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Abstract

For a family F of graphs, a graph U is said to be F-induced-universal
if every graph of F is an induced subgraph of U. We give a construction
for an induced-universal graph for the family of graphs on n vertices with
degree at most k. For k even, our induced-universal graph has O(n*/?)
vertices and for k odd it has O(n!*/21=1/F10g2+2/* 1) vertices. This con-
struction improves the main result of [9] by a multiplicative constant factor
for even case and by almost a multiplicative n'/* factor for odd case. We
also construct induced-universal graphs for the class of oriented graphs
with bounded incoming and outgoing degree, slightly improving another
result of [9].

1 Introduction

All graphs are assumed to be without loops or multiples edges. For a graph
G we denote by V(G) its vertex set and by E(G) its edge or arc set. Our
terminology is standard and any undefined term can be found in standard
theory books [12].

For a finite family F of graphs, a graph U is said to be F-universal if every
graph in F is a subgraph of U. For instance, if we denote by F,, the family of
all graphs with at most n vertices, then the complete graph K, is F,-universal.
The problem of finding universal graphs was originally motivated by circuit
design for computer chips [5]. The design cost of circuit is very expensive,
whereas making many copies of the same circuit is rather inexpensive. This
encouraged most of the chip manufacturers to make their circuits configurable.
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If we represent circuits by graphs, finding a configurable circuit may be
viewed as finding a universal graph. These applications motivated the study
of universal graphs for various families of graphs of n vertices, including
forests [11], bounded-degree forests [3, 4], and bounded-degree graphs [1].

The notion of induced-universal graph can be similarly defined. For a fam-
ily F of graphs, a graph U is F-induced-universal if every graph in F is an
induced subgraph of U. The family of all graphs on n vertices was considered
by Moon [14], while Chung considered trees, planar graphs, and graphs with
bounded arboricity [10].

The problem of finding a small induced-universal graph is strongly related
to a notion of distributed data structure known as adjacency labeling scheme.
An adjacency labeling scheme for a family F of graphs consists in a labeling
function that assigns labels to the vertices of any graph of F such that the
adjacency can be decided between any two vertices by only looking at their
labels. The problem of finding an adjacency labeling scheme with small labels
was introduced by Breuer [7, 8]. Kannan, Naor and Rudich [13] established
that there is an adjacency labeling scheme with labels of size k(n) bits for the
family F,, if and only if there exists an F,-induced-universal graphs with 2%(")
vertices. This strong link between the two notions implies that any result on
one notion has direct consequences on the other. For instance, the best known
induced-universal graph for the class of forests is deduced from a labeling
scheme |[2].

In this paper, we focus on induced-universal graphs for bounded-degree
graphs. We construct an induced-universal graph for the family F;, ,, of graphs
on n vertices with degree at most k. For k even, our induced-universal
graph has O(n*/?) vertices and for k odd our induced-universal graph has
O(nlk/21=1/k log2+2/k n) vertices. Our result for graphs with maximum degree
k=0 (mod 2) is deduced from a construction similar to that of [9] but with an
improvement of the base graph of the construction (Section 3). Our result for
graphs with maximum degree £ = 1 (mod 2) is deduced from a recent result of
Alon and Capalbo [1] on universal graphs for bounded-degree graphs, combined
with a construction of [10] that gives an interesting connection between induced-
universal graphs and universal graphs (Section 4). The best known lower bound
for the number of vertices of an F} ,-induced-universal graph is Q(n*/2) [9]. So,
our result for k even is tight up to a multiplicative constant and our result for
k odd is equal to O(n'/271/%10g?+?/k ) times the lower bound. We also give a
generalization of our result for oriented graphs (Section 5). In Section 6, we give
a construction of an induced-universal graph for all orientations of the graphs of
a family F, only using a specific F-induced-universal graph. We conclude the
paper with some open problems (Section 7).



