise. Results of this experiment are reported in Table 1. It shows that the fuzzy approach is 8 times less sensitive than the Prewitt approach and 5 times less than the Canny-Deriche and Shen-Castan approaches. 

CONCLUSIONS

In this paper, we have presented a new approach for gradientbased edge detection. This approach involves non-summative kernels and Choquet integrals and produces, as output, intervalvalued estimation of the gradient. When used to detect edges on a noisy image, our approach, contrarily to classical methods, does not need an arbitrary threshold to discard spurious edges, while the threshold is naturally provided by the gradient estimation. Tests on synthetic images have illustrated the good performances of this approach with respect to state of art methods. Tests on natural images have been performed but not reported here, while the applications of the edge detection cannot be measured by objective criteria.

  If κ + (resp. κ -) is dominated by a concave capacity ν + (resp. ν -) then, the valueE κ + (S) (resp. E κ -(-S)) belongs to [C ν +c (S), C ν + (S)] (resp. [C ν -c (-S), C ν -(-S)]). If κ + (resp. κ -)is a bounded symmetric positive kernel, then the triangular possibility distribution can be used to ensure this domination (see section 2).

Fig. 1 .

 1 Fig. 1. Strong triangular partition of the real line and fuzzy neighborhood W .

  ) where S n is the real positive value associated with the n th cell H n and (.) indicates a permutation such that S (1) ≤ S (2) ≤ ... ≤ S (N ) . The A (n) = {H (n) , ..., H (N) } are binary coalitions of cells whose associated values are superior or equal to S (n) . Computation of C ν c W (S) can be simply achieved while noticing that C ν c W (S) = -C ν W (-
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 2 Fig. 2. (a) Fuzzy pixel, (b) 2D non-summative kernels
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 34 Fig. 3. (a) Original image (b) with a Gaussian noise σ = 25 and (c) with a Poisson noise

Table 1 .

 1 P 1 values on the Poisson noised image

	Approch Prewitt	Deriche	Shen	Fuzzy
	P1	0.089676 0.14975	0.141	0.69881