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Imprecise functional estimation: the cumulative
distribution case

Kevin LOQUIN and Olivier STRAUSS

Abstract In this paper, we propose an adaptation of the Parzen Raecbmu-
lative distribution function estimator that uses maxitkernels. The result of this
estimator, on every point of the domainff the cumulative distribution to be esti-
mated, is interval valued instead of punctual valued. Wegtloe consistency of our
approach with the classical Parzen Rosenblatt estimatog,saccording to consis-
tency conditions between the maxitive kernel involved ia tmprecise estimator
and the summative kernel involved in the precise estimatarjimprecise estimate
contains the precise Parzen Rosenblatt estimate.

1 Introduction

The probability density function (pdfj and the cumulative distribution function
(cdf) F of a random variablX on Q C IR are fundamental concepts for describ-
ing and representing real data in statistics. These remiasens are linked by
Yw € Q, F(w) = [, f(u)du. When they cannot be specified, estimates of these
functions may be performed by using a sampl& @bservations independent and
identically distributed X1, ..., X,) of X. These observations are summarized by the
empirical distribution defined bg, = %z{‘zlé)g, wheredy; is the Dirac distribu-
tion on X; or by the empirical cumulative distribution function definen Q by
En(x) = %Zill]lm <x» Where 1 is the characteristic function ok

Different methods have been proposed in the literaturedtimating or manipu-
lating the pdf or the cdf underlying a sample of observatidihge Parzen Rosenblatt
method is one of the most efficient non-parametric techraqie, 11]. It belongs
to the class of functional estimation methods.
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Generally speaking, functional estimation [1] consistestimating, for allx €
Q, a functionh: Q — IR from another functiorg: Q — IR related toh. The
nature of this relation betwedrandg can take different formg can be replaced by
a sequencégn)n-0, such thag, — h, whenn — +o, h can be a modification of
g (or his a filtered signal obtained from the sigrig| or g can be a discretization
of h that has to be recovered by interpolation. So, the estinfale atx € Q, is
function ofg andx, which can be expressedlax) = ¢ (g, x).

For the Parzen Rosenblatt pdf estimator, the funcgas the empirical distri-
butioney, his the pdf to be estimatetl. The estimatoh is defined for allx € Q,
by:

n

R0 = o (00 = 1 K2 X, @)

with k the kernel used to perform this estimate ahdhe bandwidth. Note that
Ka(X) = %K(%). Wheng is the empirical cumulative distributioB,, the cdfF is

the functionh to be estimated and the estimaldis defined for allk € Q, by:

A(X) = Foy () = /_ Xw Fy (W)L )

In the Parzen Rosenblatt like methods, and more generadlll the functional
estimation methods, the particular role of the kernel isgfine a neighborhood that
can be shifted to any location @. The classical (precise) approach makes use of
summative kernels. A summative kernel can be seen as a plibbdlstribution,
defining a probabilistic neighborhood around each locatiohQ.

This paper considers a new approach (imprecise) that makesfunaxitive ker-
nels. A maxitive kernel can be seen as a possibility distidoidefining a possibilis-
tic neighborhood around each locatiwof Q. The main consequence of replacing
a summative kernel by a maxitive kernel is that the estimatdde is an interval
[h(x),h(x)], instead of a single valugXx). We are interested in the relation between
the point estimate obtained with the classical approachthednterval estimate
obtained with our approach.

The paper is organized as follows. In section 2 we presentldssical func-
tional estimation using a summative kernel. In section B¢fional estimation with
maxitive kernels is exposed. In section 4, the imprecisetfanal estimation is pre-
sented and mathematically justified. In section 5, we appiynethod to the Parzen
Rosenblatt cdf estimator. Before concluding, we discussetion 6 of the choice
of the involved maxitive kernel. The method is illustrateddm experiment.

2 Functional estimation with summative neighborhoods

In functional estimation, a summative kernel can be comsitlas a weighted neigh-
borhood of a given location, called its mode, formally santio a probability distri-
bution.
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Definition 1 Summative kernels ailR"-valued functions defined on a domain
Q, verifying the summativity propertyy K (x)dx= 1.

Note that any given monomodal summative kerketan be the basis for a fam-
ily of summative kernels tuned by a location-scale paramgte (u,A), with u a
translation factor and > 0 its bandwidth. Any element of this family is obtained,
forue Q andA > 0, by

1 w-u

k() = 7 k(Z

), Vwe Q. (3)

When seen as a probability distribution, a summative ketrteds a relevant mean-

ing in the scope of uncertainty theories. It induces a proipameasure given by

Pc(A) = [hk(w)dw, YAC Q. The valueP, (A) can be interpreted as the degree of

probability for a realization of the underlying uncertaimgmomenon to fall ir\.
Estimation of a given function di: Q — IR in a summative neighborhoad;

of a given locationx with bandwidthA is given by the expectation of its related

functiong according to the probability measd?;aﬂ:

A(x) = Ei; (0). @

This approach can be found in [1] for functional estimatiostatistics. [7] presents
digital signal processing methods that can be reformulasefdinctional estimators

4.