2 A small induced-universal graph for graphs with
degree at most two

Our main concern is to find an Fj, ,-induced-universal graphs for each k. We
first investigate the case k = 2.
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Figure 1: The F5 j-induced-universal graph U,.

Lemma 1 The graph U, depicted in Figure 1 is an Fop-induced-universal
graph.

Proof. It is sufficient to prove that any graph G € F», is an induced subgraph
of Uy, the graph depicted in Figure 1. For 1 < i < n, let n; be the number of
connected components of G with ¢ vertices. The degree of GG is bounded by 2 so
G contains n; isolated vertices, no disjoint Ks’s, and for ¢ > 3, cycles or paths
with n; vertices. We embed the connected components of G into U, from left to
right after having sort them by increasing size. The graph U, is made of cycles
of size 5 called tiles that are joined in serial by 4 edges. Let us prove that we
can embed all the connected components of G in an induced way using at most
| 2] + 5 tiles.

e The embedding of the stable set of size ni, using [%] + 1 tiles.

NN

[%1 + 1 tiles

e The embedding of the no Ks’s, using ns + 1 tiles.

K]

ng + 1 tiles

e The embedding of the nz connected components of size 3, using ng + 1
tiles.



]

ns + 1 tiles

e The embedding of the n4 connected components of size 4, using 2n4 + 1

tiles.

2n4 + 1 tiles

e The embedding of the ns connected components of size 5, using 2ns tiles.

Qo000

2n5 tiles

e For k > 3, the embedding of the no; connected components of size 2k,
using knoy tiles.

L O

— 1 tiles — 1 tiles

e For £ > 3, the embedding of the nyx 1 connected components of size
2k + 1, using knog41 tiles.

DL

— 1 tiles — 1 tiles

Observe that for each i the embedding of connected components of size i is
induced. Moreover, at the end of the embedding of all connected components of
size ¢, there is a tile in which no vertex of G is embedded. So, there are no edges
of U,, between the embeddings of two connected components of different sizes.
Hence, the embedding of G into U, is induced. It remains to upper bound the
number of tiles [ used by such an embedding.



o n/2] n/2)
L= S +2+m+14ng+ 142+ 14205+ kz_g 2k + kz_g 2knog1

IA

ot

_l’_
\'M
NE

IN

n
n
o+ LgJ , since ZmZ = n and the number of tiles is an integer.
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A natural question is to investigate whether this construction is optimal.
We now prove that it is optimal up to a constant multiplicative factor of ap-
proximatively %

Claim 1 Every F» ,-induced-universal graph has at least 11 L%J vertices.

Proof. Let n € N be a multiple of 6. Let H, be the family containing the
following three graphs:

e the stable set of n vertices
e the disjoint union of n/2 Ko, called induced matching
e the disjoint union of n/3 K3, called disjoint triangles

Note that all these three graphs have n vertices and degree at most two. Let
U, be an Hy-induced-universal graph. Observe that the number of vertices
in a maximal stable set in n/3 disjoint triangles is n/3 since each triangle
cannot have more than one vertex in a stable set. So, the graph U, has a
stable set of size 2n/3 that is vertex disjoint of the embedding of the n/3
triangles because otherwise it would not contain a stable set of size n. Two
disjoint edges of the induced matching cannot both have endpoints embedded
in vertices of the embedding of one triangle because otherwise there would
be an edge between two endpoints of two edges of the induced matching.
So, we cannot have more than n/3 edges of the induced matching that have
endpoints embedded in same vertices as the n/3 triangles. The graph U, has
a stable set of size 2n/3 and an induced matching of n/2 —n/3 = n/6 edges
that are both vertex disjoint of the embeddings of the n/3 triangles. A graph
containing a stable set of size 2n/3 and an induced matching of /6 edges must
have 2n/3 + n/6 = 5n/6 vertices since an edge cannot have more than one
end in the stable set. Eventually, U, has at least 11n/6 vertices and so any
Fa p-induced-universal graph needs 11 [n/6] vertices because Hg| /6] S Fo,n- O



3 Induced-universal graphs for graphs with even max-
imum degree

We now use our construction of an F3 ,-induced-universal graph to construct
an Fj, ,-induced-universal graph for k even (the same method was already used
in [9]).

