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Abstract—This paper investigates the comparison of two
adaptive quantization algorithms for linear systems in the
context of NCS1. The first algorithm that we call ZIZO2 is due
to Sharon and Liberzon and has been published in [10] and
the second one that we call D-ZIZO3 has been introduced in
[7]. We show that D-ZIZO generates a smoother quantization
noise than ZIZO algorithm and that D-ZIZO allows a faster
convergence for same given properties. Moreover in the
multivariable case, D-ZIZO allows us to use the smallest
number of quantization bits in order to achieve stability.

I. INTRODUCTION

In a networked controlled system, the output signals

have to be digitalized before transmission. Our objective

is then to use the minimum quantization bits necessary to

maintain stability on the closed loop system, that is to say

the minimum bandwidth.

Several quantization methods have already been pro-

posed during the last decade. In [3], authors use a logarithm

quantization of the signal which only ensures local stability

and does not minimize the necessary channel bandwidth.

In [1], authors propose an adaptive algorithm based on a

∆ modulation and which allows a global stability. The

key point of this method is to increase the value of

the quantization steps when the signal is large (”Zoom

In”) and to decrease this value otherwise (“Zoom Out”).

This method is improved in [10] in order to reduce the

communication bandwidth. Thus, authors divide the “Zoom

In” step into two steps (“Zoom In Escape” and “Zoom

In Measurements”). We will call this method ZIZO in

the rest of the paper. In [5], [11] authors prove that

semi global stability is possible in a NCS provided that

the communication rate R is greater than a minimum

communication rate depending on the eigenvalues of the

open loop matrix of the system. Recent works [2] and [6]

based on ∆ modulation provide local stability with a better

characterization of the attraction domain than [5] and [11].

In [6], authors generalize their work to non diagonalizable

systems. This also permits to tune the quantization steps

in order to get a better signal reconstruction quality. In

[7], we expose an adaptive algorithm which allows us

to use the theoretical minimum bandwidth. Previously, in

[4] authors have presented a quantization method based

on a one-bit-adaptive ∆ modulation. The interest of this

technic is that it permits global stability in the scalar case

provided that the open loop eigenvalue λ is such that:

|λ| < 1.3. Nevertheless it can be shown in [11] that in

this case (one bit quantization) it is theoretically possible
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to just have |λ| < 2. In [9] authors propose an adaptive

quantization method robust to any bounded perturbation.

This method also works for multivariable class of linear

systems. However, the necessary bandwidth is generally

greater than the minimum one exposed in [11], even if it

may be very close in certain cases. At the contrary, the

algorithm proposed in [10] needs a bandwidth which is

always only slightly greater than, or even sometimes equal

to, the minimum bandwidth. Nevertheless, this algorithm

(ZIZO) does not guaranty that the reconstruction error

signal is smooth, but it is subject to frequency pics. This

issue is solved in [7] thanks to the introduction of a Dwell

Time phase between Zoom In and Zoom Out. That is why

we call this algorithm D-ZIZO. Moreover an improvement

of the quantization itself permits to use the minimum

bandwidth in the scalar case as well as in the multivariable

one.

The paper is organized as follows. Firstly, we present the

problem formulation in Section II. We go on in Section III

with the description of the two Adaptive quantization

algorithms. These two algorithms are described without

and with bounded exogenous inputs. We continue with a

comparison between the performances of ZIZO and D-

ZIZO algorithms in Section IV. With some analysis and

simulation results, we point out three results. Firstly, ZIZO

generates high frequencies though the D-ZIZO signals are

smoother. Secondly, for same constraints on regulation

detection, D-ZIZO is faster than ZIZO. Moreover, with the

same convergence rate, the regulation detection is faster

for D-ZIZO. Finally, the change of coordinates enables D-

ZIZO to achieve theoretical minimum channel bandwidth.

II. PROBLEM FORMULATION

The problem considered is the stabilization of a mul-

tivariable system in which sensor signals are centralized,

and then transmitted through a digital communication link

to the controller.

