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Abstract. We study the bound states of relativistic hydrogen-like atoms
coupled to strong homogeneous magnetic fields, assuming a fixed, infinitely
heavy nucleus. Working in the adiabatic approximation in which the electron
is confined to the lowest Landau level, we show that the corresponding Dirac
Hamiltonian always has an infinite discrete spectrum accumulating at mc2,
m being the electron mass, and that, as the field strength increases, its eigen-
values successively descend into the lower part of the continuous spectrum,
(−∞,−mc2]. This phenomenon is for large B roughly periodical in log B.

1 Introduction

The Dirac Hamiltonian for a hydrogen-like atom with nuclear charge Z in a
constant magnetic field B of size B in the z-direction is given by

DB = DB
0 − γ

|r| , DB
0 = −→α · (p + A) + β, (1.1)

where we use coordinates r = (x, y, z) ∈ R
3 and where p = i−1∇r. Furthermore,

γ := αZ with α the fine structure constant, β and −→α = (αx, αy, αz) are the
Dirac-matrices:

αj =

(
0 σj

σj 0

)
(j = x, y, z), β =

(
I 0
0 −I

)
,

with σj the well-known Pauli-matrices, I is the 2 × 2-identity matrix, and A is
the vector potential, which we choose as A := 1

2B ∧ r = 1
2B (−y, x, 0).
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2 Relativistic hydrogen is strong magnetic fields

1.1 Spectral decomposition of DB
0

Since A has a component 0 in the z-direction, we can decompose DB
0 into a

transversal and a parallel operator with respect to the magnetic field: DB
0 =

DB
0,tr +D0,//, where D0,// := αzpz +βm is independent of B, and where DB

0,tr :=

αx(px − 1
2By) + αy(py + 1

2Bx). One has (DB
0,tr)

2 = HB ⊗ I, where HB = (px −
Ax)2 + (py − Ay)

2 + Bσz = −∆x,y + 1
4B(x2 + y2) + BLz + Bσz is the Pauli-

Hamiltonian in a constant magnetic field, which has an explicitly known pure
point-spectrum, consisting of non-negative integer multiples of 2B, each of which
is has infinite multiplicity (cf. e.g. [2]). Let ΠB

L
be the orthogonal projection onto

the (infinite dimensional) kernel of (DB
0,tr)

2. Since for a self-adjoint operator A,

Ker(A2) = Ker(A), this is also the orthogonal projection onto the kernel of
DB

0,tr, which we will call the relativistic lowest Landau-level, LB, of DB
0,tr; here

”lowest” has to be interpreted in the sense of absolute value: the spectrum of DB
0,tr

can be shown to be
√

2BZ, and consequently |DB
0,tr| ≥

√
2B on the orthogonal

complement of LB.
To remove the infinite degeneracy, we take advantage of the fact that DB,

DB
0 and DB

0,tr all commute with Jz = Lz + Sz, the total angular momentum in
the z-direction, and that we can therefore fix an angular momentum channel
Jz = j, j ∈ 1

2 + Z. If we indicate restrictions to this angular momentum channel

by the superscript ”Jz = j”, then we have that the image of ΠB,Jz=j
L

is non-zero

iff j = ℓ − 1/2 with ℓ ≤ 0. Moreover, for such j, Im ΠB,Jz=j
L

is one-dimensional
and spanned by the spinor

χℓ(x + iy)




0
1
0
1


 , χℓ

(
ρeiϕ

)
:= (2π2ℓℓ!)−1/2B1/2 ρℓe−iℓϕe−Bρ2/4.

We still have that |DB,Jz=j
0 | ≥

√
2B on the orthogonal complement of ImΠB,Jz=ℓ

L
.

For simplicity we will limit ourselves to the case of j = −1/2. This is not an
essential restriction, though, and our calculations will carry through, with mod-
ifications, for general j ∈ −1

2 − N.

2 Adiabatic approximation

We will work in the adiabatic approximation, in which, for large B, the electron is
assumed to be ”frozen” in its lowest Landau orbits in directions perpendicular to
the field B. This means replacing the exact Hamiltonian DB by the ”lowest Lan-

dau” Hamiltonian dB
L

:= Π
B,Jz=−1/2
L

DBΠ
B,Jz=−1/2
L

(where we henceforth leave
off the superscript indicating the angular momentum channel). The Hamiltonian
dB
L

is one-dimensional, and effectively acts on two-component wave-functions as

dB
L = d0,z + V B

L (z), d0,z =

(
m pz

pz −m

)
; (2.1)
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with V B
L

(z) := −γ〈χB
0 ||r|−1|χB

0 〉 =
√

BV 1
L
(
√

Bz); explicitly,

V 1
L (z) = −γ

∫
∞

0

e−u

√
2u + z2

du. (2.2)

Note that dB
0 is the free Dirac operator in dimension 1.

This of course begs the question of whether we can relate the spectra of DB

and dB
L

. For large B, a large amount of (positive or negative) energy is needed
to go from the lowest Landau level into one of the others, and the question is
whether the attractive Coulomb potential can provide that energy. In the non-
relativistic case the answer was ”no”, at least asymptotically for very large B;
mathematically, this translated into the asymptotic equality, in norm resolvent
sense, of the full Hamiltonian and its projection onto the lowest Landau level in
[2]. In the relativistic case, the situation is not that clear, basically because both
Coulomb potential and the Dirac operator have the same order of homogeneity
-1, a well-known problem in rigorous relativistic quantum mechanics. A further
analysis, using the techniques of [2], shows that one can prove norm-resolvent
convergence of DB to dB

L
if we allow γ to be B-dependent and require that

γ
√

B → 0, cf. [1]. More generally, we can do perturbation theory around dB
L

if γ
√

B ≪ 1, that is B ≪ α2 ≃ 18769 for hydrogen. Since in our units B = 1
already corresponds to 4.4 109 tesla, this may not be an unreasonable assumption
for the lighter atoms.