Theorem 1 Let k > 2 be an even integer. There is an Fj, ,,-induced-universal
graph Uy, ,, such that

[V (Ui)| = (1+ (1) (%”)W and [B(U1)] = 55 +o(1)) (%”)k

To prove this theorem, we first reduce the problem to the construction of an
F2 n-induced-universal.

Theorem 2 (Chung [10]) Let U be an F-induced-universal graph. Suppose
that ‘H is a family of graphs such that each H € H can be decomposed into k
edge-disjoint subgraphs each of which belongs to F. Then there exists an H-
induced-universal graph W where

VW) = |V(U)|* and |[E(W)| = |V (U)|**?|EU)|.

Theorem 3 (Petersen [15]) Let G be a k-regular graph, with k even. G can
be decomposed into k/2 edge-disjoint graphs of degree at most 2.

Proof of Theorem 1. From Theorem 3, every graph G € Fj, , can be decom-
posed into k/2 edge-disjoint graphs of degree at most 2. Using Lemma 1, we
construct an F, ,-induced-universal graph U, with [V (U,)| = 2n + O(1) and
|E(Uy)| = 3n+O(1). Eventually, using Theorem 2, we obtain an Fj ,-induced-
universal graph Uy, , such that

V(Ukn) = [VO)?
5\ /2
5) n*/2 4 o(nk/?)

[EUkn)| =

)

V)" EW))

5\ k2
<§> nk=L 4 o(n*1).

| NI N
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4 Induced-universal graphs for graphs with odd max-
imum degree

To our best knowledge, there is no good result on edge decomposition for graphs
belonging to F}, ,, with k¥ odd. We cannot use any edge decomposition to reduce



our problem to finding induced-universal graphs for simple families of graphs.
Nevertheless, we can use U415, as an F}, ,-induced-universal graph since 7, ,, C
Frs1n- The graph obtained is from a multiplicative factor of O(n'/2) of the
best known lower bound for the number of vertices of 7 ,-induced-universal
graphs. We now show how to reduce the gap between lower and upper bounds
with a construction deduced from universal graphs.

Theorem 4 Let k > 3 be an odd integer. There is an Fy, p-induced-universal
graph Uy, , such that

|V (Ugn)| = 1 (k)nl*21=V 0 10g2 2k 0y and |E(Uy )| = co(k)nk =2k 1logh4/k p

This result is deduced from the Fj, ,-universal graph obtained by Alon and
Capalbo [1], using a result of Chung [10] that gives a construction of an Fj, ,-
induced-universal graph from a Fj, ,-universal universal graph.

Theorem 5 (Alon and Capalbo [1]) For every k > 3, there is an Fi -
universal graph Hy,,, with n vertices and at most c(k)nQ*Q/k log4/k n edges, for
some constant c(k). Moreover Hy, ,, is reqular, i.e., each vertex of V(Hy,) has
degree c(k)n'=2/*log?* n.

Theorem 6 (Chung [10]) Let A, be a family of graphs with arboricity at most
r. Let G be an A,-universal graph. There exists an A,-induced-universal graph
H such that

V(H) = Y (da)+1)" and |[EH)| = Y (da(u) + 1) dg(v) "
veV(G) weE(G)

Proof of Theorem 4. From Theorem 5, there exists an Fj, ,-universal graph
Hj, ,, with n vertices having degree at most c(k)n?=2/k log4/ ¥ n. Tt is well-known
that graphs of degree at most £k =1 (mod 2) have arboricity bounded by [k/2].
Using Theorem 6 on Hj, ,,, we can construct an induced-universal graph Uy, for
the family 7., = A(k/Q] such that

V(Uen)l = Y. (da,, () + 1)
'UGV(Hkm‘)