We assume the following:

• the coding process is centralized : a single encoder can

be used to encode all the sensed states of the system,

• the encoded information is transmitted through a

noiseless perfect transmission channel. Hence delay,

errors due to the transmission are not considered,

• the encoder and decoder clocks are assumed to be

synchronized, and samples are assumed to occur at

each Ts.

The following notations will be used:

• xk = [x1
k, . . . , xn

k ]T ∈ R(n×1) is the n-dimensional

sensed state vector at instant kTs (each xi
k corre-

sponds to the i − th sensor) ;



• uk = [u1
k, . . . , um

k ]T ∈ R(m×1), is m-dimensional

control input vector at instant kTs.

• Mi number of words by signal z̃i
k.

The discretized system is described by:

xk+1 = Axk + Buk (1)

uk = −Kx̂k (2)

with K such as A−BK is Schur (eigenvalues have their

module strictly inferior than 1). x̂k is an estimation of xk,

and x̃k denotes the estimation error :

x̃k = xk − x̂k, (3)

and, more generally, for a given signal sk, ŝk represents an

estimated value of sk and s̃k represents the error sk − ŝk.

A. Architecture of ZIZO

In [10], the architecture of ZIZO is composed of two

main components

• The vector quantizer block transforms the error x̃k,

into a finite codeword set, each signal is coded with

the same granularity ∆.

• The predictor, that transforms back the codeword

into a system state prediction x̂k with the equation

x̂k+1 = Ax̂k + Buk (4)

This predictor uses input and signal information at the

encoder: this hypothesis is less realistic than the one

in [7] where only signal information is used at the

encoder.

In ZIZO algorithm, we have the error equation:

x̃k+1 = A(x̃k − ˆ̃xk) (5)

B. Architecture of D-ZIZO

Figure 1 shows the architecture of the proposed dif-

ferential coding algorithm. It is composed of three main

components:

• The vector quantizer block transforms the error z̃k,

into a finite codeword set

• The predictor , that transforms back the codeword

into a system state prediction x̂k

• The rotation matrix Tk transforms the estimation

error x̃k between the signal xk and its estimated

(reconstructed) value x̂k into a new set of coordinates

z̃k, i.e.

z̃k = T
−1
k x̃k (6)

In [6], we have proven that the change of coordinates with

a dynamic matrix Tk permits to reduce the study to the

following class of systems:

z̃k+1 =





|λ| 1 0
0 |λ| 1
0 0 |λ|





︸ ︷︷ ︸

F (|λ|)∈Rµ∗µ

(z̃k − ˆ̃zk)

with

• ˆ̃zk is the quantized signal of z̃k with its associated

quantization steps ∆k.

• µ is the readjusted size of z̃k.

• ∆k = [∆1
k, . . . ,∆µ

k ]T are the quantization steps asso-

ciated to ˆ̃zk
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Fig. 1. Schematic representation of the system in our study.

III. ADAPTIVE DELTA MODULATION: ALGORITHM

PRINCIPLES

A. Presentation of the algorithm introduced in [10]: ZIZO

(Results without noise)

Let us begin with the following lemma:

Lemma 1: Important item to create ZIZO. Assuming

that ˆ̃xk is computed thanks to the quantization procedure

given in [8], and suppose that

z̃0 ∈ Ωext = {z̃ ∈ R
µ : |z̃i| 6 M

∆

2
, 1 6 i 6 µ}

with ∆ the quantization step. And M the number of words

per signal chosen such that:

‖A‖∞ 6 M

Then

i) Ωext is an invariant set

ii) z̃k ∈ Ωint, ∀k > 1 where

Ωint = {z̃ ∈ R
µ : ‖z̃‖∞ 6 ‖A‖∞∆/2}

In the case of ZIZO and D-ZIZO algorithms, we intro-

duce the set Ωext
k defined by

Ωext
k = {z̃ ∈ R

µ : |z̃i| 6 Mi

∆i
k

2
, 1 6 i 6 µ}

It is worthwhile noting that ∆i = ∆ and Mi = M ∀1 6

i 6 µ. We emphasize the fact that contrary to the set Ωext,

this set is dynamic. We will go on with the main phases

of ZIZO algorithm:

• “Zoom In measurement” strategy: The quantization

steps decrease during p − 1 sample times.