3 Functional estimation with maxitive neighborhoods

A maxitive kernel is also a weighted neighborhood of a givacation, called its
mode, formally similar to a possibility distribution or méership function of a
normalized fuzzy subset [3].

Definition 2 A maxitive kernel is d0, 1]-valued functionm, defined on a domain
Q, verifying the maxitivity propertysug,c o m(w) = 1.

Note that any given monomodal maxitive kermgldefined onQ2, can be the basis
for a family of maxitive kernels tuned by a location-scalegmaeter® = (u,A), with

u a translation factor and its bandwidth. Any element of this family is obtained,
forue Q andA > 0, by

nj(w):n(¥), Ywe Q. (5)

A possibility distributionrt has a relevant meaning in the scope of uncertainty theo-
ries. minduces a possibility measure givenfAy(A) = sup,ca T(w), YAC Q. The
valuelT;(A) can be interpreted as the degree of possibility for a re@dizaf the
underlying uncertain phenomenon to fallAn
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Now, when the summative neighborhooflis replaced by a maxitive neighbor-
hoodrr; of a given locatiorx with bandwidthA, the Lebesgue integral in estimator
(4) has to be replaced by the Choquet integral [2, 9].0f

4 Imprecise functional estimation

A possibility measure is a special case of concave Choqueetcity v [15]. The
conjugatev® of such a capacity, defined by(A) =1— v(A®),VAC Q, is a convex
capacity. A concave capacitycan encode a special family of probability measures,
notedcore(v) and defined by

core(v) = {Px, | VAC Q,V°(A) < P(A) < Vv(A)}. (6)

David Schmeidler and Dieter Denneberg proved the followegprem ([12] propo-
sition 3 and [2] proposition 18) for capacities.

Theorem 3.The capacity is concave if and only if for all g such thét, (|g|) <
+oo, thenVk [P € core(v), Cye(g) < Ex(g) < Cy(Q).

From Theorem 3, since a maxitive kernel defines a possibiigpsure, a maxitive
kernel-based estimation bf generalizing expression (4) is interval valued. The up-
per and lower bounds are the Choquet integralg obmputed with respectively
I'lnz andNy¢, which are capacities (or non additive measures) assddiatey a
maxitive neighborhood of, with bandwidthA. Ny is the conjugate of the possibil-
ity measure Tr, called a necessity measure. These remarks leads to thevifud
corollary of Theorem 3.

Corollary 1. Imprecise functional estimation
Let 7T be a maxitive kernel, thevx € Q andVA > 0,

VK|Py € core(My), (CNHz (9) <Ek(g) < (C”ng (9)- (")

Imprecise estimation of a given function lof Q — IR in a maxitive neighbor-
hoodrt} of a given locatiorx with bandwidthA is given by the Choquet integrals of
its related functiorg according to the possibility and necessity measm%s and
ani ~

[h(x),h(X)] = [Cnx (9),Cr,x (9)]- (8)

A A

According to Corollary 1, an estimatex) of h obtained with a summative kernel
K, such thaby belongs to:ore(l‘lnz), belongs to the estimated interval (8). Besides,
the estimation bounds are attained, i.e. there exist twonsative kernels; and
u, whose associated probability measufgsand P, are in core(l'lnz), such that
En(9) = Cry (9) andEy(9) = Crryy (9).

Replacing a summative kernel by a maxitive kernel for ediimgaa functionh
aims at taking into account the imperfect knowledge of thelefer to choose a
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particulark. The specificity [16, 8] of the maxitive kernel chosen by thedeler
for performing this imprecise estimation reflects his kneslge. The most specific
is the maxitive neighborhood, the smallest is the encodedrsieed, ifrTis more
specific thanr’, some summative kernels encoded tdywill not be encoded by
1. The smaller is the encoded set of summative neighborhdloelsloser are the
estimation bounds with this method.

5 Imprecise cumulative distribution function estimation

The Parzen Rosenblatt density estimator (1) can be expressthe estimation of
the pdf f, with the empirical distributiorg = e, (summarizing the observations)
according to a summative neighborhagfi(see expression (3)):

anA (x) = EKE (&n). 9)

Corollary 1, associated with expression (9) suggests thahprecise estimation
of the Parzen Rosenblatt pdf estimator should be performedimputing the Cho-
quet integral of the empirical distributiae according to a maxitive kernel (encod-
ing a family of summative kernels). This direct approachag/@ver not applicable
here, since the Choquet integral of the empirical distidsutioes not exist. Indeed,
the computation of this integral only exists for boundedcfions. The empirical
distribution is not bounded. Actually, the Dirac delta ftions, forminge,, are not
functions but mathematical constructions, called distidns.

Nevertheless, the Parzen Rosenblatt cdf estimator (2viesahe empirical cu-
mulative distributionE,, which is a bounded function. Theorem 4 expresses the
Parzen Rosenblatt cdf estimate at a pairds the estimation of the céf with the
cumulative empirical distributiog = E, according to a summative neighborhood
of X, K.