IV (Hgn)| (2, )T/
n(20(k)n1_2/k log?/¥ n) [k/2]
€1 (k)n[k/ﬂ_l/k 10g2+2/k n , where ci (k) = (QC(k))fk/ﬂ

IN

IN A

BUW = 3 (i, () + 1) g, (o)
w€E(Hy )

\E(Hy,)|(2dm, )/ (dg,, )TF/2
c(k)n=2/F log"* n(2c(k)n'=* log* n) /21 (c(k)n!=2/* 10g/* ) [F/21-1
co(k)n*=2Flogt 4k where cy(k) = (2¢(k))* .

IN

IN A



5 Induced-universal graphs for bounded-degree ori-
ented graphs

An orientation G of a graph G consists in assigning to every edge of G one of
its two possible orientations. 6 is called an oriented graph and by definition,
it cannot have loops nor opposite arcs. The construction of Section 3 can be
easily generalized to the family Oy, ,, of all the orientations of the graphs of 7o p,
having incoming and outgoing degree at most k. Indeed, both Theorems 2 and
3 have an oriented version, which can be used almost like in Section 3.

Theorem 7 There is an Oy, ,-induced-universal oriented graph O—k;,; such that
[V(On)| = (14 0(1)) (30)* and |E(Or)| = (24 0(1) (3n) .

Proof. The construction of an induced-universal graph for Oy, is almost the
same as the construction for 75 ,, presented in Section 3. The oriented version
of Theorem 3 says that a graph with outgoing and incoming degree at most k
can be decomposed into _k_) edge-disjoint graphs having outgoing and incomin
degree at most 1. Let O, be the graph represented in Figure 2. So, if O,
is 01 y-induced-universal then, using Theorem 2, we can construct an Oy ,-
induced-universal graph O—kn) having \V(O—;w:)| = (14 0(1)) (3n)" vertices and
\E(mﬂ = (2+ 0(1)) (3n)* 7! edges. So, the only thing we need to prove is
that O_,: is O1 n-induced-universal.

| 2] + 5 tiles joined in serial

Figure 2: The Oy ,-induced-universal graph 52

Let G be any graph of O ,. The connected components of G are either
directed paths (oriented paths with exactly one sink and one source) or directed
cycles (oriented cycles with no source). We embed 6 in 52 almost the same way
we embedded graphs of F3,, in U, in Section 2. The only differences are for the
embeddings of connected components of size 3 or more that slighty differ from
the non-oriented case. Indeed, we can embed stable sets and directed paths
of size 2 using the same embedings as for the non-oriented case. We embed
connected components of size 3 or more using the following scheme.

e The embedding of the n3 connected components of size 3, using ng + 1
tiles.

n3 + 1 tiles



e The embedding of the n4 connected components of size 4, using 2n4 + 1

tiles.

e The embedding of the ns connected components of size 5, using 2ns + 1

tiles.

e For k > 3, the embedding of the ng; connected components of size 2k,
using knoy tiles.

LD

— 1 tiles — 1 tiles

2n4 + 1 tiles

2ns + 1 tiles

e For k£ > 3, the embedding of the ng;y; connected components of size
2k + 1, using knog41 tiles.

R DO TR

— 1 tiles — 1 tiles

We use for embeddings exactly the same number of tiles as for the non-

oriented case, so the graph O_,: has the same number of tiles as the graph U,
which had L J + 5 tiles. O

6 From induced-universal graphs to oriented induced-
universal graphs

In Section 5, we constructed an induced-universal graph for a family of orienta-
tions of graphs in F5, by orienting the edges and adding some vertices to the
non-oriented induced-universal graph. Let F be a family of graph and F be a
family of oriegfations of graphs in F. Oga may ask if it is always possible to
construct an F-induced-universal graph U from an F-induced-universal graph