• “Zoom In escape” strategy: After the “Zoom In mea-

surement” process, quantization steps increase such

that if x̃k ∈ Ωext
k then ‖x̃k+1‖∞ 6 (M − 2)∆k+1/2.

So that x̃k+1 ∈ Ωext
k+1. Else x̃k /∈ Ωext

k and we switch

to a “Zoom Out” process.

• “Zoom Out” strategy: The signal is outside Ωext, the

quantization steps increase with the target to ensure

that the signal will be inside Ωext after a finite time.

To realize this strategy, ZIZO needs different coefficients

such that Θin,m, Θin,e and Θout and p which respectively

are the compression ratio for “Zoom In measurement”



strategy, the expansion factor for “Zoom In escape” strat-

egy and the expansion factor for “Zoom Out” strategy, p
corresponds to the number of necessary sample times that

ZIZO needs to prove that the signal belongs to Ωext
k .

Those parameters are constrained by

‖A‖∞
M

< Θin,m < 1 (7)

Θout > ‖A‖∞ (8)

Θin,e >
‖A‖∞
M − 2

(9)

Θp−1
in,mΘin,e < 1 (10)

∆k+1 = (Θin,m or Θin,e or Θout)∆k (11)

With regards to these inequalities, the convergence de-

pends on p. Bigger is p, faster is the convergence but worse

is the regulation detection.

B. Presentation of the algorithm introduced in [7]:D-ZIZO

(Results without noise)

Though in ZIZO, each signal is quantized with the

same quantization step, in D-ZIZO each signal has its own

quantization step but they are constrained by:

Lemma 2: Important item to obtain D-ZIZO. Assuming

that ˆ̃zk is computed thanks to the quantization procedure

given in [6], and suppose that

z̃0 ∈ Ωext = {z̃ ∈ R
µ : |z̃i| 6 Mi

∆i
0

2
, 1 6 i 6 µ}

and the quantization steps satisfy the equations

|λ| +
∆i+1

0

∆i
0

6 Mi, 1 6 i 6 µ − 1 (12)

Then

i) Ωext is an invariant set

ii) z̃k ∈ Ωint, ∀k > 1 where

Ωint = {z̃ ∈ R
µ : |z̃i| 6 |λ|∆i

0/2 + ∆i+1
0 /2

∀i : 1 6 i 6 µ − 1 and |z̃µ| 6 |λ|∆µ
0/2}

Remark 1: In a semi-global stabilization context, item

ii) of 1 and 2 allows us to obtain the maximal convergence

rate. In D-ZIZO algorithm (global stabilization), we can

choose the quantization steps. If we choose ∆i+1
0 /∆i

0 close

to 0, convergence rate max16i6n−1 (|λ| + ∆i+1
0 /∆i

0)/Mi

of D-ZIZO is near |λ|/M that could be quantitatively least

than the maximal shrinkage rate ‖A‖∞/M of ZIZO. Since

in ZIZO there is no change of coordinates (with Tk matrix)

and no quantization steps tuning methods, the necessary

number of words to stabilize the system is also more

important.

In what follows, we briefly explain the principle of the

algorithm. Initially, the signal z̃0 6∈ Ωext
0 , the quantization

steps have to increase faster than the signal to ensure that

there exists a k0 such that z̃k0 ∈ Ωext
k0

. Our aim is to

determine whether z̃k0
belongs to Ωext

k0
. When this situation

is obtained, the quantization steps related to the set Ωext
k

decrease.

The algorithm proposed in [7] is presented in 3 parts:

• “Zoom Out” strategy: z̃k /∈ Ωext
k , the quantization

steps increase with the target to ensure that the signal

will belong to Ωext
k after a finite time.

• Dwell time phase: the algorithm does not have

enough information to know if the signal z̃k0
at a pre-

cise moment k0 belongs to Ωext
k0

or not. Quantization

steps do not change.

• “Zoom In” strategy: z̃k ∈ Ωext
k , the quantization

steps decrease.