3 Large-B approximation of dB
L

The eigenvalue-problem for dB
L

does not seem to be directly solvable in closed
form, but we can further simplify the operator for large values of B. If Uπ/2

denotes the rotation of C
2 by π/4, it is convenient to introduce

d̃B
L := U−1

π/4 dB
L Uπ/4 =

(
pz + V B

L
−m

−m −pz + V B
L

)
.

We note that for z 6= 0 and as B → ∞, V B
L

(z) → −γ|z|−1. One can now show that

as B → ∞, d̃∞,B
L

is asymptotic, in norm-resolvent sense, to a suitably defined
regularization of the one-dimensional Dirac + Coulomb Hamiltonian (rotated by
π/4):

Proposition 3.1 Define the operator d∞,B
L

on L2(R, C2) by

d̃∞,B
L

:=

(
pz − γ/|z| m

m −pz − γ/|z|

)
,

with domain those u = (u1, u2) ∈ L2(R, C2) such that uj ∈ H1(|z| ≥ ε) for all
ε > 0 (j = 1, 2) and satisfying the following boundary condition in 0:

ei(−1)jγ(log B+c)εi(−1)jγuj(ε) ≃ ε−i(−1)jγuj(−ε), ε ↓ 0, j = 1, 2,

where c = log 2−Γ′(1), and ≃ means that the difference tends to 0 with ε. Then
d∞,B
L

is self-adjoint and we have that for all complex ξ /∈ R,

lim
B→∞

|| (d̃B
L − ξ)−1 − (d̃∞,B

L
− ξ)−1 || = 0.
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Observe that d̃∞,B
L

still depends on B, through the boundary conditions,

which in fact are periodic in log B. The eigenvalue problem for d̃∞,B
L

can be
explicitly solved with the help of Whittaker functions. Before stating the result,
we note the following symmetry of the operator: let P : u(z) → u(−z) be the
parity operator, and let E : (u1, u2) → (u2, u1) exchange the components of the
spinor u. Then d̃∞,B

L
commutes with PE , which has eigenvalues ±1, and we can

reduce the operator accordingly.

Theorem 3.2 Let F± : (−m,m) → {ζ ∈ C : |ζ| = 1} be given by

F±(E) := (∓)
E + iτ/2

|E + iτ/2| ·
Γ(1 − 2iγ)

Γ(1 + 2iγ)
· Γ(1 + iγ − κ)

Γ(1 − iγ − κ)
· τ2iγe−icγ (3.1)

where τ = τ(E) := 2
√

m2 − E2 and κ := κ(E) := γE/
√

m2 − E2. Then E ∈
(−m,m) is an eigenvalue of d̃∞,B

L
in the ±-sector of the Parity & Exchange

operator PE iff F±(E) = eiγ log B = Biγ .

An equivalent way of stating the eigenvalue condition is that A±(E) :=
Arg (F±(E)) = iγ log B mod2π, where Arg(ζ) ∈ (−π, π] denotes the principal
value of the argument of ζ ∈ C\0. Graphical analysis shows that for small γ and
given B > 0, d̃∞,B

L
will have infinitely many eigenvalues E±

0 (B) < E±

1 (B) < · · ·
in (−m,m) accumulating at m, see figure 1 below, for an illustration for γ = 0.5.
The eigenvalues in either sector are monotonically decreasing in B, and the low-
est eigenvalue E+

0 (B) will, for a certain critical value Bc of the field, be absorbed
into lower continuous spectrum (−∞,−m], at which point E−

0 (B) will become
the new lowest eigenvalue, and the whole process will repeat itself, periodically
in log B with period 2π/γ. As a consequence of norm-resolvent convergence, the
same phenomenon will occur for dB

L
if B is sufficiently large, the periodicity be-

coming approximate. We note that in reference [3] it was recently shown, by a
variational argument involving a min-max characterisation of the ground state
of Dirac operators in the spectral gap (−m,m) and comparison with dB

L
, that

the ground state of DB enters the negative continuous spectrum for a certain
Bc = Bc(γ). This left open the question of whether there remained other eigen-
values. Our result answers this for dB

L
when B is sufficiently large, and also for

DB in the limit of γ
√

B → 0.
Concerning the critical values of B, one can use Stirling’s formula to show

that

lim
E→−m

F±(E) = ∓Γ(1 − 2iγ)

Γ(1 + 2iγ)

(
2γm

ec/2

)2iγ

, (3.2)

The critical values Bc of the magnetic field for which E±

0 (Bc) = −m will have to

satisfy Biγ
c = Right Hand Side of (3.2). We note that if Bc(γ) is the first critical

B > 1, then limγ→0 γ log Bc = π, confirming a result of [3]; (3.2) allows us to
derive an asymptotic expansion of γBc(γ) for small γ.
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Figure 1. Graphs of A+(E) (dots), A−(E) (dashes) and γ log B = 2.5mod 2π (solid), γ = 0.5
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