U. Given two graphs G and H, a homomorphism from G to H is any mapping
[ V(G) — V(H) satistying [z,y] € E(G) = [f(x), f(y)] € E(H). In fact,
the construction is possible if there is a graph Ef into which each gaph of F
has a homomorphism. In this case, the graph H is said to be an F -universal
graph for homomorphism. For instance, the directed cycle of length three is a
universal graph for homomorphism for the family of orientation of trees. The
graph U can be obtained by making a sgecial product of the two graphs H
and U. The om'gnted tensor product G x H of a non—o_)riented graph G ind an
oriented graph H is defined to have vertex set V(G x H) = V(G) x V(H) and

arc set E(G x ﬁ) = {[(:U,u), (y,v)] | zy € E(G) and uv € E(ﬁ)}

Theorem 8 Let U and H be two graphs. If U zs F-induced-universal and H
18 .7-" universal for homomorphism then U X H is .7-" induced-universal.

Proof. It suffices to show that we can embed an arbitrary graph 6 € .72 as
an mduced subgraph of U x H. Let v € G There is a homomorphism of G
to H since H is F-universal for homomorphism. We denote by h(v) € V( )
the vertex into which v is mapped. If we forget about the orientation, we can
embed G into U since U is F-induced-universal. Let denote by u(v) € V(U)
the vertex into which v is embedded. The embedding of G into U x H gonsists
in embedding each vertex v of G into the vertex (u(v),h(v)) of U x H. The
embedding is correct in the sense that if there is an arc [z, y] in G then there is
an arc [(u(x), h(z)), (u(y), h(y))] in U x H. Indeed, there is an edge [u(z), u(y)]
in U due to the non-oriented embedding of G into U and an arc [h(z), h(y)]
in H due to the mapping of G into H. Moreover, the embedding is induced.
Indeed, if two vertices = and y of G are not adjacent then w(z) and u(y) are
not adjacent in U because the non-oriented embedding of G into U is indgced.
So, by construction, (u(z), h(x)) and (u(y),h(y)) are not adjacent in U x H. O

The problem of finding an F-universal graph for homomorphism is closely
related to the oriented coloring of graphs of F and has been studied for various
families of graphs. There is a universal graph for homomorphism with three
vertices for trees, with 80 vertices for the family of planar graphs [6], with
7 vertices for 2-trees and outerplanar graphs [16], with 5 vertices for graph
of degree at most 2 [16] and with 11 vertices for graphs of degree at most
3[16]. This implies that for these families, we can construct an oriented induced-
universal graph for orientations of the family of graphs that have a number
of vertices equal to a constant times the number of vertices of the induced-
universal graph. Observe that this construction is not optimal for O, in the
sense that the smallest Oy ,-universal graph for homomorphism has exactly 5
vertices whereas our O ,-induced-universal graph has less than five times the
number of vertices of minimal 3 ,,-induced-universal.

10



7 Concluding remarks and open problems

In Section 2, we proved that a minimal F5,-induced-universal has at least
5n/2 + O(1), and and at most 11n/6 + O(1) vertices. The natural question
that arises is whether it is possible to reduce the gap between 5/2 and 11/6
for the multiplicative constant. This question seems to be quite difficult, even
though graphs of 73, have a very simple structure. For k odd, if we forget the
polylogarithmic factor, there remains a multiplicative factor of nl/2=Yk between
the lower and the upper bound for the number of vertices in a minimal Fy -
induced-universal graph. An interesting problem would be to lower this factor,
especially for large values of k. In our construction, for k even, our 7, ,,-induced-
universal graph have maximum degree 4%/2 depending only on k whereas for k
odd, it has maximum degree co(k)nF—1-2/k 10g4+4/ ¥ n. Considering that for k
even our construction is almost tight whereas for k odd it is not, we conjecture
that F}, ,-induced-universal graphs with minimal number of vertices and edges
have degree only depending on k. In other words, we conjecture that there is
a function f(k) such that the existence of a F}, ,-induced-universal graph Uy, ,
implies that there exists another one with at most the same number of vertices,
but with degree at most f(k).
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