The dwell time phase is the key point of the algorithm.

In the scalar case, we define m⋆ the necessary dwell

time to decide whether |z̃m| 6 M∆m/2: m⋆ is the

smallest value of m verifying this constraint (considering

that m = 0 at the beginning of the dwell time phase).

After m⋆ iterations, a criterion exposed in [7] allows us

to determine whether D-ZIZO enters in “Zoom Out” or

“Zoom In” phase. To extend to multivariable class of linear

systems, we use the cascade structure of F (λ). Thus we

use the same analysis but for z̃µ and then z̃µ−1 and so on.

To obtain the algorithm, we must introduce two scalars

Cout, Cin which respectively correspond to the expansion

factor for a “Zoom Out” procedure and the compression

ratio for a “Zoom In” procedure. Those two parameters

are constrained by

max
16i6n−1

(
|λ| +

∆i+1
0

∆i
0

Mi

) < Cin < 1 (13)

max
16i6n−1

(|λ| +
∆i+1

0

∆i
0

) < Cout (14)

∆k+1 = (Cin or 1 or Cout)∆k(15)

Remark 2: In ZIZO algorithm, authors do not use the

change of coordinates exposed in the section concerning

the architecture of D-ZIZO. To prove the stability results,

the analysis is realized on |x̃k|. The positivity of the

eigenvalues and the cascade structure of F (|λ|) provide

some properties on the sign of each signal.

C. Results with noise

In the previous section, we have presented the case of

noiseless systems. In what follows, we will extend this

result to a bounded noisy systems. Equation (1) becomes,

with noise:

xk+1 = Axk + Buk + sk (16)

x̂k+1 = (A + BK)x̂k+1 + Aˆ̃xk (17)

x̃k+1 = A(x̃k − ˆ̃xk) + sk (18)

1) D-ZIZO:

z̃k+1 = T−1
k+1ATk(z̃k − ˆ̃zk) + T−1

k+1Tksk

Since ‖Tk‖∞ is bounded, T−1
k+1Tksk is also bounded.

We can then write, with wk a bounded noise:

z̃k+1 = F (λ)(z̃k − ˆ̃zk) + wk (19)

The initialization of quantization steps is very important

for D-ZIZO. When there are some exogenous inputs, the

initialization of quantization steps in the algorithm depends

on the maximal value of each exogenous input. Each initial

value of quantization steps have to be tuned by a new

method. Nevertheless in [10], the quantization steps of



each signal are the same, thus there is no condition on

the quantization steps.

Let us define two dynamic scalars Cout(k), Cin(k)
which respectively correspond to the expansion factor

for a “Zoom Out” procedure and the compression rate

for a “Zoom In” procedure. Those two parameters are

constrained by

max
16i6n−1

(
|λ| +

∆i+1
0

∆i
0

+ 2W i

∆i
k

Mi

) < Cin(k) < 1

max
16i6n−1

(|λ| +
∆i+1

0

∆i
0

+
2W i

∆i
k

) < Cout(k)

The principle of the algorithm is the same except two

rules.

• The value m⋆
i,k(

∆i
k

Wi
) is dynamic

• In the Dwell Time phase, we fix a maximal time for

this phase. If the dwell time is over this period, the

algorithm enters in “Zoom Out” phase.

Remark 3: The smaller is Q, the bigger is the asymp-

totical value of quantization steps, so the set Ωext
∞ will

be larger. However regulation is faster. If the value of

Q is big, asymptotical quantization steps are near their

minimal value. But if a disturbance occurs, the system

slowly regulates.

2) ZIZO: To cope with an exogenous input, ZIZO is

constrained by a maximal value of quantization. This

maximal value depends on the matrix A and the amplitude

of the noise. The conception of this algorithm is simpler

than D-ZIZO.

IV. PERFORMANCE COMPARISON BETWEEN ZIZO AND

D-ZIZO

In this section, we will compare with some examples and

by simulations those two strategies in term of regulation

performances. We also show that D-ZIZO always can reach

the minimum bit constraint though ZIZO can reach it only

for special cases. The simulation results are presented here

to emphasize the differences between the two algorithms.