Theorem 4.Letk be a summative kernel ad> 0 and n> 0, thenvx € Q,
Frk, (X) = EKE (En). (10)
Proof. First, note thatfn, (X) = [ Ka(w)en(X — w)dw. Indeed, [, Ka (w)en(X —

©)dw =151y o Ka()O% (X~ w)dw= £ 5T; ka(x—X). Thus,

Frk, (X) :/X (/Q KA(w)en(u—w)dw)du,

—00

:A}([Xm%(u—w)du)KA(w)dw,

En is the cumulative distribution associated to the empiidéstribution, i.e En(w) =
[“, en(u)du. Then by successive changes of variable u— w andt := x— w, we
obtain:
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Frk, (X) = /QEn(x—w)KA(w)dw,

- /Q En(t)Ka (X—t)dt,
= EKE (En).

SinceE, is bounded, an imprecise estimation fofat x can be obtained with a
maxitive kernelr; .

Theorem 5. Let T be a maxitive kernel, therx € Q, Vn > 0 andVA > 0,
VKA/|PKA/ S Core(”nz), CNHZ (En) S FnKA, (X) S (C[']nz (En) (11)

We now present the computation of the imprecise Parzen Rtaendf estimate.
First, observe thdk, is a simple function that can be expresseddby Eq(w) =
Z?:lln]][xa),x(m)}: where(.) indicates a permutation of the observations such that

Xiiy < Xi+1)- Thus, the Choquet integral &, can be rewritten a€n (En) =
. A
% Yt M ({we Q:En(w) > 1}). Itcan easily be observed thab € Q : Eq(w) >
t}={we Q:w>X;}. Since the summation does not depend on the order of
the summed element&n ., (En) = %Zin=1 My ({we Q:w>X}). With similar
A
developments oi@Nn2 (En), we obtain:

(1—N,,Z({weQ:w<Xi})),

Chy (En) = i;(l—ﬂnz({wefz:w<x.-})).

As exposed in [3, 5]Fx (u) = Nt ({w € Q : w < u}) is the lower cdf of the set of
cdf associated to the summative kernelsarfe( [y ). Itis the lower cdf of a p-box
[6], whose upper cdf is given hy_nz(u) =M ({we Q:w<u}). As shownin[5],
we have:

Frg(0) =

0 if u<x, andF () = mu) ifu<x,
1—m(u) otherwise, L] otherwise.

We thus obtain the imprecise cdf estimate:

C"’ng (En) = %i (HX(Xi)]l[xgxa] + :“[x>>(i]) ; (12)
Cng (B0 = £ 3, (A= T500 ey ). 13)
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6 Experiment and choice of a maxitive kernel

As in the case of the summative kernel methods, the probletheothoice of a
particular maxitive kernel for performing imprecise fuiocial estimation can be
discussed. The choice of the summative kernel sikafgeoften considered as in-
significant in the non-parametric statistics communitye Thain argument is that
the asymptotic behavior (when— +) of Fy., andfn,, depend more od than
on the choice ok [14, 1]. However, the asymptotic conditions are barely fieffi. In
non-asymptotic conditions, the shape of the estimate glyatepend on the shape
of k. Moreover, the knowledge of the modeler is generally insigfit for choos-
ing the appropriate kernel. Instead of choosing one pdaticcummative kernel,
we propose to the modeler to choose a family of summativegkematching his
knowledge via the choice of a maxitive kernel.

In such kernel methods, where a summative kernel is coresices a neighbor-
hood, it seems sensible to assume that the chosen basid t@ilve shifted and
dilated with expression (3) is centered, even and with asdppcluded in[—1,1].
Therefore, it naturally leads to choose a basic maxitivenéderr encoding these
particular summative kernels. As shown in [4], the triamguhaxitive kernell is
the most specific of such maxitive kernels. The triangulasfulity distribution is
defined onQ by T(w) = (1 — |w|)1[;u<1- We now illustrate Theorem 5 by per-

Fig. 1 Imprecise cumulative distribution estimate

forming the summative and maxitive estimates of the cdf dyitegy a set of 107
observations of the duration in minutes of the eruption$ef®@Id Faithful geyser

in Yellowstone National Park Each precise estimate has been performed by using
four different summative kernelg,: uniform, Epanechnikov, triweight and cosine

1 This example, taken from [13], is a popular benchmark in moametric estimation.
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kernels, withA = 0.3. The definitions of the used kernels can be found in [8]. The
imprecise estimate is obtained by using a triangular maxkernelT with the same

A. As illustrated on Figure 1, every precise estimates of theudative distribution
are included in the imprecise estimation interval.

7 Conclusion

In this paper, we proposed an extension of the Parzen Rageodi estimate, which

takes into account a possible lack of knowledge of the apatgsummative kernel
to be involved. Compared to the classical method, our metésults in an interval

estimate instead of a point estimate. The imprecision obtiteined estimate con-
sistently reflects the lack of knowledge of the modeler, dgjfiad by the specificity

of the involved maxitive kernel. We put this sensible impseadf estimation into a
wider framework of imprecise functional estimation. Noke tnext significant step,
in soft statistics, is likely to be the imprecise estimatidithe pdf.
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