A. High frequency generation

1) Case study: Suppose the system (1) with A =
2.8, B = 0.2. The controller gain is K = 8, so A−BK
is Schur. The initial conditions are z̃1

0 = 100, x̂0 = 0,

M1 = 3. The initialization of the quantization step is

∆0 = 0, 6. The parameters of ZIZO are Θin,m = 2.81/3,

Θin,e = 2.81 and Θout = 3 and p = 22. The parameters of

D-ZIZO are Cout = 3,Cin = 2.81/3 and m⋆ = 6. Those

parameters are used for Figure 2 and Figure 3.

In this part, we highlight that for the “Zoom In” process

the evolution of z̃k for D-ZIZO is smother than the evolu-

tion of x̃k with ZIZO. And we introduce the Lyapunov

function Vk = z̃2
k. Without loss of generalization, we

assume that the initial condition is in Ωext(0). So z̃k is

in Ωext(k), hence we have

Vk = z̃2
k

Vk 6 (
M∆k

2
)2 = Wk

In Figure 2, we see the evolution of Vk, the coefficients

in the two algorithms are chosen such that Vk = Wk,

we easily find out that the Lyapunov function is piecewise

decreasing for ZIZO and that is smoothly decreasing for

D-ZIZO. Since in that example Vk = Wk, the Lyapunov

function depends on ∆2
k. So the evolution of Vk is only

driven by the algorithms ZIZO and D-ZIZO. In the “Zoom

In Measurement” procedure of ZIZO, the quantization step

begins to decrease and after a certain number of sample

times p (coefficient relied to regulation detection), that de-

pends on (7), algorithm enters in “Zoom In escape” process

for only one sample time. In this procedure, quantization

steps increase. This method is reproduced each p times.

In D-ZIZO, quantization step only decreases. In Figure 3,

we are interested in the spectral density of z̃k = x̃k. We

remark that ZIZO generates a lot of frequency pics though

D-ZIZO not. It is very important for closed loop system

to be robust to noise generation (here, quantization noise).

So D-ZIZO is better than ZIZO for the non-generation of

frequency pics.
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Fig. 2. Comparison between Lyapunov functions. Figure (a) is obtained
with ZIZO Algorithm result and Figure (b) represents D-ZIZO algorithm.

B. Convergence rate

Moreover, in the noiseless adaptive process, we assure

for the scalar case that the convergence to 0 is faster with

same regulation performance p = m⋆. Let us define the

convergence coefficient CR with an initialization at z̃0 ∈
Ωext

0

CR = lim
n→∞

n∏

i=1

n

√

∆i

∆i−1

= lim
n→∞

n

√

∆n

∆0
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Fig. 3. Comparison realized with the power signal densities of quanti-
zation noise with Ts = 1s.

For processes which are p cyclic, we have CR = p

√
∆p

∆0 .

ZIZO is p cyclic so we have CR = p

√

Θp−1
in,mΘin,e. When

these coefficients are close to their minimal constraints

exposed in (7), we obtain

CR =
p

√

|λ|

M

p−1
|λ|

M − 2

with p such that CR < 1.

In D-ZIZO, when coefficients are close tho their minimal

constraints exposed in (13), we have

CR 6 (
|λ|

M
)

ln(|λ|)

ln(
M+2−|λ|

M−|λ|
)

In that follows, we interest in the closed loop system

equations. The following analysis is realized with ac =
a − bK and when |x̃k| 6 M∆k. Then we obtain

xk+1 = an
c x0 + bK

k∑

i=0

ai−1
c x̃k−i

|xk+1| 6 |ac|
k|x0| + M |bK|

k∑

i=0

|ac|
i−1∆k−i

|xk+1| 6 |ac|
k|x0| + M |bK|

Ck
R

|ac|

1 − ( |ac|
CR

)k+1

1 − |ac|
CR

∆0

In Fig 4, we present the convergence behavior repre-

sented by CR for the regulation constraint on detection

p = m⋆. If there is an impulse disturbance or a change of

initial conditions, algorithms react at the same moment, i.e

algorithm enters in a “Zoom Out” process.

In Figure 5, we present for same mean convergence

rate (same CR), the evolution of detection rapidity. That

means the necessary number of samples to decide to enter

in a “Zoom Out” process while an impulsive disturbance

occurs. It is related to m⋆ for D-ZIZO and p for ZIZO.

C. Distance to theoretical stabilization rate bound

Firstly, we introduce the theorem given in [11]

Theorem 1: Suppose the system (1) with the pair

(A, B) controllable. And a channel rate R bounded by

n∏

l=1,|λl|>1

⌈|λl|⌉ < 2R
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Fig. 4. Comparison of CR between ZIZO and D-ZIZO with p = m⋆

(same constraints on regulation detection). We see that if λ > 2, CR > 1
so the algorithm can not be used because it diverges. Moreover with λ < 2
we can use only 2 words.
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Fig. 5. Comparison of p between ZIZO (a) and D-ZIZO (b) with the
same CR for λ ∈ [1, 2.999].

Then, there exists a coding structure ensuring that the

system (1) is globally stable.

With D-ZIZO, the bound is achieved for all linear

systems. ZIZO could verify this theorem for certain class

of systems. If the matrix A of the system is diagonal

and its eigenvalues are greater than 3, ZIZO verifies the

theorem. However, since this algorithm needs at least 3

words M = 3. That means for |λ| < 2, there is a loss of

one word by signal (though D-ZIZO needs 2 words). If the

matrix A is not diagonalizable, each signal has the same

quantization step ∆ in ZIZO. The analysis realized in [10]

is too much conservative to achieve the bound exposed in

the theorem. The algorithm ZIZO needs more words by



TABLE I
COMPARISON RESULT WITH OPTIMAL CODING, D-ZIZO AND ZIZO.

A*B MEANS THAT THE COMPONENT 1 NEEDS A WORDS AND THE

COMPONENT 2 NEEDS B WORDS.

condition Optimal result ZIZO D-ZIZO

a < 2 2 3 2
3 < a < 4 4 4 4

A =

(
a 10
0 a

)

4*4 14 ∗ 14 4 ∗ 4

with 3 < a < 4

A =

(
a 1
0 a

)

4*4 5 ∗ 5 4 ∗ 4

with 3 < a < 4

signal than the minimum number of words exposed in the

theorem. With D-ZIZO, the tuning of quantization steps

permits to achieve the constraint for all linear systems.

In the table IV-C, we present the necessary number of

words by signal to assure global stability for ZIZO and

D-ZIZO .

V. CONCLUDING REMARKS

In this paper, we have firstly recalled two recent algo-

rithms of adaptive quantization namely ZIZO and D-ZIZO.

Those two algorithms permit to obtain global stability.

When the signal is too important it needs that the quan-

tization steps increase otherwise, quantization steps de-

crease. In “Zoom In Measurements” and “Zoom In Escape”

(ZIZO) phases, quantization step respectively decrease and

increase though, only for the “Zoom In” phase (D-ZIZO)

quantization steps decrease and remain identical in Dwell

Time period. Even if the essence of the algorithms are

the same, it seems that the dwell time phase permits

to have some improvements. This comparison could be

summarized with these following items.

• This change of coordinates and the quantization steps

tuning method enable D-ZIZO to obtain the minimum

bandwidth on the communication channel for all linear

systems whereas ZIZO may sometimes reach the

theoretical limit for certain classes of linear systems.

• ZIZO generates high frequencies on the quantization

noise though this signal is smoother for D-ZIZO.

• For same regulation detection, D-ZIZO is faster than

ZIZO. Moreover, with the same convergence rate, the

detection is faster for D-ZIZO.

• One drawback for D-ZIZO is the generalization to

non-linear systems that seems difficult. Without the

change of coordinates which is the key point of D-

ZIZO, it is impossible to obtain an adaptive algorithm

in D-ZIZO case. With ZIZO, the issue is solved.

In future works, we will investigate the study of uncer-

tain models with fixed and adaptive quantization.
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